|  | /* | 
|  | * Copyright (C) 2014 The Android Open Source Project | 
|  | * | 
|  | * Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | * you may not use this file except in compliance with the License. | 
|  | * You may obtain a copy of the License at | 
|  | * | 
|  | *      http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | * Unless required by applicable law or agreed to in writing, software | 
|  | * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | * See the License for the specific language governing permissions and | 
|  | * limitations under the License. | 
|  | */ | 
|  |  | 
|  | #define LOG_TAG "keystore" | 
|  |  | 
|  | #include "keymaster_enforcement.h" | 
|  |  | 
|  | #include <assert.h> | 
|  | #include <inttypes.h> | 
|  | #include <limits.h> | 
|  | #include <string.h> | 
|  |  | 
|  | #include <openssl/evp.h> | 
|  |  | 
|  | #include <hardware/hw_auth_token.h> | 
|  | #include <log/log.h> | 
|  |  | 
|  | #include <list> | 
|  |  | 
|  | #include <keystore/keystore_hidl_support.h> | 
|  |  | 
|  | namespace keystore { | 
|  |  | 
|  | bool is_public_key_algorithm(const AuthorizationSet& auth_set) { | 
|  | auto algorithm = auth_set.GetTagValue(TAG_ALGORITHM); | 
|  | return algorithm.isOk() && | 
|  | (algorithm.value() == Algorithm::RSA || algorithm.value() == Algorithm::EC); | 
|  | } | 
|  |  | 
|  | static ErrorCode authorized_purpose(const KeyPurpose purpose, const AuthorizationSet& auth_set) { | 
|  | switch (purpose) { | 
|  | case KeyPurpose::VERIFY: | 
|  | case KeyPurpose::ENCRYPT: | 
|  | case KeyPurpose::SIGN: | 
|  | case KeyPurpose::DECRYPT: | 
|  | if (auth_set.Contains(TAG_PURPOSE, purpose)) return ErrorCode::OK; | 
|  | return ErrorCode::INCOMPATIBLE_PURPOSE; | 
|  |  | 
|  | default: | 
|  | return ErrorCode::UNSUPPORTED_PURPOSE; | 
|  | } | 
|  | } | 
|  |  | 
|  | inline bool is_origination_purpose(KeyPurpose purpose) { | 
|  | return purpose == KeyPurpose::ENCRYPT || purpose == KeyPurpose::SIGN; | 
|  | } | 
|  |  | 
|  | inline bool is_usage_purpose(KeyPurpose purpose) { | 
|  | return purpose == KeyPurpose::DECRYPT || purpose == KeyPurpose::VERIFY; | 
|  | } | 
|  |  | 
|  | KeymasterEnforcement::KeymasterEnforcement(uint32_t max_access_time_map_size, | 
|  | uint32_t max_access_count_map_size) | 
|  | : access_time_map_(max_access_time_map_size), access_count_map_(max_access_count_map_size) {} | 
|  |  | 
|  | KeymasterEnforcement::~KeymasterEnforcement() { | 
|  | } | 
|  |  | 
|  | ErrorCode KeymasterEnforcement::AuthorizeOperation(const KeyPurpose purpose, const km_id_t keyid, | 
|  | const AuthorizationSet& auth_set, | 
|  | const AuthorizationSet& operation_params, | 
|  | const HardwareAuthToken& auth_token, | 
|  | uint64_t op_handle, bool is_begin_operation) { | 
|  | if (is_public_key_algorithm(auth_set)) { | 
|  | switch (purpose) { | 
|  | case KeyPurpose::ENCRYPT: | 
|  | case KeyPurpose::VERIFY: | 
|  | /* Public key operations are always authorized. */ | 
|  | return ErrorCode::OK; | 
|  |  | 
|  | case KeyPurpose::DECRYPT: | 
|  | case KeyPurpose::SIGN: | 
|  | break; | 
|  |  | 
|  | case KeyPurpose::WRAP_KEY: | 
|  | return ErrorCode::INCOMPATIBLE_PURPOSE; | 
|  | }; | 
|  | }; | 
|  |  | 
|  | if (is_begin_operation) | 
|  | return AuthorizeBegin(purpose, keyid, auth_set, operation_params, auth_token); | 
|  | else | 
|  | return AuthorizeUpdateOrFinish(auth_set, auth_token, op_handle); | 
|  | } | 
|  |  | 
|  | // For update and finish the only thing to check is user authentication, and then only if it's not | 
