| Kenny Root | db0850c | 2013-10-08 12:52:07 -0700 | [diff] [blame] | 1 | /* | 
 | 2 |  * Copyright 2013 The Android Open Source Project | 
 | 3 |  * | 
 | 4 |  * Redistribution and use in source and binary forms, with or without | 
 | 5 |  * modification, are permitted provided that the following conditions are met: | 
 | 6 |  *     * Redistributions of source code must retain the above copyright | 
 | 7 |  *       notice, this list of conditions and the following disclaimer. | 
 | 8 |  *     * Redistributions in binary form must reproduce the above copyright | 
 | 9 |  *       notice, this list of conditions and the following disclaimer in the | 
 | 10 |  *       documentation and/or other materials provided with the distribution. | 
 | 11 |  *     * Neither the name of Google Inc. nor the names of its contributors may | 
 | 12 |  *       be used to endorse or promote products derived from this software | 
 | 13 |  *       without specific prior written permission. | 
 | 14 |  * | 
 | 15 |  * THIS SOFTWARE IS PROVIDED BY Google Inc. ``AS IS'' AND ANY EXPRESS OR | 
 | 16 |  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF | 
 | 17 |  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO | 
 | 18 |  * EVENT SHALL Google Inc. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
 | 19 |  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | 
 | 20 |  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; | 
 | 21 |  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, | 
 | 22 |  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR | 
 | 23 |  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF | 
 | 24 |  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
 | 25 |  */ | 
 | 26 |  | 
 | 27 | // This is an implementation of the P256 elliptic curve group. It's written to | 
 | 28 | // be portable 32-bit, although it's still constant-time. | 
 | 29 | // | 
 | 30 | // WARNING: Implementing these functions in a constant-time manner is far from | 
 | 31 | //          obvious. Be careful when touching this code. | 
 | 32 | // | 
 | 33 | // See http://www.imperialviolet.org/2010/12/04/ecc.html ([1]) for background. | 
 | 34 |  | 
 | 35 | #include <stdint.h> | 
 | 36 | #include <stdio.h> | 
 | 37 |  | 
 | 38 | #include <string.h> | 
 | 39 | #include <stdlib.h> | 
 | 40 |  | 
 | 41 | #include "mincrypt/p256.h" | 
 | 42 |  | 
 | 43 | typedef uint8_t u8; | 
 | 44 | typedef uint32_t u32; | 
 | 45 | typedef int32_t s32; | 
 | 46 | typedef uint64_t u64; | 
 | 47 |  | 
 | 48 | /* Our field elements are represented as nine 32-bit limbs. | 
 | 49 |  * | 
 | 50 |  * The value of an felem (field element) is: | 
 | 51 |  *   x[0] + (x[1] * 2**29) + (x[2] * 2**57) + ... + (x[8] * 2**228) | 
 | 52 |  * | 
 | 53 |  * That is, each limb is alternately 29 or 28-bits wide in little-endian | 
 | 54 |  * order. | 
 | 55 |  * | 
 | 56 |  * This means that an felem hits 2**257, rather than 2**256 as we would like. A | 
