blob: 6548445fd803c281ebd8740c465dc4d59c28d965 [file] [log] [blame]
// Copyright 2020, The Android Open Source Project
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! This module implements the handling of async tasks.
//! The worker thread has a high priority and a low priority queue. Adding a job to either
//! will cause one thread to be spawned if none exists. As a compromise between performance
//! and resource consumption, the thread will linger for about 30 seconds after it has
//! processed all tasks before it terminates.
//! Note that low priority tasks are processed only when the high priority queue is empty.
use std::{any::Any, any::TypeId, time::Duration};
use std::{
collections::{HashMap, VecDeque},
sync::Arc,
sync::{Condvar, Mutex, MutexGuard},
thread,
};
#[derive(Debug, PartialEq, Eq)]
enum State {
Exiting,
Running,
}
/// The Shelf allows async tasks to store state across invocations.
/// Note: Store elves at your own peril ;-).
#[derive(Debug, Default)]
pub struct Shelf(HashMap<TypeId, Box<dyn Any + Send>>);
impl Shelf {
/// Get a reference to the shelved data of type T. Returns Some if the data exists.
pub fn get_downcast_ref<T: Any + Send>(&self) -> Option<&T> {
self.0.get(&TypeId::of::<T>()).and_then(|v| v.downcast_ref::<T>())
}
/// Get a mutable reference to the shelved data of type T. If a T was inserted using put,
/// get_mut, or get_or_put_with.
pub fn get_downcast_mut<T: Any + Send>(&mut self) -> Option<&mut T> {
self.0.get_mut(&TypeId::of::<T>()).and_then(|v| v.downcast_mut::<T>())
}
/// Remove the entry of the given type and returns the stored data if it existed.
pub fn remove_downcast_ref<T: Any + Send>(&mut self) -> Option<T> {
self.0.remove(&TypeId::of::<T>()).and_then(|v| v.downcast::<T>().ok().map(|b| *b))
}
/// Puts data `v` on the shelf. If there already was an entry of type T it is returned.
pub fn put<T: Any + Send>(&mut self, v: T) -> Option<T> {
self.0
.insert(TypeId::of::<T>(), Box::new(v) as Box<dyn Any + Send>)
.and_then(|v| v.downcast::<T>().ok().map(|b| *b))
}
/// Gets a mutable reference to the entry of the given type and default creates it if necessary.
/// The type must implement Default.
pub fn get_mut<T: Any + Send + Default>(&mut self) -> &mut T {
self.0
.entry(TypeId::of::<T>())
.or_insert_with(|| Box::<T>::default() as Box<dyn Any + Send>)
.downcast_mut::<T>()
.unwrap()
}
/// Gets a mutable reference to the entry of the given type or creates it using the init
/// function. Init is not executed if the entry already existed.
pub fn get_or_put_with<T: Any + Send, F>(&mut self, init: F) -> &mut T
where
F: FnOnce() -> T,
{
self.0
.entry(TypeId::of::<T>())
.or_insert_with(|| Box::new(init()) as Box<dyn Any + Send>)
.downcast_mut::<T>()
.unwrap()
}
}
struct AsyncTaskState {
state: State,
thread: Option<thread::JoinHandle<()>>,
timeout: Duration,
hi_prio_req: VecDeque<Box<dyn FnOnce(&mut Shelf) + Send>>,
lo_prio_req: VecDeque<Box<dyn FnOnce(&mut Shelf) + Send>>,
idle_fns: Vec<Arc<dyn Fn(&mut Shelf) + Send + Sync>>,
/// The store allows tasks to store state across invocations. It is passed to each invocation
/// of each task. Tasks need to cooperate on the ids they use for storing state.
shelf: Option<Shelf>,
}
/// AsyncTask spawns one worker thread on demand to process jobs inserted into
/// a low and a high priority work queue. The queues are processed FIFO, and low
/// priority queue is processed if the high priority queue is empty.