|  | // timeout-based. | 
|  | ErrorCode KeymasterEnforcement::AuthorizeUpdateOrFinish(const AuthorizationSet& auth_set, | 
|  | const HardwareAuthToken& auth_token, | 
|  | uint64_t op_handle) { | 
|  | int auth_type_index = -1; | 
|  | for (size_t pos = 0; pos < auth_set.size(); ++pos) { | 
|  | switch (auth_set[pos].tag) { | 
|  | case Tag::NO_AUTH_REQUIRED: | 
|  | case Tag::AUTH_TIMEOUT: | 
|  | // If no auth is required or if auth is timeout-based, we have nothing to check. | 
|  | return ErrorCode::OK; | 
|  |  | 
|  | case Tag::USER_AUTH_TYPE: | 
|  | auth_type_index = pos; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Note that at this point we should be able to assume that authentication is required, because | 
|  | // authentication is required if KM_TAG_NO_AUTH_REQUIRED is absent.  However, there are legacy | 
|  | // keys which have no authentication-related tags, so we assume that absence is equivalent to | 
|  | // presence of KM_TAG_NO_AUTH_REQUIRED. | 
|  | // | 
|  | // So, if we found KM_TAG_USER_AUTH_TYPE or if we find KM_TAG_USER_SECURE_ID then authentication | 
|  | // is required.  If we find neither, then we assume authentication is not required and return | 
|  | // success. | 
|  | bool authentication_required = (auth_type_index != -1); | 
|  | for (auto& param : auth_set) { | 
|  | auto user_secure_id = authorizationValue(TAG_USER_SECURE_ID, param); | 
|  | if (user_secure_id.isOk()) { | 
|  | authentication_required = true; | 
|  | int auth_timeout_index = -1; | 
|  | if (auth_token.mac.size() && | 
|  | AuthTokenMatches(auth_set, auth_token, user_secure_id.value(), auth_type_index, | 
|  | auth_timeout_index, op_handle, false /* is_begin_operation */)) | 
|  | return ErrorCode::OK; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (authentication_required) return ErrorCode::KEY_USER_NOT_AUTHENTICATED; | 
|  |  | 
|  | return ErrorCode::OK; | 
|  | } | 
|  |  | 
|  | ErrorCode KeymasterEnforcement::AuthorizeBegin(const KeyPurpose purpose, const km_id_t keyid, | 
|  | const AuthorizationSet& auth_set, | 
|  | const AuthorizationSet& operation_params, | 
|  | NullOr<const HardwareAuthToken&> auth_token) { | 
|  | // Find some entries that may be needed to handle KM_TAG_USER_SECURE_ID | 
|  | int auth_timeout_index = -1; | 
|  | int auth_type_index = -1; | 
|  | int no_auth_required_index = -1; | 
|  | for (size_t pos = 0; pos < auth_set.size(); ++pos) { | 
|  | switch (auth_set[pos].tag) { | 
|  | case Tag::AUTH_TIMEOUT: | 
|  | auth_timeout_index = pos; | 
|  | break; | 
|  | case Tag::USER_AUTH_TYPE: | 
|  | auth_type_index = pos; | 
|  | break; | 
|  | case Tag::NO_AUTH_REQUIRED: | 
|  | no_auth_required_index = pos; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | ErrorCode error = authorized_purpose(purpose, auth_set); | 
|  | if (error != ErrorCode::OK) return error; | 
|  |  | 
|  | // If successful, and if key has a min time between ops, this will be set to the time limit | 
|  | uint32_t min_ops_timeout = UINT32_MAX; | 
|  |  | 
|  | bool update_access_count = false; | 
|  | bool caller_nonce_authorized_by_key = false; | 
|  | bool authentication_required = false; | 
|  | bool auth_token_matched = false; | 
|  | bool unlocked_device_required = false; | 
|  | int32_t user_id = -1; | 
|  |  | 
|  | for (auto& param : auth_set) { | 
|  |  | 
|  | // KM_TAG_PADDING_OLD and KM_TAG_DIGEST_OLD aren't actually members of the enum, so we can't | 