 | 57 |  * 28, 29, ... pattern would cause us to hit 2**256, but that causes problems | 
 | 58 |  * when multiplying as terms end up one bit short of a limb which would require | 
 | 59 |  * much bit-shifting to correct. | 
 | 60 |  * | 
 | 61 |  * Finally, the values stored in an felem are in Montgomery form. So the value | 
 | 62 |  * |y| is stored as (y*R) mod p, where p is the P-256 prime and R is 2**257. | 
 | 63 |  */ | 
 | 64 | typedef u32 limb; | 
 | 65 | #define NLIMBS 9 | 
 | 66 | typedef limb felem[NLIMBS]; | 
 | 67 |  | 
 | 68 | static const limb kBottom28Bits = 0xfffffff; | 
 | 69 | static const limb kBottom29Bits = 0x1fffffff; | 
 | 70 |  | 
 | 71 | /* kOne is the number 1 as an felem. It's 2**257 mod p split up into 29 and | 
 | 72 |  * 28-bit words. */ | 
 | 73 | static const felem kOne = { | 
 | 74 |     2, 0, 0, 0xffff800, | 
 | 75 |     0x1fffffff, 0xfffffff, 0x1fbfffff, 0x1ffffff, | 
 | 76 |     0 | 
 | 77 | }; | 
 | 78 | static const felem kZero = {0}; | 
 | 79 | static const felem kP = { | 
 | 80 |     0x1fffffff, 0xfffffff, 0x1fffffff, 0x3ff, | 
 | 81 |     0, 0, 0x200000, 0xf000000, | 
 | 82 |     0xfffffff | 
 | 83 | }; | 
 | 84 | static const felem k2P = { | 
 | 85 |     0x1ffffffe, 0xfffffff, 0x1fffffff, 0x7ff, | 
 | 86 |     0, 0, 0x400000, 0xe000000, | 
 | 87 |     0x1fffffff | 
 | 88 | }; | 
 | 89 | /* kPrecomputed contains precomputed values to aid the calculation of scalar | 
 | 90 |  * multiples of the base point, G. It's actually two, equal length, tables | 
 | 91 |  * concatenated. | 
 | 92 |  * | 
 | 93 |  * The first table contains (x,y) felem pairs for 16 multiples of the base | 
 | 94 |  * point, G. | 
 | 95 |  * | 
 | 96 |  *   Index  |  Index (binary) | Value | 
 | 97 |  *       0  |           0000  | 0G (all zeros, omitted) | 
 | 98 |  *       1  |           0001  | G | 
 | 99 |  *       2  |           0010  | 2**64G | 
 | 100 |  *       3  |           0011  | 2**64G + G | 
 | 101 |  *       4  |           0100  | 2**128G | 
 | 102 |  *       5  |           0101  | 2**128G + G | 
 | 103 |  *       6  |           0110  | 2**128G + 2**64G | 
 | 104 |  *       7  |           0111  | 2**128G + 2**64G + G | 
 | 105 |  *       8  |           1000  | 2**192G | 
 | 106 |  *       9  |           1001  | 2**192G + G | 
 | 107 |  *      10  |           1010  | 2**192G + 2**64G | 
 | 108 |  *      11  |           1011  | 2**192G + 2**64G + G | 
 | 109 |  *      12  |           1100  | 2**192G + 2**128G | 
 | 110 |  *      13  |           1101  | 2**192G + 2**128G + G | 
 | 111 |  *      14  |           1110  | 2**192G + 2**128G + 2**64G | 
 | 112 |  *      15  |           1111  | 2**192G + 2**128G + 2**64G + G | 
 | 113 |  * | 
 | 114 |  * The second table follows the same style, but the terms are 2**32G, | 
 | 115 |  * 2**96G, 2**160G, 2**224G. | 
 | 116 |  * | 
 | 117 |  * This is ~2KB of data. */ | 
 | 118 | static const limb kPrecomputed[NLIMBS * 2 * 15 * 2] = { | 