/// Note: Because there is only one worker thread at a time for a given AsyncTask instance,
/// all scheduled requests are guaranteed to be serialized with respect to one another.
pub struct AsyncTask {
state: Arc<(Condvar, Mutex<AsyncTaskState>)>,
}
impl Default for AsyncTask {
fn default() -> Self {
Self::new(Duration::from_secs(30))
}
}
impl AsyncTask {
/// Construct an [`AsyncTask`] with a specific timeout value.
pub fn new(timeout: Duration) -> Self {
Self {
state: Arc::new((
Condvar::new(),
Mutex::new(AsyncTaskState {
state: State::Exiting,
thread: None,
timeout,
hi_prio_req: VecDeque::new(),
lo_prio_req: VecDeque::new(),
idle_fns: Vec::new(),
shelf: None,
}),
)),
}
}
/// Adds a one-off job to the high priority queue. High priority jobs are
/// completed before low priority jobs and can also overtake low priority
/// jobs. But they cannot preempt them.
pub fn queue_hi<F>(&self, f: F)
where
F: for<'r> FnOnce(&'r mut Shelf) + Send + 'static,
{
self.queue(f, true)
}
/// Adds a one-off job to the low priority queue. Low priority jobs are
/// completed after high priority. And they are not executed as long as high
/// priority jobs are present. Jobs always run to completion and are never
/// preempted by high priority jobs.
pub fn queue_lo<F>(&self, f: F)
where
F: FnOnce(&mut Shelf) + Send + 'static,
{
self.queue(f, false)
}
/// Adds an idle callback. This will be invoked whenever the worker becomes
/// idle (all high and low priority jobs have been performed).
pub fn add_idle<F>(&self, f: F)
where
F: Fn(&mut Shelf) + Send + Sync + 'static,
{
let (ref _condvar, ref state) = *self.state;
let mut state = state.lock().unwrap();
state.idle_fns.push(Arc::new(f));
}
fn queue<F>(&self, f: F, hi_prio: bool)
where
F: for<'r> FnOnce(&'r mut Shelf) + Send + 'static,
{
let (ref condvar, ref state) = *self.state;
let mut state = state.lock().unwrap();
if hi_prio {
state.hi_prio_req.push_back(Box::new(f));
} else {
state.lo_prio_req.push_back(Box::new(f));
}
if state.state != State::Running {
self.spawn_thread(&mut state);
}
drop(state);
condvar.notify_all();
}
fn spawn_thread(&self, state: &mut MutexGuard<AsyncTaskState>) {
if let Some(t) = state.thread.take() {
t.join().expect("AsyncTask panicked.");
}
let cloned_state = self.state.clone();
let timeout_period = state.timeout;
state.thread = Some(thread::spawn(move || {
let (ref condvar, ref state) = *cloned_state;
enum Action {
QueuedFn(Box<dyn FnOnce(&mut Shelf) + Send>),
IdleFns(Vec<Arc<dyn Fn(&mut Shelf) + Send + Sync>>),
}
let mut done_idle = false;
// When the worker starts, it takes the shelf and puts it on the stack.
let mut shelf = state.lock().unwrap().shelf.take().unwrap_or_default();
loop {
if let Some(action) = {
let state = state.lock().unwrap();
if !done_idle && state.hi_prio_req.is_empty() && state.lo_prio_req.is_empty() {
// No jobs queued so invoke the idle callbacks.
Some(Action::IdleFns(state.idle_fns.clone()))
} else {
// Wait for either a queued job to arrive or a timeout.
let (mut state, timeout) = condvar
.wait_timeout_while(state, timeout_period, |state| {
state.hi_prio_req.is_empty() && state.lo_prio_req.is_empty()
})
.unwrap();
match (
state.hi_prio_req.pop_front(),
state.lo_prio_req.is_empty(),
timeout.timed_out(),
) {
(Some(f), _, _) => Some(Action::QueuedFn(f)),
(None, false, _) => {
state.lo_prio_req.pop_front().map(|f| Action::QueuedFn(f))
}
(None, true, true) => {
// When the worker exits it puts the shelf back into the shared
// state for the next worker to use. So state is preserved not
// only across invocations but also across worker thread shut down.
state.shelf = Some(shelf);
state.state = State::Exiting;
break;
}
(None, true, false) => None,
}
}
} {
// Now that the lock has been dropped, perform the action.
match action {
Action::QueuedFn(f) => {
f(&mut shelf);
done_idle = false;
}
Action::IdleFns(idle_fns) => {
for idle_fn in idle_fns {
idle_fn(&mut shelf);
}
done_idle = true;
}
}
}
}
}));
state.state = State::Running;
}
}
#[cfg(test)]
mod tests {
use super::{AsyncTask, Shelf};
use std::sync::{
mpsc::{channel, sync_channel, RecvTimeoutError},
Arc,
};
use std::time::Duration;
#[test]
fn test_shelf() {
let mut shelf = Shelf::default();
let s = "A string".to_string();
assert_eq!(shelf.put(s), None);
let s2 = "Another string".to_string();
assert_eq!(shelf.put(s2), Some("A string".to_string()));
// Put something of a different type on the shelf.
