blob: 16401a4ed0e04d64a774b08e5803de0c76404caf [file] [log] [blame]
// Copyright 2020, The Android Open Source Project
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! This module implements the handling of async tasks.
//! The worker thread has a high priority and a low priority queue. Adding a job to either
//! will cause one thread to be spawned if none exists. As a compromise between performance
//! and resource consumption, the thread will linger for about 30 seconds after it has
//! processed all tasks before it terminates.
//! Note that low priority tasks are processed only when the high priority queue is empty.
use std::{any::Any, any::TypeId, time::Duration};
use std::{
collections::{HashMap, VecDeque},
sync::Arc,
sync::{Condvar, Mutex, MutexGuard},
thread,
};
#[cfg(test)]
mod tests;
#[derive(Debug, PartialEq, Eq)]
enum State {
Exiting,
Running,
}
/// The Shelf allows async tasks to store state across invocations.
/// Note: Store elves at your own peril ;-).
#[derive(Debug, Default)]
pub struct Shelf(HashMap<TypeId, Box<dyn Any + Send>>);
impl Shelf {
/// Get a reference to the shelved data of type T. Returns Some if the data exists.
pub fn get_downcast_ref<T: Any + Send>(&self) -> Option<&T> {
self.0.get(&TypeId::of::<T>()).and_then(|v| v.downcast_ref::<T>())
}
/// Get a mutable reference to the shelved data of type T. If a T was inserted using put,
/// get_mut, or get_or_put_with.
pub fn get_downcast_mut<T: Any + Send>(&mut self) -> Option<&mut T> {
self.0.get_mut(&TypeId::of::<T>()).and_then(|v| v.downcast_mut::<T>())
}
/// Remove the entry of the given type and returns the stored data if it existed.
pub fn remove_downcast_ref<T: Any + Send>(&mut self) -> Option<T> {
self.0.remove(&TypeId::of::<T>()).and_then(|v| v.downcast::<T>().ok().map(|b| *b))
}
/// Puts data `v` on the shelf. If there already was an entry of type T it is returned.
pub fn put<T: Any + Send>(&mut self, v: T) -> Option<T> {
self.0
.insert(TypeId::of::<T>(), Box::new(v) as Box<dyn Any + Send>)
.and_then(|v| v.downcast::<T>().ok().map(|b| *b))
}
/// Gets a mutable reference to the entry of the given type and default creates it if necessary.
/// The type must implement Default.
pub fn get_mut<T: Any + Send + Default>(&mut self) -> &mut T {
self.0
.entry(TypeId::of::<T>())
.or_insert_with(|| Box::<T>::default() as Box<dyn Any + Send>)
.downcast_mut::<T>()
.unwrap()
}
/// Gets a mutable reference to the entry of the given type or creates it using the init
/// function. Init is not executed if the entry already existed.
pub fn get_or_put_with<T: Any + Send, F>(&mut self, init: F) -> &mut T
where
F: FnOnce() -> T,
{
self.0
.entry(TypeId::of::<T>())
.or_insert_with(|| Box::new(init()) as Box<dyn Any + Send>)
.downcast_mut::<T>()
.unwrap()
}
}
struct AsyncTaskState {
state: State,
thread: Option<thread::JoinHandle<()>>,
timeout: Duration,
hi_prio_req: VecDeque<Box<dyn FnOnce(&mut Shelf) + Send>>,
lo_prio_req: VecDeque<Box<dyn FnOnce(&mut Shelf) + Send>>,
idle_fns: Vec<Arc<dyn Fn(&mut Shelf) + Send + Sync>>,
/// The store allows tasks to store state across invocations. It is passed to each invocation
/// of each task. Tasks need to cooperate on the ids they use for storing state.
shelf: Option<Shelf>,
}
/// AsyncTask spawns one worker thread on demand to process jobs inserted into
/// a low and a high priority work queue. The queues are processed FIFO, and low
/// priority queue is processed if the high priority queue is empty.