 | 119 |     0x11522878, 0xe730d41, 0xdb60179, 0x4afe2ff, 0x12883add, 0xcaddd88, 0x119e7edc, 0xd4a6eab, 0x3120bee, | 
 | 120 |     0x1d2aac15, 0xf25357c, 0x19e45cdd, 0x5c721d0, 0x1992c5a5, 0xa237487, 0x154ba21, 0x14b10bb, 0xae3fe3, | 
 | 121 |     0xd41a576, 0x922fc51, 0x234994f, 0x60b60d3, 0x164586ae, 0xce95f18, 0x1fe49073, 0x3fa36cc, 0x5ebcd2c, | 
 | 122 |     0xb402f2f, 0x15c70bf, 0x1561925c, 0x5a26704, 0xda91e90, 0xcdc1c7f, 0x1ea12446, 0xe1ade1e, 0xec91f22, | 
 | 123 |     0x26f7778, 0x566847e, 0xa0bec9e, 0x234f453, 0x1a31f21a, 0xd85e75c, 0x56c7109, 0xa267a00, 0xb57c050, | 
 | 124 |     0x98fb57, 0xaa837cc, 0x60c0792, 0xcfa5e19, 0x61bab9e, 0x589e39b, 0xa324c5, 0x7d6dee7, 0x2976e4b, | 
 | 125 |     0x1fc4124a, 0xa8c244b, 0x1ce86762, 0xcd61c7e, 0x1831c8e0, 0x75774e1, 0x1d96a5a9, 0x843a649, 0xc3ab0fa, | 
 | 126 |     0x6e2e7d5, 0x7673a2a, 0x178b65e8, 0x4003e9b, 0x1a1f11c2, 0x7816ea, 0xf643e11, 0x58c43df, 0xf423fc2, | 
 | 127 |     0x19633ffa, 0x891f2b2, 0x123c231c, 0x46add8c, 0x54700dd, 0x59e2b17, 0x172db40f, 0x83e277d, 0xb0dd609, | 
 | 128 |     0xfd1da12, 0x35c6e52, 0x19ede20c, 0xd19e0c0, 0x97d0f40, 0xb015b19, 0x449e3f5, 0xe10c9e, 0x33ab581, | 
 | 129 |     0x56a67ab, 0x577734d, 0x1dddc062, 0xc57b10d, 0x149b39d, 0x26a9e7b, 0xc35df9f, 0x48764cd, 0x76dbcca, | 
 | 130 |     0xca4b366, 0xe9303ab, 0x1a7480e7, 0x57e9e81, 0x1e13eb50, 0xf466cf3, 0x6f16b20, 0x4ba3173, 0xc168c33, | 
 | 131 |     0x15cb5439, 0x6a38e11, 0x73658bd, 0xb29564f, 0x3f6dc5b, 0x53b97e, 0x1322c4c0, 0x65dd7ff, 0x3a1e4f6, | 
 | 132 |     0x14e614aa, 0x9246317, 0x1bc83aca, 0xad97eed, 0xd38ce4a, 0xf82b006, 0x341f077, 0xa6add89, 0x4894acd, | 
 | 133 |     0x9f162d5, 0xf8410ef, 0x1b266a56, 0xd7f223, 0x3e0cb92, 0xe39b672, 0x6a2901a, 0x69a8556, 0x7e7c0, | 
 | 134 |     0x9b7d8d3, 0x309a80, 0x1ad05f7f, 0xc2fb5dd, 0xcbfd41d, 0x9ceb638, 0x1051825c, 0xda0cf5b, 0x812e881, | 
 | 135 |     0x6f35669, 0x6a56f2c, 0x1df8d184, 0x345820, 0x1477d477, 0x1645db1, 0xbe80c51, 0xc22be3e, 0xe35e65a, | 
 | 136 |     0x1aeb7aa0, 0xc375315, 0xf67bc99, 0x7fdd7b9, 0x191fc1be, 0x61235d, 0x2c184e9, 0x1c5a839, 0x47a1e26, | 
 | 137 |     0xb7cb456, 0x93e225d, 0x14f3c6ed, 0xccc1ac9, 0x17fe37f3, 0x4988989, 0x1a90c502, 0x2f32042, 0xa17769b, | 
 | 138 |     0xafd8c7c, 0x8191c6e, 0x1dcdb237, 0x16200c0, 0x107b32a1, 0x66c08db, 0x10d06a02, 0x3fc93, 0x5620023, | 
 | 139 |     0x16722b27, 0x68b5c59, 0x270fcfc, 0xfad0ecc, 0xe5de1c2, 0xeab466b, 0x2fc513c, 0x407f75c, 0xbaab133, | 
 | 140 |     0x9705fe9, 0xb88b8e7, 0x734c993, 0x1e1ff8f, 0x19156970, 0xabd0f00, 0x10469ea7, 0x3293ac0, 0xcdc98aa, | 
 | 141 |     0x1d843fd, 0xe14bfe8, 0x15be825f, 0x8b5212, 0xeb3fb67, 0x81cbd29, 0xbc62f16, 0x2b6fcc7, 0xf5a4e29, | 
 | 142 |     0x13560b66, 0xc0b6ac2, 0x51ae690, 0xd41e271, 0xf3e9bd4, 0x1d70aab, 0x1029f72, 0x73e1c35, 0xee70fbc, | 
 | 143 |     0xad81baf, 0x9ecc49a, 0x86c741e, 0xfe6be30, 0x176752e7, 0x23d416, 0x1f83de85, 0x27de188, 0x66f70b8, | 
 | 144 |     0x181cd51f, 0x96b6e4c, 0x188f2335, 0xa5df759, 0x17a77eb6, 0xfeb0e73, 0x154ae914, 0x2f3ec51, 0x3826b59, | 