#[derive(Debug, PartialEq, Eq)]
struct Elf {
pub name: String,
}
let e1 = Elf { name: "Glorfindel".to_string() };
assert_eq!(shelf.put(e1), None);
// The String value is still on the shelf.
let s3 = shelf.get_downcast_ref::<String>().unwrap();
assert_eq!(s3, "Another string");
// As is the Elf.
{
let e2 = shelf.get_downcast_mut::<Elf>().unwrap();
assert_eq!(e2.name, "Glorfindel");
e2.name = "Celeborn".to_string();
}
// Take the Elf off the shelf.
let e3 = shelf.remove_downcast_ref::<Elf>().unwrap();
assert_eq!(e3.name, "Celeborn");
assert_eq!(shelf.remove_downcast_ref::<Elf>(), None);
// No u64 value has been put on the shelf, so getting one gives the default value.
{
let i = shelf.get_mut::<u64>();
assert_eq!(*i, 0);
*i = 42;
}
let i2 = shelf.get_downcast_ref::<u64>().unwrap();
assert_eq!(*i2, 42);
// No i32 value has ever been seen near the shelf.
assert_eq!(shelf.get_downcast_ref::<i32>(), None);
assert_eq!(shelf.get_downcast_mut::<i32>(), None);
assert_eq!(shelf.remove_downcast_ref::<i32>(), None);
}
#[test]
fn test_async_task() {
let at = AsyncTask::default();
// First queue up a job that blocks until we release it, to avoid
// unpredictable synchronization.
let (start_sender, start_receiver) = channel();
at.queue_hi(move |shelf| {
start_receiver.recv().unwrap();
// Put a trace vector on the shelf
shelf.put(Vec::<String>::new());
});
// Queue up some high-priority and low-priority jobs.
for i in 0..3 {
let j = i;
at.queue_lo(move |shelf| {
let trace = shelf.get_mut::<Vec<String>>();
trace.push(format!("L{}", j));
});
let j = i;
at.queue_hi(move |shelf| {
let trace = shelf.get_mut::<Vec<String>>();
trace.push(format!("H{}", j));
});
}
// Finally queue up a low priority job that emits the trace.
let (trace_sender, trace_receiver) = channel();
at.queue_lo(move |shelf| {
let trace = shelf.get_downcast_ref::<Vec<String>>().unwrap();
trace_sender.send(trace.clone()).unwrap();
});
// Ready, set, go.
start_sender.send(()).unwrap();
let trace = trace_receiver.recv().unwrap();
assert_eq!(trace, vec!["H0", "H1", "H2", "L0", "L1", "L2"]);
}
#[test]
fn test_async_task_chain() {
let at = Arc::new(AsyncTask::default());
let (sender, receiver) = channel();
// Queue up a job that will queue up another job. This confirms
// that the job is not invoked with any internal AsyncTask locks held.
let at_clone = at.clone();
at.queue_hi(move |_shelf| {
at_clone.queue_lo(move |_shelf| {
sender.send(()).unwrap();
});
});
receiver.recv().unwrap();
}
#[test]
#[should_panic]
fn test_async_task_panic() {
let at = AsyncTask::default();
at.queue_hi(|_shelf| {
panic!("Panic from queued job");
});
// Queue another job afterwards to ensure that the async thread gets joined.
let (done_sender, done_receiver) = channel();
at.queue_hi(move |_shelf| {
done_sender.send(()).unwrap();
});
done_receiver.recv().unwrap();
}
#[test]
fn test_async_task_idle() {
let at = AsyncTask::new(Duration::from_secs(3));
// Need a SyncSender as it is Send+Sync.
let (idle_done_sender, idle_done_receiver) = sync_channel::<()>(3);
at.add_idle(move |_shelf| {
idle_done_sender.send(()).unwrap();
});
// Queue up some high-priority and low-priority jobs that take time.
for _i in 0..3 {
at.queue_lo(|_shelf| {
std::thread::sleep(Duration::from_millis(500));
});
at.queue_hi(|_shelf| {
std::thread::sleep(Duration::from_millis(500));
});
}
// Final low-priority job.
