| /* Copyright 2014 The Android Open Source Project |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
| * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY |
| * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
| * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
| * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ |
| |
| #define LOG_TAG "keystore-engine" |
| #include <UniquePtr.h> |
| |
| #include <pthread.h> |
| #include <sys/socket.h> |
| #include <stdarg.h> |
| #include <string.h> |
| #include <unistd.h> |
| |
| #include <cutils/log.h> |
| |
| #include <openssl/bn.h> |
| #include <openssl/ec.h> |
| #include <openssl/ec_key.h> |
| #include <openssl/ecdsa.h> |
| #include <openssl/engine.h> |
| #include <openssl/evp.h> |
| #include <openssl/rsa.h> |
| #include <openssl/x509.h> |
| |
| #ifndef BACKEND_WIFI_HIDL |
| #include "keystore_backend_binder.h" |
| #else |
| #include "keystore_backend_hidl.h" |
| #endif |
| |
| namespace { |
| KeystoreBackend *g_keystore_backend; |
| void ensure_keystore_engine(); |
| |
| /* key_id_dup is called when one of the RSA or EC_KEY objects is duplicated. */ |
| int key_id_dup(CRYPTO_EX_DATA* /* to */, |
| const CRYPTO_EX_DATA* /* from */, |
| void** from_d, |
| int /* index */, |
| long /* argl */, |
| void* /* argp */) { |
| char *key_id = reinterpret_cast<char *>(*from_d); |
| if (key_id != NULL) { |
| *from_d = strdup(key_id); |
| } |
| return 1; |
| } |
| |
| /* key_id_free is called when one of the RSA, DSA or EC_KEY object is freed. */ |
| void key_id_free(void* /* parent */, |
| void* ptr, |
| CRYPTO_EX_DATA* /* ad */, |
| int /* index */, |
| long /* argl */, |
| void* /* argp */) { |
| char *key_id = reinterpret_cast<char *>(ptr); |
| free(key_id); |
| } |
| |
| /* Many OpenSSL APIs take ownership of an argument on success but don't free |
| * the argument on failure. This means we need to tell our scoped pointers when |
| * we've transferred ownership, without triggering a warning by not using the |
| * result of release(). */ |
| #define OWNERSHIP_TRANSFERRED(obj) \ |
| typeof ((obj).release()) _dummy __attribute__((unused)) = (obj).release() |
| |
| const char* rsa_get_key_id(const RSA* rsa); |
| |
| /* rsa_private_transform takes a big-endian integer from |in|, calculates the |
| * d'th power of it, modulo the RSA modulus, and writes the result as a |
| * big-endian integer to |out|. Both |in| and |out| are |len| bytes long. It |
| * returns one on success and zero otherwise. */ |
| int rsa_private_transform(RSA *rsa, uint8_t *out, const uint8_t *in, size_t len) { |
| ALOGV("rsa_private_transform(%p, %p, %p, %u)", rsa, out, in, (unsigned) len); |
| |
| ensure_keystore_engine(); |
| |
| const char *key_id = rsa_get_key_id(rsa); |
| if (key_id == NULL) { |
| ALOGE("key had no key_id!"); |
| return 0; |
| } |
| |
| uint8_t* reply = NULL; |
| size_t reply_len; |
| int32_t ret = g_keystore_backend->sign(key_id, in, len, &reply, &reply_len); |
| if (ret < 0) { |
| ALOGW("There was an error during rsa_decrypt: could not connect"); |
| return 0; |
| } else if (ret != 0) { |