 | 145 |     0xb91f17d, 0x1c72949, 0x1362bf0a, 0xe23fddf, 0xa5614b0, 0xf7d8f, 0x79061, 0x823d9d2, 0x8213f39, | 
 | 146 |     0x1128ae0b, 0xd095d05, 0xb85c0c2, 0x1ecb2ef, 0x24ddc84, 0xe35e901, 0x18411a4a, 0xf5ddc3d, 0x3786689, | 
 | 147 |     0x52260e8, 0x5ae3564, 0x542b10d, 0x8d93a45, 0x19952aa4, 0x996cc41, 0x1051a729, 0x4be3499, 0x52b23aa, | 
 | 148 |     0x109f307e, 0x6f5b6bb, 0x1f84e1e7, 0x77a0cfa, 0x10c4df3f, 0x25a02ea, 0xb048035, 0xe31de66, 0xc6ecaa3, | 
 | 149 |     0x28ea335, 0x2886024, 0x1372f020, 0xf55d35, 0x15e4684c, 0xf2a9e17, 0x1a4a7529, 0xcb7beb1, 0xb2a78a1, | 
 | 150 |     0x1ab21f1f, 0x6361ccf, 0x6c9179d, 0xb135627, 0x1267b974, 0x4408bad, 0x1cbff658, 0xe3d6511, 0xc7d76f, | 
 | 151 |     0x1cc7a69, 0xe7ee31b, 0x54fab4f, 0x2b914f, 0x1ad27a30, 0xcd3579e, 0xc50124c, 0x50daa90, 0xb13f72, | 
 | 152 |     0xb06aa75, 0x70f5cc6, 0x1649e5aa, 0x84a5312, 0x329043c, 0x41c4011, 0x13d32411, 0xb04a838, 0xd760d2d, | 
 | 153 |     0x1713b532, 0xbaa0c03, 0x84022ab, 0x6bcf5c1, 0x2f45379, 0x18ae070, 0x18c9e11e, 0x20bca9a, 0x66f496b, | 
 | 154 |     0x3eef294, 0x67500d2, 0xd7f613c, 0x2dbbeb, 0xb741038, 0xe04133f, 0x1582968d, 0xbe985f7, 0x1acbc1a, | 
 | 155 |     0x1a6a939f, 0x33e50f6, 0xd665ed4, 0xb4b7bd6, 0x1e5a3799, 0x6b33847, 0x17fa56ff, 0x65ef930, 0x21dc4a, | 
 | 156 |     0x2b37659, 0x450fe17, 0xb357b65, 0xdf5efac, 0x15397bef, 0x9d35a7f, 0x112ac15f, 0x624e62e, 0xa90ae2f, | 
 | 157 |     0x107eecd2, 0x1f69bbe, 0x77d6bce, 0x5741394, 0x13c684fc, 0x950c910, 0x725522b, 0xdc78583, 0x40eeabb, | 
 | 158 |     0x1fde328a, 0xbd61d96, 0xd28c387, 0x9e77d89, 0x12550c40, 0x759cb7d, 0x367ef34, 0xae2a960, 0x91b8bdc, | 
 | 159 |     0x93462a9, 0xf469ef, 0xb2e9aef, 0xd2ca771, 0x54e1f42, 0x7aaa49, 0x6316abb, 0x2413c8e, 0x5425bf9, | 
 | 160 |     0x1bed3e3a, 0xf272274, 0x1f5e7326, 0x6416517, 0xea27072, 0x9cedea7, 0x6e7633, 0x7c91952, 0xd806dce, | 
 | 161 |     0x8e2a7e1, 0xe421e1a, 0x418c9e1, 0x1dbc890, 0x1b395c36, 0xa1dc175, 0x1dc4ef73, 0x8956f34, 0xe4b5cf2, | 
 | 162 |     0x1b0d3a18, 0x3194a36, 0x6c2641f, 0xe44124c, 0xa2f4eaa, 0xa8c25ba, 0xf927ed7, 0x627b614, 0x7371cca, | 
 | 163 |     0xba16694, 0x417bc03, 0x7c0a7e3, 0x9c35c19, 0x1168a205, 0x8b6b00d, 0x10e3edc9, 0x9c19bf2, 0x5882229, | 
 | 164 |     0x1b2b4162, 0xa5cef1a, 0x1543622b, 0x9bd433e, 0x364e04d, 0x7480792, 0x5c9b5b3, 0xe85ff25, 0x408ef57, | 
 | 165 |     0x1814cfa4, 0x121b41b, 0xd248a0f, 0x3b05222, 0x39bb16a, 0xc75966d, 0xa038113, 0xa4a1769, 0x11fbc6c, | 
 | 166 |     0x917e50e, 0xeec3da8, 0x169d6eac, 0x10c1699, 0xa416153, 0xf724912, 0x15cd60b7, 0x4acbad9, 0x5efc5fa, | 
 | 167 |     0xf150ed7, 0x122b51, 0x1104b40a, 0xcb7f442, 0xfbb28ff, 0x6ac53ca, 0x196142cc, 0x7bf0fa9, 0x957651, | 
 | 168 |     0x4e0f215, 0xed439f8, 0x3f46bd5, 0x5ace82f, 0x110916b6, 0x6db078, 0xffd7d57, 0xf2ecaac, 0xca86dec, | 
 | 169 |     0x15d6b2da, 0x965ecc9, 0x1c92b4c2, 0x1f3811, 0x1cb080f5, 0x2d8b804, 0x19d1c12d, 0xf20bd46, 0x1951fa7, | 
