blob: 30841958287e8adae8365b99c9f73240418234e5 [file] [log] [blame]
// Copyright 2021, The Android Open Source Project
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Offer keys based on the "boot level" for superencryption.
use android_hardware_security_keymint::aidl::android::hardware::security::keymint::{
Algorithm::Algorithm, Digest::Digest, KeyPurpose::KeyPurpose, SecurityLevel::SecurityLevel,
};
use anyhow::{Context, Result};
use keystore2_crypto::{hkdf_expand, ZVec, AES_256_KEY_LENGTH};
use std::{collections::VecDeque, convert::TryFrom};
use crate::{database::KeystoreDB, key_parameter::KeyParameterValue, raw_device::KeyMintDevice};
/// This is not thread safe; caller must hold a lock before calling.
/// In practice the caller is SuperKeyManager and the lock is the
/// Mutex on its internal state.
pub fn get_level_zero_key(db: &mut KeystoreDB) -> Result<ZVec> {
let key_desc = KeyMintDevice::internal_descriptor("boot_level_key".to_string());
let params = [
KeyParameterValue::Algorithm(Algorithm::HMAC).into(),
KeyParameterValue::Digest(Digest::SHA_2_256).into(),
KeyParameterValue::KeySize(256).into(),
KeyParameterValue::MinMacLength(256).into(),
KeyParameterValue::KeyPurpose(KeyPurpose::SIGN).into(),
KeyParameterValue::NoAuthRequired.into(),
KeyParameterValue::MaxUsesPerBoot(1).into(),
];
// We use TRUSTED_ENVIRONMENT here because it is the authority on when
// the device has rebooted.
let km_dev: KeyMintDevice = KeyMintDevice::get(SecurityLevel::TRUSTED_ENVIRONMENT)
.context("In get_level_zero_key: KeyMintDevice::get failed")?;
let (key_id_guard, key_entry) = km_dev
.lookup_or_generate_key(db, &key_desc, &params)
.context("In get_level_zero_key: lookup_or_generate_key failed")?;
let params = [KeyParameterValue::MacLength(256).into()];
let level_zero_key = km_dev
.use_key_in_one_step(
db,
&key_id_guard,
&key_entry,
KeyPurpose::SIGN,
&params,
None,
b"Create boot level key",
)
.context("In get_level_zero_key: use_key_in_one_step failed")?;
// TODO: this is rather unsatisfactory, we need a better way to handle
// sensitive binder returns.
let level_zero_key = ZVec::try_from(level_zero_key)
.context("In get_level_zero_key: conversion to ZVec failed")?;
Ok(level_zero_key)
}
/// Holds the key for the current boot level, and a cache of future keys generated as required.
/// When the boot level advances, keys prior to the current boot level are securely dropped.
pub struct BootLevelKeyCache {
/// Least boot level currently accessible, if any is.
current: usize,
/// Invariant: cache entry *i*, if it exists, holds the HKDF key for boot level
/// *i* + `current`. If the cache is non-empty it can be grown forwards, but it cannot be
/// grown backwards, so keys below `current` are inaccessible.
/// `cache.clear()` makes all keys inaccessible.
cache: VecDeque<ZVec>,
}
impl BootLevelKeyCache {
const HKDF_ADVANCE: &'static [u8] = b"Advance KDF one step";
const HKDF_AES: &'static [u8] = b"Generate AES-256-GCM key";
const HKDF_KEY_SIZE: usize = 32;
/// Initialize the cache with the level zero key.
pub fn new(level_zero_key: ZVec) -> Self {
let mut cache: VecDeque<ZVec> = VecDeque::new();
cache.push_back(level_zero_key);
Self { current: 0, cache }
}
/// Report whether the key for the given level can be inferred.
pub fn level_accessible(&self, boot_level: usize) -> bool {
// If the requested boot level is lower than the current boot level
// or if we have reached the end (`cache.empty()`) we can't retrieve
// the boot key.
boot_level >= self.current && !self.cache.is_empty()
}
/// Get the HKDF key for boot level `boot_level`. The key for level *i*+1
/// is calculated from the level *i* key using `hkdf_expand`.
fn get_hkdf_key(&mut self, boot_level: usize) -> Result<Option<&ZVec>> {
if !self.level_accessible(boot_level) {
return Ok(None);
}
// `self.cache.len()` represents the first entry not in the cache,
// so `self.current + self.cache.len()` is the first boot level not in the cache.
let first_not_cached = self.current + self.cache.len();
// Grow the cache forwards until it contains the desired boot level.
for _level in first_not_cached..=boot_level {
// We check at the start that cache is non-empty and future iterations only push,
// so this must unwrap.
let highest_key = self.cache.back().unwrap();
let next_key = hkdf_expand(Self::HKDF_KEY_SIZE, highest_key, Self::HKDF_ADVANCE)
.context("In BootLevelKeyCache::get_hkdf_key: Advancing key one step")?;
self.cache.push_back(next_key);
}
// If we reach this point, we should have a key at index boot_level - current.