/// Note: Because there is only one worker thread at a time for a given AsyncTask instance,
/// all scheduled requests are guaranteed to be serialized with respect to one another.
pub struct AsyncTask {
state: Arc<(Condvar, Mutex<AsyncTaskState>)>,
}
impl Default for AsyncTask {
fn default() -> Self {
Self::new(Duration::from_secs(30))
}
}
impl AsyncTask {
/// Construct an [`AsyncTask`] with a specific timeout value.
pub fn new(timeout: Duration) -> Self {
Self {
state: Arc::new((
Condvar::new(),
Mutex::new(AsyncTaskState {
state: State::Exiting,
thread: None,
timeout,
hi_prio_req: VecDeque::new(),
lo_prio_req: VecDeque::new(),
idle_fns: Vec::new(),
shelf: None,
}),
)),
}
}
/// Adds a one-off job to the high priority queue. High priority jobs are
/// completed before low priority jobs and can also overtake low priority
/// jobs. But they cannot preempt them.
pub fn queue_hi<F>(&self, f: F)
where
F: for<'r> FnOnce(&'r mut Shelf) + Send + 'static,
{
self.queue(f, true)
}
/// Adds a one-off job to the low priority queue. Low priority jobs are
/// completed after high priority. And they are not executed as long as high
/// priority jobs are present. Jobs always run to completion and are never
/// preempted by high priority jobs.
pub fn queue_lo<F>(&self, f: F)
where
F: FnOnce(&mut Shelf) + Send + 'static,
{
self.queue(f, false)
}
/// Adds an idle callback. This will be invoked whenever the worker becomes
/// idle (all high and low priority jobs have been performed).
pub fn add_idle<F>(&self, f: F)
where
F: Fn(&mut Shelf) + Send + Sync + 'static,
{
let (ref _condvar, ref state) = *self.state;
let mut state = state.lock().unwrap();
state.idle_fns.push(Arc::new(f));
}
fn queue<F>(&self, f: F, hi_prio: bool)
where
F: for<'r> FnOnce(&'r mut Shelf) + Send + 'static,
{
let (ref condvar, ref state) = *self.state;
let mut state = state.lock().unwrap();
if hi_prio {
state.hi_prio_req.push_back(Box::new(f));
} else {
state.lo_prio_req.push_back(Box::new(f));
}
if state.state != State::Running {
self.spawn_thread(&mut state);
}
drop(state);
condvar.notify_all();
}
fn spawn_thread(&self, state: &mut MutexGuard<AsyncTaskState>) {
if let Some(t) = state.thread.take() {
t.join().expect("AsyncTask panicked.");
}
let cloned_state = self.state.clone();
let timeout_period = state.timeout;
state.thread = Some(thread::spawn(move || {
let (ref condvar, ref state) = *cloned_state;
enum Action {
QueuedFn(Box<dyn FnOnce(&mut Shelf) + Send>),
IdleFns(Vec<Arc<dyn Fn(&mut Shelf) + Send + Sync>>),
}
let mut done_idle = false;
// When the worker starts, it takes the shelf and puts it on the stack.
let mut shelf = state.lock().unwrap().shelf.take().unwrap_or_default();
loop {
if let Some(action) = {
let state = state.lock().unwrap();
if !done_idle && state.hi_prio_req.is_empty() && state.lo_prio_req.is_empty() {
// No jobs queued so invoke the idle callbacks.
Some(Action::IdleFns(state.idle_fns.clone()))
} else {
// Wait for either a queued job to arrive or a timeout.
let (mut state, timeout) = condvar
.wait_timeout_while(state, timeout_period, |state| {
state.hi_prio_req.is_empty() && state.lo_prio_req.is_empty()
})
.unwrap();
match (
state.hi_prio_req.pop_front(),
state.lo_prio_req.is_empty(),
timeout.timed_out(),
) {
(Some(f), _, _) => Some(Action::QueuedFn(f)),
(None, false, _) => {
state.lo_prio_req.pop_front().map(|f| Action::QueuedFn(f))
}
(None, true, true) => {
// When the worker exits it puts the shelf back into the shared
// state for the next worker to use. So state is preserved not
// only across invocations but also across worker thread shut down.
state.shelf = Some(shelf);
state.state = State::Exiting;
break;
}
(None, true, false) => None,
}
}
} {
// Now that the lock has been dropped, perform the action.
match action {
Action::QueuedFn(f) => {
f(&mut shelf);
done_idle = false;
}
Action::IdleFns(idle_fns) => {
for idle_fn in idle_fns {
idle_fn(&mut shelf);
}
done_idle = true;
}
}
}
}
}));
state.state = State::Running;
}
}