 | 170 |     0xa3656c3, 0x523a425, 0xfcd0692, 0xd44ddc8, 0x131f0f5b, 0xaf80e4a, 0xcd9fc74, 0x99bb618, 0x2db944c, | 
 | 171 |     0xa673090, 0x1c210e1, 0x178c8d23, 0x1474383, 0x10b8743d, 0x985a55b, 0x2e74779, 0x576138, 0x9587927, | 
 | 172 |     0x133130fa, 0xbe05516, 0x9f4d619, 0xbb62570, 0x99ec591, 0xd9468fe, 0x1d07782d, 0xfc72e0b, 0x701b298, | 
 | 173 |     0x1863863b, 0x85954b8, 0x121a0c36, 0x9e7fedf, 0xf64b429, 0x9b9d71e, 0x14e2f5d8, 0xf858d3a, 0x942eea8, | 
 | 174 |     0xda5b765, 0x6edafff, 0xa9d18cc, 0xc65e4ba, 0x1c747e86, 0xe4ea915, 0x1981d7a1, 0x8395659, 0x52ed4e2, | 
 | 175 |     0x87d43b7, 0x37ab11b, 0x19d292ce, 0xf8d4692, 0x18c3053f, 0x8863e13, 0x4c146c0, 0x6bdf55a, 0x4e4457d, | 
 | 176 |     0x16152289, 0xac78ec2, 0x1a59c5a2, 0x2028b97, 0x71c2d01, 0x295851f, 0x404747b, 0x878558d, 0x7d29aa4, | 
 | 177 |     0x13d8341f, 0x8daefd7, 0x139c972d, 0x6b7ea75, 0xd4a9dde, 0xff163d8, 0x81d55d7, 0xa5bef68, 0xb7b30d8, | 
 | 178 |     0xbe73d6f, 0xaa88141, 0xd976c81, 0x7e7a9cc, 0x18beb771, 0xd773cbd, 0x13f51951, 0x9d0c177, 0x1c49a78, | 
 | 179 | }; | 
 | 180 |  | 
 | 181 |  | 
 | 182 | /* Field element operations: */ | 
 | 183 |  | 
 | 184 | /* NON_ZERO_TO_ALL_ONES returns: | 
 | 185 |  *   0xffffffff for 0 < x <= 2**31 | 
 | 186 |  *   0 for x == 0 or x > 2**31. | 
 | 187 |  * | 
 | 188 |  * x must be a u32 or an equivalent type such as limb. */ | 
 | 189 | #define NON_ZERO_TO_ALL_ONES(x) ((((u32)(x) - 1) >> 31) - 1) | 
 | 190 |  | 
 | 191 | /* felem_reduce_carry adds a multiple of p in order to cancel |carry|, | 
 | 192 |  * which is a term at 2**257. | 
 | 193 |  * | 
 | 194 |  * On entry: carry < 2**3, inout[0,2,...] < 2**29, inout[1,3,...] < 2**28. | 
 | 195 |  * On exit: inout[0,2,..] < 2**30, inout[1,3,...] < 2**29. */ | 
 | 196 | static void felem_reduce_carry(felem inout, limb carry) { | 
 | 197 |   const u32 carry_mask = NON_ZERO_TO_ALL_ONES(carry); | 
 | 198 |  | 
 | 199 |   inout[0] += carry << 1; | 
 | 200 |   inout[3] += 0x10000000 & carry_mask; | 
 | 201 |   /* carry < 2**3 thus (carry << 11) < 2**14 and we added 2**28 in the | 
 | 202 |    * previous line therefore this doesn't underflow. */ | 
 | 203 |   inout[3] -= carry << 11; | 
 | 204 |   inout[4] += (0x20000000 - 1) & carry_mask; | 
 | 205 |   inout[5] += (0x10000000 - 1) & carry_mask; | 
 | 206 |   inout[6] += (0x20000000 - 1) & carry_mask; | 
 | 207 |   inout[6] -= carry << 22; | 
 | 208 |   /* This may underflow if carry is non-zero but, if so, we'll fix it in the | 
 | 209 |    * next line. */ | 
 | 210 |   inout[7] -= 1 & carry_mask; | 
 | 211 |   inout[7] += carry << 25; | 
 | 212 | } | 
 | 213 |  | 
 | 214 | /* felem_sum sets out = in+in2. | 
 | 215 |  * | 
 | 216 |  * On entry, in[i]+in2[i] must not overflow a 32-bit word. | 
 | 217 |  * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29 */ | 
 | 218 | static void felem_sum(felem out, const felem in, const felem in2) { | 
 | 219 |   limb carry = 0; | 
 | 220 |   unsigned i; | 
 | 221 |  | 
 | 222 |   for (i = 0;; i++) { | 