| ALOGW("Error during sign from keystore: %d", ret); |
| return 0; |
| } else if (reply_len == 0 || reply == NULL) { |
| ALOGW("No valid signature returned"); |
| return 0; |
| } |
| |
| if (reply_len > len) { |
| /* The result of the RSA operation can never be larger than the size of |
| * the modulus so we assume that the result has extra zeros on the |
| * left. This provides attackers with an oracle, but there's nothing |
| * that we can do about it here. */ |
| ALOGW("Reply len %zu greater than expected %zu", reply_len, len); |
| memcpy(out, &reply[reply_len - len], len); |
| } else if (reply_len < len) { |
| /* If the Keystore implementation returns a short value we assume that |
| * it's because it removed leading zeros from the left side. This is |
| * bad because it provides attackers with an oracle but we cannot do |
| * anything about a broken Keystore implementation here. */ |
| ALOGW("Reply len %zu lesser than expected %zu", reply_len, len); |
| memset(out, 0, len); |
| memcpy(out + len - reply_len, &reply[0], reply_len); |
| } else { |
| memcpy(out, &reply[0], len); |
| } |
| |
| ALOGV("rsa=%p keystore_rsa_priv_dec successful", rsa); |
| return 1; |
| } |
| |
| const char* ecdsa_get_key_id(const EC_KEY* ec_key); |
| |
| /* ecdsa_sign signs |digest_len| bytes from |digest| with |ec_key| and writes |
| * the resulting signature (an ASN.1 encoded blob) to |sig|. It returns one on |
| * success and zero otherwise. */ |
| static int ecdsa_sign(const uint8_t* digest, size_t digest_len, uint8_t* sig, |
| unsigned int* sig_len, EC_KEY* ec_key) { |
| ALOGV("ecdsa_sign(%p, %u, %p)", digest, (unsigned) digest_len, ec_key); |
| |
| ensure_keystore_engine(); |
| |
| const char *key_id = ecdsa_get_key_id(ec_key); |
| if (key_id == NULL) { |
| ALOGE("key had no key_id!"); |
| return 0; |
| } |
| |
| size_t ecdsa_size = ECDSA_size(ec_key); |
| |
| uint8_t* reply = NULL; |
| size_t reply_len; |
| int32_t ret = g_keystore_backend->sign( |
| key_id, digest, digest_len, &reply, &reply_len); |
| if (ret < 0) { |
| ALOGW("There was an error during ecdsa_sign: could not connect"); |
| return 0; |
| } else if (reply_len == 0 || reply == NULL) { |
| ALOGW("No valid signature returned"); |
| return 0; |
| } else if (reply_len > ecdsa_size) { |
| ALOGW("Signature is too large"); |
| return 0; |
| } |
| |
| // Reviewer: should't sig_len be checked here? Or is it just assumed that it is at least ecdsa_size? |
| memcpy(sig, &reply[0], reply_len); |
| *sig_len = reply_len; |
| |
| ALOGV("ecdsa_sign(%p, %u, %p) => success", digest, (unsigned)digest_len, |
| ec_key); |
| return 1; |
| } |
| |
| /* KeystoreEngine is a BoringSSL ENGINE that implements RSA and ECDSA by |
| * forwarding the requested operations to Keystore. */ |
| class KeystoreEngine { |
| public: |
| KeystoreEngine() |
| : rsa_index_(RSA_get_ex_new_index(0 /* argl */, |
| NULL /* argp */, |
| NULL /* new_func */, |
| key_id_dup, |
| key_id_free)), |
| ec_key_index_(EC_KEY_get_ex_new_index(0 /* argl */, |
| NULL /* argp */, |
| NULL /* new_func */, |
| key_id_dup, |
| key_id_free)), |