|  | // switch on them.  There's nothing to validate for them, though, so just ignore them. | 
|  | if (int32_t(param.tag) == KM_TAG_PADDING_OLD || int32_t(param.tag) == KM_TAG_DIGEST_OLD) | 
|  | continue; | 
|  |  | 
|  | switch (param.tag) { | 
|  |  | 
|  | case Tag::ACTIVE_DATETIME: { | 
|  | auto date = authorizationValue(TAG_ACTIVE_DATETIME, param); | 
|  | if (date.isOk() && !activation_date_valid(date.value())) | 
|  | return ErrorCode::KEY_NOT_YET_VALID; | 
|  | break; | 
|  | } | 
|  | case Tag::ORIGINATION_EXPIRE_DATETIME: { | 
|  | auto date = authorizationValue(TAG_ORIGINATION_EXPIRE_DATETIME, param); | 
|  | if (is_origination_purpose(purpose) && date.isOk() && | 
|  | expiration_date_passed(date.value())) | 
|  | return ErrorCode::KEY_EXPIRED; | 
|  | break; | 
|  | } | 
|  | case Tag::USAGE_EXPIRE_DATETIME: { | 
|  | auto date = authorizationValue(TAG_USAGE_EXPIRE_DATETIME, param); | 
|  | if (is_usage_purpose(purpose) && date.isOk() && expiration_date_passed(date.value())) | 
|  | return ErrorCode::KEY_EXPIRED; | 
|  | break; | 
|  | } | 
|  | case Tag::MIN_SECONDS_BETWEEN_OPS: { | 
|  | auto min_ops_timeout = authorizationValue(TAG_MIN_SECONDS_BETWEEN_OPS, param); | 
|  | if (min_ops_timeout.isOk() && !MinTimeBetweenOpsPassed(min_ops_timeout.value(), keyid)) | 
|  | return ErrorCode::KEY_RATE_LIMIT_EXCEEDED; | 
|  | break; | 
|  | } | 
|  | case Tag::MAX_USES_PER_BOOT: { | 
|  | auto max_users = authorizationValue(TAG_MAX_USES_PER_BOOT, param); | 
|  | update_access_count = true; | 
|  | if (max_users.isOk() && !MaxUsesPerBootNotExceeded(keyid, max_users.value())) | 
|  | return ErrorCode::KEY_MAX_OPS_EXCEEDED; | 
|  | break; | 
|  | } | 
|  | case Tag::USER_SECURE_ID: | 
|  | if (no_auth_required_index != -1) { | 
|  | // Key has both KM_TAG_USER_SECURE_ID and KM_TAG_NO_AUTH_REQUIRED | 
|  | return ErrorCode::INVALID_KEY_BLOB; | 
|  | } | 
|  |  | 
|  | if (auth_timeout_index != -1) { | 
|  | auto secure_id = authorizationValue(TAG_USER_SECURE_ID, param); | 
|  | authentication_required = true; | 
|  | if (secure_id.isOk() && auth_token.isOk() && | 
|  | AuthTokenMatches(auth_set, auth_token.value(), secure_id.value(), | 
|  | auth_type_index, auth_timeout_index, 0 /* op_handle */, | 
|  | true /* is_begin_operation */)) | 
|  | auth_token_matched = true; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case Tag::USER_ID: | 
|  | user_id = authorizationValue(TAG_USER_ID, param).value(); | 
|  | break; | 
|  |  | 
|  | case Tag::CALLER_NONCE: | 
|  | caller_nonce_authorized_by_key = true; | 
|  | break; | 
|  |  | 
|  | case Tag::UNLOCKED_DEVICE_REQUIRED: | 
|  | unlocked_device_required = true; | 
|  | break; | 
|  |  | 
|  | /* Tags should never be in key auths. */ | 
|  | case Tag::INVALID: | 
|  | case Tag::ROOT_OF_TRUST: | 
|  | case Tag::APPLICATION_DATA: | 
|  | case Tag::ATTESTATION_CHALLENGE: | 
|  | case Tag::ATTESTATION_APPLICATION_ID: | 
|  | case Tag::ATTESTATION_ID_BRAND: | 
|  | case Tag::ATTESTATION_ID_DEVICE: | 
|  | case Tag::ATTESTATION_ID_PRODUCT: | 
|  | case Tag::ATTESTATION_ID_SERIAL: | 
|  | case Tag::ATTESTATION_ID_IMEI: | 
|  | case Tag::ATTESTATION_ID_MEID: | 
|  | case Tag::ATTESTATION_ID_MANUFACTURER: | 
|  | case Tag::ATTESTATION_ID_MODEL: | 
|  | return ErrorCode::INVALID_KEY_BLOB; | 
|  |  | 
|  | /* Tags used for cryptographic parameters in keygen.  Nothing to enforce. */ | 
|  | case Tag::PURPOSE: | 
|  | case Tag::ALGORITHM: | 
|  | case Tag::KEY_SIZE: | 
|  | case Tag::BLOCK_MODE: | 
|  | case Tag::DIGEST: | 