 | 223 |     out[i] = in[i] + in2[i]; | 
 | 224 |     out[i] += carry; | 
 | 225 |     carry = out[i] >> 29; | 
 | 226 |     out[i] &= kBottom29Bits; | 
 | 227 |  | 
 | 228 |     i++; | 
 | 229 |     if (i == NLIMBS) | 
 | 230 |       break; | 
 | 231 |  | 
 | 232 |     out[i] = in[i] + in2[i]; | 
 | 233 |     out[i] += carry; | 
 | 234 |     carry = out[i] >> 28; | 
 | 235 |     out[i] &= kBottom28Bits; | 
 | 236 |   } | 
 | 237 |  | 
 | 238 |   felem_reduce_carry(out, carry); | 
 | 239 | } | 
 | 240 |  | 
 | 241 | #define two31m3 (((limb)1) << 31) - (((limb)1) << 3) | 
 | 242 | #define two30m2 (((limb)1) << 30) - (((limb)1) << 2) | 
 | 243 | #define two30p13m2 (((limb)1) << 30) + (((limb)1) << 13) - (((limb)1) << 2) | 
 | 244 | #define two31m2 (((limb)1) << 31) - (((limb)1) << 2) | 
 | 245 | #define two31p24m2 (((limb)1) << 31) + (((limb)1) << 24) - (((limb)1) << 2) | 
 | 246 | #define two30m27m2 (((limb)1) << 30) - (((limb)1) << 27) - (((limb)1) << 2) | 
 | 247 |  | 
 | 248 | /* zero31 is 0 mod p. */ | 
 | 249 | static const felem zero31 = { two31m3, two30m2, two31m2, two30p13m2, two31m2, two30m2, two31p24m2, two30m27m2, two31m2 }; | 
 | 250 |  | 
 | 251 | /* felem_diff sets out = in-in2. | 
 | 252 |  * | 
 | 253 |  * On entry: in[0,2,...] < 2**30, in[1,3,...] < 2**29 and | 
 | 254 |  *           in2[0,2,...] < 2**30, in2[1,3,...] < 2**29. | 
 | 255 |  * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. */ | 
 | 256 | static void felem_diff(felem out, const felem in, const felem in2) { | 
 | 257 |   limb carry = 0; | 
 | 258 |   unsigned i; | 
 | 259 |  | 
 | 260 |    for (i = 0;; i++) { | 
 | 261 |     out[i] = in[i] - in2[i]; | 
 | 262 |     out[i] += zero31[i]; | 
 | 263 |     out[i] += carry; | 
 | 264 |     carry = out[i] >> 29; | 
 | 265 |     out[i] &= kBottom29Bits; | 
 | 266 |  | 
 | 267 |     i++; | 
 | 268 |     if (i == NLIMBS) | 
 | 269 |       break; | 
 | 270 |  | 
 | 271 |     out[i] = in[i] - in2[i]; | 
 | 272 |     out[i] += zero31[i]; | 
 | 273 |     out[i] += carry; | 
 | 274 |     carry = out[i] >> 28; | 
 | 275 |     out[i] &= kBottom28Bits; | 
 | 276 |   } | 
 | 277 |  | 
 | 278 |   felem_reduce_carry(out, carry); | 
 | 279 | } | 
 | 280 |  | 
 | 281 | /* felem_reduce_degree sets out = tmp/R mod p where tmp contains 64-bit words | 
 | 282 |  * with the same 29,28,... bit positions as an felem. | 
 | 283 |  * | 
 | 284 |  * The values in felems are in Montgomery form: x*R mod p where R = 2**257. | 
 | 285 |  * Since we just multiplied two Montgomery values together, the result is | 
 | 286 |  * x*y*R*R mod p. We wish to divide by R in order for the result also to be | 
 | 287 |  * in Montgomery form. | 
 | 288 |  * | 
 | 289 |  * On entry: tmp[i] < 2**64 | 
 | 290 |  * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29 */ | 
 | 291 | static void felem_reduce_degree(felem out, u64 tmp[17]) { | 
 | 292 |    /* The following table may be helpful when reading this code: | 