let (done_sender, done_receiver) = channel();
at.queue_lo(move |_shelf| {
done_sender.send(()).unwrap();
});
// Nothing happens until the last job completes.
assert_eq!(
idle_done_receiver.recv_timeout(Duration::from_secs(1)),
Err(RecvTimeoutError::Timeout)
);
done_receiver.recv().unwrap();
// Now that the last low-priority job has completed, the idle task should
// fire pretty much immediately.
idle_done_receiver.recv_timeout(Duration::from_millis(50)).unwrap();
// Idle callback not executed again even if we wait for a while.
assert_eq!(
idle_done_receiver.recv_timeout(Duration::from_secs(3)),
Err(RecvTimeoutError::Timeout)
);
// However, if more work is done then there's another chance to go idle.
let (done_sender, done_receiver) = channel();
at.queue_hi(move |_shelf| {
std::thread::sleep(Duration::from_millis(500));
done_sender.send(()).unwrap();
});
// Idle callback not immediately executed, because the high priority
// job is taking a while.
assert_eq!(
idle_done_receiver.recv_timeout(Duration::from_millis(1)),
Err(RecvTimeoutError::Timeout)
);
done_receiver.recv().unwrap();
idle_done_receiver.recv_timeout(Duration::from_millis(50)).unwrap();
}
#[test]
fn test_async_task_multiple_idle() {
let at = AsyncTask::new(Duration::from_secs(3));
let (idle_sender, idle_receiver) = sync_channel::<i32>(5);
// Queue a high priority job to start things off
at.queue_hi(|_shelf| {
std::thread::sleep(Duration::from_millis(500));
});
// Multiple idle callbacks.
for i in 0..3 {
let idle_sender = idle_sender.clone();
at.add_idle(move |_shelf| {
idle_sender.send(i).unwrap();
});
}
// Nothing happens immediately.
assert_eq!(
idle_receiver.recv_timeout(Duration::from_millis(1)),
Err(RecvTimeoutError::Timeout)
);
// Wait for a moment and the idle jobs should have run.
std::thread::sleep(Duration::from_secs(1));
let mut results = Vec::new();
while let Ok(i) = idle_receiver.recv_timeout(Duration::from_millis(1)) {
results.push(i);
}
assert_eq!(results, [0, 1, 2]);
}
#[test]
fn test_async_task_idle_queues_job() {
let at = Arc::new(AsyncTask::new(Duration::from_secs(1)));
let at_clone = at.clone();
let (idle_sender, idle_receiver) = sync_channel::<i32>(100);
// Add an idle callback that queues a low-priority job.
at.add_idle(move |shelf| {
at_clone.queue_lo(|_shelf| {
// Slow things down so the channel doesn't fill up.
std::thread::sleep(Duration::from_millis(50));
});
let i = shelf.get_mut::<i32>();
idle_sender.send(*i).unwrap();
*i += 1;
});
// Nothing happens immediately.
assert_eq!(
idle_receiver.recv_timeout(Duration::from_millis(1500)),
Err(RecvTimeoutError::Timeout)
);
// Once we queue a normal job, things start.
at.queue_hi(|_shelf| {});
assert_eq!(0, idle_receiver.recv_timeout(Duration::from_millis(200)).unwrap());
// The idle callback queues a job, and completion of that job
// means the task is going idle again...so the idle callback will
// be called repeatedly.
assert_eq!(1, idle_receiver.recv_timeout(Duration::from_millis(100)).unwrap());
assert_eq!(2, idle_receiver.recv_timeout(Duration::from_millis(100)).unwrap());
assert_eq!(3, idle_receiver.recv_timeout(Duration::from_millis(100)).unwrap());
}
#[test]
#[should_panic]
fn test_async_task_idle_panic() {
let at = AsyncTask::new(Duration::from_secs(1));
let (idle_sender, idle_receiver) = sync_channel::<()>(3);
// Add an idle callback that panics.
at.add_idle(move |_shelf| {
idle_sender.send(()).unwrap();
panic!("Panic from idle callback");
});
// Queue a job to trigger idleness and ensuing panic.
at.queue_hi(|_shelf| {});
idle_receiver.recv().unwrap();
// Queue another job afterwards to ensure that the async thread gets joined
// and the panic detected.
let (done_sender, done_receiver) = channel();
at.queue_hi(move |_shelf| {
done_sender.send(()).unwrap();
});
done_receiver.recv().unwrap();
}
}