|  | case Tag::MAC_LENGTH: | 
|  | case Tag::PADDING: | 
|  | case Tag::NONCE: | 
|  | case Tag::MIN_MAC_LENGTH: | 
|  | case Tag::EC_CURVE: | 
|  |  | 
|  | /* Tags not used for operations. */ | 
|  | case Tag::BLOB_USAGE_REQUIREMENTS: | 
|  |  | 
|  | /* Algorithm specific parameters not used for access control. */ | 
|  | case Tag::RSA_PUBLIC_EXPONENT: | 
|  |  | 
|  | /* Informational tags. */ | 
|  | case Tag::CREATION_DATETIME: | 
|  | case Tag::ORIGIN: | 
|  | case Tag::ROLLBACK_RESISTANCE: | 
|  |  | 
|  | /* Tags handled when KM_TAG_USER_SECURE_ID is handled */ | 
|  | case Tag::NO_AUTH_REQUIRED: | 
|  | case Tag::USER_AUTH_TYPE: | 
|  | case Tag::AUTH_TIMEOUT: | 
|  |  | 
|  | /* Tag to provide data to operations. */ | 
|  | case Tag::ASSOCIATED_DATA: | 
|  |  | 
|  | /* Tags that are implicitly verified by secure side */ | 
|  | case Tag::APPLICATION_ID: | 
|  | case Tag::BOOT_PATCHLEVEL: | 
|  | case Tag::OS_PATCHLEVEL: | 
|  | case Tag::OS_VERSION: | 
|  | case Tag::TRUSTED_USER_PRESENCE_REQUIRED: | 
|  | case Tag::VENDOR_PATCHLEVEL: | 
|  |  | 
|  | /* TODO(swillden): Handle these */ | 
|  | case Tag::INCLUDE_UNIQUE_ID: | 
|  | case Tag::UNIQUE_ID: | 
|  | case Tag::RESET_SINCE_ID_ROTATION: | 
|  | case Tag::ALLOW_WHILE_ON_BODY: | 
|  | case Tag::HARDWARE_TYPE: | 
|  | case Tag::TRUSTED_CONFIRMATION_REQUIRED: | 
|  | case Tag::CONFIRMATION_TOKEN: | 
|  | break; | 
|  |  | 
|  | case Tag::BOOTLOADER_ONLY: | 
|  | return ErrorCode::INVALID_KEY_BLOB; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (unlocked_device_required && is_device_locked(user_id)) { | 
|  | switch (purpose) { | 
|  | case KeyPurpose::ENCRYPT: | 
|  | case KeyPurpose::VERIFY: | 
|  | /* These are okay */ | 
|  | break; | 
|  | case KeyPurpose::DECRYPT: | 
|  | case KeyPurpose::SIGN: | 
|  | case KeyPurpose::WRAP_KEY: | 
|  | return ErrorCode::DEVICE_LOCKED; | 
|  | }; | 
|  | } | 
|  |  | 
|  | if (authentication_required && !auth_token_matched) { | 
|  | ALOGE("Auth required but no matching auth token found"); | 
|  | return ErrorCode::KEY_USER_NOT_AUTHENTICATED; | 
|  | } | 
|  |  | 
|  | if (!caller_nonce_authorized_by_key && is_origination_purpose(purpose) && | 
|  | operation_params.Contains(Tag::NONCE)) | 
|  | return ErrorCode::CALLER_NONCE_PROHIBITED; | 
|  |  | 
|  | if (min_ops_timeout != UINT32_MAX) { | 
|  | if (!access_time_map_.UpdateKeyAccessTime(keyid, get_current_time(), min_ops_timeout)) { | 
|  | ALOGE("Rate-limited keys table full.  Entries will time out."); | 
|  | return ErrorCode::TOO_MANY_OPERATIONS; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (update_access_count) { | 
|  | if (!access_count_map_.IncrementKeyAccessCount(keyid)) { | 
|  | ALOGE("Usage count-limited keys table full, until reboot."); | 
|  | return ErrorCode::TOO_MANY_OPERATIONS; | 
|  | } | 
|  | } | 
|  |  | 
|  | return ErrorCode::OK; | 
|  | } | 
|  |  | 
|  | class EvpMdCtx { | 
|  | public: | 
|  | EvpMdCtx() { EVP_MD_CTX_init(&ctx_); } | 
|  | ~EvpMdCtx() { EVP_MD_CTX_cleanup(&ctx_); } | 
|  |  | 
|  | EVP_MD_CTX* get() { return &ctx_; } | 
|  |  | 
|  | private: | 
|  | EVP_MD_CTX ctx_; | 
|  | }; | 
|  |  | 
|  | /* static */ | 
|  | std::optional<km_id_t> KeymasterEnforcement::CreateKeyId(const hidl_vec<uint8_t>& key_blob) { | 
|  | EvpMdCtx ctx; | 
|  | km_id_t keyid; | 
|  |  | 
|  | uint8_t hash[EVP_MAX_MD_SIZE]; | 
|  | unsigned int hash_len; | 
|  | if (EVP_DigestInit_ex(ctx.get(), EVP_sha256(), nullptr /* ENGINE */) && | 