 | 293 |     * | 
 | 294 |     * Limb number:   0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10... | 
 | 295 |     * Width (bits):  29| 28| 29| 28| 29| 28| 29| 28| 29| 28| 29 | 
 | 296 |     * Start bit:     0 | 29| 57| 86|114|143|171|200|228|257|285 | 
 | 297 |     *   (odd phase): 0 | 28| 57| 85|114|142|171|199|228|256|285 */ | 
 | 298 |   limb tmp2[18], carry, x, xMask; | 
 | 299 |   unsigned i; | 
 | 300 |  | 
 | 301 |   /* tmp contains 64-bit words with the same 29,28,29-bit positions as an | 
 | 302 |    * felem. So the top of an element of tmp might overlap with another | 
 | 303 |    * element two positions down. The following loop eliminates this | 
 | 304 |    * overlap. */ | 
 | 305 |   tmp2[0] = (limb)(tmp[0] & kBottom29Bits); | 
 | 306 |  | 
 | 307 |   /* In the following we use "(limb) tmp[x]" and "(limb) (tmp[x]>>32)" to try | 
 | 308 |    * and hint to the compiler that it can do a single-word shift by selecting | 
 | 309 |    * the right register rather than doing a double-word shift and truncating | 
 | 310 |    * afterwards. */ | 
 | 311 |   tmp2[1] = ((limb) tmp[0]) >> 29; | 
 | 312 |   tmp2[1] |= (((limb)(tmp[0] >> 32)) << 3) & kBottom28Bits; | 
 | 313 |   tmp2[1] += ((limb) tmp[1]) & kBottom28Bits; | 
 | 314 |   carry = tmp2[1] >> 28; | 
 | 315 |   tmp2[1] &= kBottom28Bits; | 
 | 316 |  | 
 | 317 |   for (i = 2; i < 17; i++) { | 
 | 318 |     tmp2[i] = ((limb)(tmp[i - 2] >> 32)) >> 25; | 
 | 319 |     tmp2[i] += ((limb)(tmp[i - 1])) >> 28; | 
 | 320 |     tmp2[i] += (((limb)(tmp[i - 1] >> 32)) << 4) & kBottom29Bits; | 
 | 321 |     tmp2[i] += ((limb) tmp[i]) & kBottom29Bits; | 
 | 322 |     tmp2[i] += carry; | 
 | 323 |     carry = tmp2[i] >> 29; | 
 | 324 |     tmp2[i] &= kBottom29Bits; | 
 | 325 |  | 
 | 326 |     i++; | 
 | 327 |     if (i == 17) | 
 | 328 |       break; | 
 | 329 |     tmp2[i] = ((limb)(tmp[i - 2] >> 32)) >> 25; | 
 | 330 |     tmp2[i] += ((limb)(tmp[i - 1])) >> 29; | 
 | 331 |     tmp2[i] += (((limb)(tmp[i - 1] >> 32)) << 3) & kBottom28Bits; | 
 | 332 |     tmp2[i] += ((limb) tmp[i]) & kBottom28Bits; | 
 | 333 |     tmp2[i] += carry; | 
 | 334 |     carry = tmp2[i] >> 28; | 
 | 335 |     tmp2[i] &= kBottom28Bits; | 
 | 336 |   } | 
 | 337 |  | 
 | 338 |   tmp2[17] = ((limb)(tmp[15] >> 32)) >> 25; | 
 | 339 |   tmp2[17] += ((limb)(tmp[16])) >> 29; | 
 | 340 |   tmp2[17] += (((limb)(tmp[16] >> 32)) << 3); | 
 | 341 |   tmp2[17] += carry; | 
 | 342 |  | 
 | 343 |   /* Montgomery elimination of terms. | 
 | 344 |    * | 
 | 345 |    * Since R is 2**257, we can divide by R with a bitwise shift if we can | 
 | 346 |    * ensure that the right-most 257 bits are all zero. We can make that true by | 
 | 347 |    * adding multiplies of p without affecting the value. | 
 | 348 |    * | 
 | 349 |    * So we eliminate limbs from right to left. Since the bottom 29 bits of p | 
 | 350 |    * are all ones, then by adding tmp2[0]*p to tmp2 we'll make tmp2[0] == 0. | 