| engine_(ENGINE_new()) { |
| memset(&rsa_method_, 0, sizeof(rsa_method_)); |
| rsa_method_.common.is_static = 1; |
| rsa_method_.private_transform = rsa_private_transform; |
| rsa_method_.flags = RSA_FLAG_CACHE_PUBLIC | RSA_FLAG_OPAQUE; |
| ENGINE_set_RSA_method(engine_, &rsa_method_, sizeof(rsa_method_)); |
| |
| memset(&ecdsa_method_, 0, sizeof(ecdsa_method_)); |
| ecdsa_method_.common.is_static = 1; |
| ecdsa_method_.sign = ecdsa_sign; |
| ecdsa_method_.flags = ECDSA_FLAG_OPAQUE; |
| ENGINE_set_ECDSA_method(engine_, &ecdsa_method_, sizeof(ecdsa_method_)); |
| } |
| |
| int rsa_ex_index() const { return rsa_index_; } |
| int ec_key_ex_index() const { return ec_key_index_; } |
| |
| const ENGINE* engine() const { return engine_; } |
| |
| private: |
| const int rsa_index_; |
| const int ec_key_index_; |
| RSA_METHOD rsa_method_; |
| ECDSA_METHOD ecdsa_method_; |
| ENGINE* const engine_; |
| }; |
| |
| pthread_once_t g_keystore_engine_once = PTHREAD_ONCE_INIT; |
| KeystoreEngine *g_keystore_engine; |
| |
| /* init_keystore_engine is called to initialize |g_keystore_engine|. This |
| * should only be called by |pthread_once|. */ |
| void init_keystore_engine() { |
| g_keystore_engine = new KeystoreEngine; |
| #ifndef BACKEND_WIFI_HIDL |
| g_keystore_backend = new KeystoreBackendBinder; |
| #else |
| g_keystore_backend = new KeystoreBackendHidl; |
| #endif |
| } |
| |
| /* ensure_keystore_engine ensures that |g_keystore_engine| is pointing to a |
| * valid |KeystoreEngine| object and creates one if not. */ |
| void ensure_keystore_engine() { |
| pthread_once(&g_keystore_engine_once, init_keystore_engine); |
| } |
| |
| const char* rsa_get_key_id(const RSA* rsa) { |
| return reinterpret_cast<char*>( |
| RSA_get_ex_data(rsa, g_keystore_engine->rsa_ex_index())); |
| } |
| |
| const char* ecdsa_get_key_id(const EC_KEY* ec_key) { |
| return reinterpret_cast<char*>( |
| EC_KEY_get_ex_data(ec_key, g_keystore_engine->ec_key_ex_index())); |
| } |
| |
| struct EVP_PKEY_Delete { |
| void operator()(EVP_PKEY* p) const { |
| EVP_PKEY_free(p); |
| } |
| }; |
| typedef UniquePtr<EVP_PKEY, EVP_PKEY_Delete> Unique_EVP_PKEY; |
| |
| struct RSA_Delete { |
| void operator()(RSA* p) const { |
| RSA_free(p); |
| } |
| }; |
| typedef UniquePtr<RSA, RSA_Delete> Unique_RSA; |
| |
| struct EC_KEY_Delete { |
| void operator()(EC_KEY* ec) const { |
| EC_KEY_free(ec); |
| } |
| }; |
| typedef UniquePtr<EC_KEY, EC_KEY_Delete> Unique_EC_KEY; |
| |
| /* wrap_rsa returns an |EVP_PKEY| that contains an RSA key where the public |
| * part is taken from |public_rsa| and the private operations are forwarded to |
| * KeyStore and operate on the key named |key_id|. */ |
| static EVP_PKEY *wrap_rsa(const char *key_id, const RSA *public_rsa) { |
| Unique_RSA rsa(RSA_new_method(g_keystore_engine->engine())); |
| if (rsa.get() == NULL) { |
| return NULL; |
| } |
| |
| char *key_id_copy = strdup(key_id); |
| if (key_id_copy == NULL) { |
| return NULL; |
| } |
| |
| if (!RSA_set_ex_data(rsa.get(), g_keystore_engine->rsa_ex_index(), |
| key_id_copy)) { |
| free(key_id_copy); |