|  | EVP_DigestUpdate(ctx.get(), &key_blob[0], key_blob.size()) && | 
|  | EVP_DigestFinal_ex(ctx.get(), hash, &hash_len)) { | 
|  | assert(hash_len >= sizeof(keyid)); | 
|  | memcpy(&keyid, hash, sizeof(keyid)); | 
|  | return keyid; | 
|  | } | 
|  |  | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | bool KeymasterEnforcement::MinTimeBetweenOpsPassed(uint32_t min_time_between, const km_id_t keyid) { | 
|  | uint32_t last_access_time; | 
|  | if (!access_time_map_.LastKeyAccessTime(keyid, &last_access_time)) return true; | 
|  | return min_time_between <= static_cast<int64_t>(get_current_time()) - last_access_time; | 
|  | } | 
|  |  | 
|  | bool KeymasterEnforcement::MaxUsesPerBootNotExceeded(const km_id_t keyid, uint32_t max_uses) { | 
|  | uint32_t key_access_count; | 
|  | if (!access_count_map_.KeyAccessCount(keyid, &key_access_count)) return true; | 
|  | return key_access_count < max_uses; | 
|  | } | 
|  |  | 
|  | template <typename IntType, uint32_t byteOrder> struct choose_hton; | 
|  |  | 
|  | template <typename IntType> struct choose_hton<IntType, __ORDER_LITTLE_ENDIAN__> { | 
|  | inline static IntType hton(const IntType& value) { | 
|  | IntType result = 0; | 
|  | const unsigned char* inbytes = reinterpret_cast<const unsigned char*>(&value); | 
|  | unsigned char* outbytes = reinterpret_cast<unsigned char*>(&result); | 
|  | for (int i = sizeof(IntType) - 1; i >= 0; --i) { | 
|  | *(outbytes++) = inbytes[i]; | 
|  | } | 
|  | return result; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename IntType> struct choose_hton<IntType, __ORDER_BIG_ENDIAN__> { | 
|  | inline static IntType hton(const IntType& value) { return value; } | 
|  | }; | 
|  |  | 
|  | template <typename IntType> inline IntType hton(const IntType& value) { | 
|  | return choose_hton<IntType, __BYTE_ORDER__>::hton(value); | 
|  | } | 
|  |  | 
|  | template <typename IntType> inline IntType ntoh(const IntType& value) { | 
|  | // same operation and hton | 
|  | return choose_hton<IntType, __BYTE_ORDER__>::hton(value); | 
|  | } | 
|  |  | 
|  | bool KeymasterEnforcement::AuthTokenMatches(const AuthorizationSet& auth_set, | 
|  | const HardwareAuthToken& auth_token, | 
|  | const uint64_t user_secure_id, | 
|  | const int auth_type_index, const int auth_timeout_index, | 
|  | const uint64_t op_handle, | 
|  | bool is_begin_operation) const { | 
|  | assert(auth_type_index < static_cast<int>(auth_set.size())); | 
|  | assert(auth_timeout_index < static_cast<int>(auth_set.size())); | 
|  |  | 
|  | if (!ValidateTokenSignature(auth_token)) { | 
|  | ALOGE("Auth token signature invalid"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (auth_timeout_index == -1 && op_handle && op_handle != auth_token.challenge) { | 
|  | ALOGE("Auth token has the challenge %" PRIu64 ", need %" PRIu64, auth_token.challenge, | 
|  | op_handle); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (user_secure_id != auth_token.userId && user_secure_id != auth_token.authenticatorId) { | 
|  | ALOGI("Auth token SIDs %" PRIu64 " and %" PRIu64 " do not match key SID %" PRIu64, | 
|  | auth_token.userId, auth_token.authenticatorId, user_secure_id); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (auth_type_index < 0 || auth_type_index > static_cast<int>(auth_set.size())) { | 
|  | ALOGE("Auth required but no auth type found"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | assert(auth_set[auth_type_index].tag == TAG_USER_AUTH_TYPE); | 
|  | auto key_auth_type_mask = authorizationValue(TAG_USER_AUTH_TYPE, auth_set[auth_type_index]); | 