Ok(Some(self.cache.get(boot_level - self.current).unwrap()))
}
/// Drop keys prior to the given boot level, while retaining the ability to generate keys for
/// that level and later.
pub fn advance_boot_level(&mut self, new_boot_level: usize) -> Result<()> {
if !self.level_accessible(new_boot_level) {
log::error!(
concat!(
"In BootLevelKeyCache::advance_boot_level: ",
"Failed to advance boot level to {}, current is {}, cache size {}"
),
new_boot_level,
self.current,
self.cache.len()
);
return Ok(());
}
// We `get` the new boot level for the side effect of advancing the cache to a point
// where the new boot level is present.
self.get_hkdf_key(new_boot_level)
.context("In BootLevelKeyCache::advance_boot_level: Advancing cache")?;
// Then we split the queue at the index of the new boot level and discard the front,
// keeping only the keys with the current boot level or higher.
self.cache = self.cache.split_off(new_boot_level - self.current);
// The new cache has the new boot level at index 0, so we set `current` to
// `new_boot_level`.
self.current = new_boot_level;
Ok(())
}
/// Drop all keys, effectively raising the current boot level to infinity; no keys can
/// be inferred from this point on.
pub fn finish(&mut self) {
self.cache.clear();
}
fn expand_key(
&mut self,
boot_level: usize,
out_len: usize,
info: &[u8],
) -> Result<Option<ZVec>> {
self.get_hkdf_key(boot_level)
.context("In BootLevelKeyCache::expand_key: Looking up HKDF key")?
.map(|k| hkdf_expand(out_len, k, info))
.transpose()
.context("In BootLevelKeyCache::expand_key: Calling hkdf_expand")
}
/// Return the AES-256-GCM key for the current boot level.
pub fn aes_key(&mut self, boot_level: usize) -> Result<Option<ZVec>> {
self.expand_key(boot_level, AES_256_KEY_LENGTH, BootLevelKeyCache::HKDF_AES)
.context("In BootLevelKeyCache::aes_key: expand_key failed")
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn test_output_is_consistent() -> Result<()> {
let initial_key = b"initial key";
let mut blkc = BootLevelKeyCache::new(ZVec::try_from(initial_key as &[u8])?);
assert_eq!(true, blkc.level_accessible(0));
assert_eq!(true, blkc.level_accessible(9));
assert_eq!(true, blkc.level_accessible(10));
assert_eq!(true, blkc.level_accessible(100));
let v0 = blkc.aes_key(0).unwrap().unwrap();
let v10 = blkc.aes_key(10).unwrap().unwrap();
assert_eq!(Some(&v0), blkc.aes_key(0)?.as_ref());
assert_eq!(Some(&v10), blkc.aes_key(10)?.as_ref());
blkc.advance_boot_level(5)?;
assert_eq!(false, blkc.level_accessible(0));
assert_eq!(true, blkc.level_accessible(9));
assert_eq!(true, blkc.level_accessible(10));
assert_eq!(true, blkc.level_accessible(100));
assert_eq!(None, blkc.aes_key(0)?);
assert_eq!(Some(&v10), blkc.aes_key(10)?.as_ref());
blkc.advance_boot_level(10)?;
assert_eq!(false, blkc.level_accessible(0));
assert_eq!(false, blkc.level_accessible(9));
assert_eq!(true, blkc.level_accessible(10));
assert_eq!(true, blkc.level_accessible(100));
assert_eq!(None, blkc.aes_key(0)?);
assert_eq!(Some(&v10), blkc.aes_key(10)?.as_ref());
blkc.advance_boot_level(0)?;
assert_eq!(false, blkc.level_accessible(0));
assert_eq!(false, blkc.level_accessible(9));
assert_eq!(true, blkc.level_accessible(10));
assert_eq!(true, blkc.level_accessible(100));
assert_eq!(None, blkc.aes_key(0)?);
assert_eq!(Some(v10), blkc.aes_key(10)?);
blkc.finish();
assert_eq!(false, blkc.level_accessible(0));
assert_eq!(false, blkc.level_accessible(9));
assert_eq!(false, blkc.level_accessible(10));
assert_eq!(false, blkc.level_accessible(100));
assert_eq!(None, blkc.aes_key(0)?);
assert_eq!(None, blkc.aes_key(10)?);
Ok(())
}
}