| return NULL; |
| } |
| |
| rsa->n = BN_dup(public_rsa->n); |
| rsa->e = BN_dup(public_rsa->e); |
| if (rsa->n == NULL || rsa->e == NULL) { |
| return NULL; |
| } |
| |
| Unique_EVP_PKEY result(EVP_PKEY_new()); |
| if (result.get() == NULL || |
| !EVP_PKEY_assign_RSA(result.get(), rsa.get())) { |
| return NULL; |
| } |
| OWNERSHIP_TRANSFERRED(rsa); |
| |
| return result.release(); |
| } |
| |
| /* wrap_ecdsa returns an |EVP_PKEY| that contains an ECDSA key where the public |
| * part is taken from |public_rsa| and the private operations are forwarded to |
| * KeyStore and operate on the key named |key_id|. */ |
| static EVP_PKEY *wrap_ecdsa(const char *key_id, const EC_KEY *public_ecdsa) { |
| Unique_EC_KEY ec(EC_KEY_new_method(g_keystore_engine->engine())); |
| if (ec.get() == NULL) { |
| return NULL; |
| } |
| |
| if (!EC_KEY_set_group(ec.get(), EC_KEY_get0_group(public_ecdsa)) || |
| !EC_KEY_set_public_key(ec.get(), EC_KEY_get0_public_key(public_ecdsa))) { |
| return NULL; |
| } |
| |
| char *key_id_copy = strdup(key_id); |
| if (key_id_copy == NULL) { |
| return NULL; |
| } |
| |
| if (!EC_KEY_set_ex_data(ec.get(), g_keystore_engine->ec_key_ex_index(), |
| key_id_copy)) { |
| free(key_id_copy); |
| return NULL; |
| } |
| |
| Unique_EVP_PKEY result(EVP_PKEY_new()); |
| if (result.get() == NULL || |
| !EVP_PKEY_assign_EC_KEY(result.get(), ec.get())) { |
| return NULL; |
| } |
| OWNERSHIP_TRANSFERRED(ec); |
| |
| return result.release(); |
| } |
| |
| } /* anonymous namespace */ |
| |
| extern "C" { |
| |
| EVP_PKEY* EVP_PKEY_from_keystore(const char* key_id) __attribute__((visibility("default"))); |
| |
| /* EVP_PKEY_from_keystore returns an |EVP_PKEY| that contains either an RSA or |
| * ECDSA key where the public part of the key reflects the value of the key |
| * named |key_id| in Keystore and the private operations are forwarded onto |
| * KeyStore. */ |
| EVP_PKEY* EVP_PKEY_from_keystore(const char* key_id) { |
| ALOGV("EVP_PKEY_from_keystore(\"%s\")", key_id); |
| |
| ensure_keystore_engine(); |
| |
| uint8_t *pubkey = NULL; |
| size_t pubkey_len; |
| int32_t ret = g_keystore_backend->get_pubkey(key_id, &pubkey, &pubkey_len); |
| if (ret < 0) { |
| ALOGW("could not contact keystore"); |
| return NULL; |
| } else if (ret != 0 || pubkey == NULL) { |
| ALOGW("keystore reports error: %d", ret); |
| return NULL; |
| } |
| |
| const uint8_t *inp = pubkey; |
| Unique_EVP_PKEY pkey(d2i_PUBKEY(NULL, &inp, pubkey_len)); |
| if (pkey.get() == NULL) { |
| ALOGW("Cannot convert pubkey"); |
| return NULL; |
| } |
| |
| EVP_PKEY *result; |
| switch (EVP_PKEY_type(pkey->type)) { |
| case EVP_PKEY_RSA: { |
| Unique_RSA public_rsa(EVP_PKEY_get1_RSA(pkey.get())); |
| result = wrap_rsa(key_id, public_rsa.get()); |
| break; |
| } |
| case EVP_PKEY_EC: { |
| Unique_EC_KEY public_ecdsa(EVP_PKEY_get1_EC_KEY(pkey.get())); |
| result = wrap_ecdsa(key_id, public_ecdsa.get()); |
| break; |
| } |
| default: |
| ALOGE("Unsupported key type %d", EVP_PKEY_type(pkey->type)); |
| result = NULL; |
| } |
| |
| return result; |
| } |
| |
| } // extern "C" |