|  | if (!key_auth_type_mask.isOk()) return false; | 
|  |  | 
|  | if ((uint32_t(key_auth_type_mask.value()) & auth_token.authenticatorType) == 0) { | 
|  | ALOGE("Key requires match of auth type mask 0%uo, but token contained 0%uo", | 
|  | key_auth_type_mask.value(), auth_token.authenticatorType); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (auth_timeout_index != -1 && is_begin_operation) { | 
|  | assert(auth_set[auth_timeout_index].tag == TAG_AUTH_TIMEOUT); | 
|  | auto auth_token_timeout = | 
|  | authorizationValue(TAG_AUTH_TIMEOUT, auth_set[auth_timeout_index]); | 
|  | if (!auth_token_timeout.isOk()) return false; | 
|  |  | 
|  | if (auth_token_timed_out(auth_token, auth_token_timeout.value())) { | 
|  | ALOGE("Auth token has timed out"); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Survived the whole gauntlet.  We have authentage! | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool AccessTimeMap::LastKeyAccessTime(km_id_t keyid, uint32_t* last_access_time) const { | 
|  | std::lock_guard<std::mutex> lock(list_lock_); | 
|  | for (auto& entry : last_access_list_) | 
|  | if (entry.keyid == keyid) { | 
|  | *last_access_time = entry.access_time; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool AccessTimeMap::UpdateKeyAccessTime(km_id_t keyid, uint32_t current_time, uint32_t timeout) { | 
|  | std::lock_guard<std::mutex> lock(list_lock_); | 
|  | for (auto iter = last_access_list_.begin(); iter != last_access_list_.end();) { | 
|  | if (iter->keyid == keyid) { | 
|  | iter->access_time = current_time; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Expire entry if possible. | 
|  | assert(current_time >= iter->access_time); | 
|  | if (current_time - iter->access_time >= iter->timeout) | 
|  | iter = last_access_list_.erase(iter); | 
|  | else | 
|  | ++iter; | 
|  | } | 
|  |  | 
|  | if (last_access_list_.size() >= max_size_) return false; | 
|  |  | 
|  | AccessTime new_entry; | 
|  | new_entry.keyid = keyid; | 
|  | new_entry.access_time = current_time; | 
|  | new_entry.timeout = timeout; | 
|  | last_access_list_.push_front(new_entry); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool AccessCountMap::KeyAccessCount(km_id_t keyid, uint32_t* count) const { | 
|  | std::lock_guard<std::mutex> lock(list_lock_); | 
|  | for (auto& entry : access_count_list_) | 
|  | if (entry.keyid == keyid) { | 
|  | *count = entry.access_count; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool AccessCountMap::IncrementKeyAccessCount(km_id_t keyid) { | 
|  | std::lock_guard<std::mutex> lock(list_lock_); | 
|  | for (auto& entry : access_count_list_) | 
|  | if (entry.keyid == keyid) { | 
|  | // Note that the 'if' below will always be true because KM_TAG_MAX_USES_PER_BOOT is a | 
|  | // uint32_t, and as soon as entry.access_count reaches the specified maximum value | 
|  | // operation requests will be rejected and access_count won't be incremented any more. | 
|  | // And, besides, UINT64_MAX is huge.  But we ensure that it doesn't wrap anyway, out of | 
|  | // an abundance of caution. | 
|  | if (entry.access_count < UINT64_MAX) ++entry.access_count; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (access_count_list_.size() >= max_size_) return false; | 
|  |  | 
|  | AccessCount new_entry; | 
|  | new_entry.keyid = keyid; | 
|  | new_entry.access_count = 1; | 
|  | access_count_list_.push_front(new_entry); | 
|  | return true; | 
|  | } | 
|  | }; /* namespace keystore */ |