 | 351 |    * We can do that for 8 further limbs and then right shift to eliminate the | 
 | 352 |    * extra factor of R. */ | 
 | 353 |   for (i = 0;; i += 2) { | 
 | 354 |     tmp2[i + 1] += tmp2[i] >> 29; | 
 | 355 |     x = tmp2[i] & kBottom29Bits; | 
 | 356 |     xMask = NON_ZERO_TO_ALL_ONES(x); | 
 | 357 |     tmp2[i] = 0; | 
 | 358 |  | 
 | 359 |     /* The bounds calculations for this loop are tricky. Each iteration of | 
 | 360 |      * the loop eliminates two words by adding values to words to their | 
 | 361 |      * right. | 
 | 362 |      * | 
 | 363 |      * The following table contains the amounts added to each word (as an | 
 | 364 |      * offset from the value of i at the top of the loop). The amounts are | 
 | 365 |      * accounted for from the first and second half of the loop separately | 
 | 366 |      * and are written as, for example, 28 to mean a value <2**28. | 
 | 367 |      * | 
 | 368 |      * Word:                   3   4   5   6   7   8   9   10 | 
 | 369 |      * Added in top half:     28  11      29  21  29  28 | 
 | 370 |      *                                        28  29 | 
 | 371 |      *                                            29 | 
 | 372 |      * Added in bottom half:      29  10      28  21  28   28 | 
 | 373 |      *                                            29 | 
 | 374 |      * | 
 | 375 |      * The value that is currently offset 7 will be offset 5 for the next | 
 | 376 |      * iteration and then offset 3 for the iteration after that. Therefore | 
 | 377 |      * the total value added will be the values added at 7, 5 and 3. | 
 | 378 |      * | 
 | 379 |      * The following table accumulates these values. The sums at the bottom | 
 | 380 |      * are written as, for example, 29+28, to mean a value < 2**29+2**28. | 
 | 381 |      * | 
 | 382 |      * Word:                   3   4   5   6   7   8   9  10  11  12  13 | 
 | 383 |      *                        28  11  10  29  21  29  28  28  28  28  28 | 
 | 384 |      *                            29  28  11  28  29  28  29  28  29  28 | 
 | 385 |      *                                    29  28  21  21  29  21  29  21 | 
 | 386 |      *                                        10  29  28  21  28  21  28 | 
 | 387 |      *                                        28  29  28  29  28  29  28 | 
 | 388 |      *                                            11  10  29  10  29  10 | 
 | 389 |      *                                            29  28  11  28  11 | 
 | 390 |      *                                                    29      29 | 
 | 391 |      *                        -------------------------------------------- | 
 | 392 |      *                                                30+ 31+ 30+ 31+ 30+ | 
 | 393 |      *                                                28+ 29+ 28+ 29+ 21+ | 
 | 394 |      *                                                21+ 28+ 21+ 28+ 10 | 
 | 395 |      *                                                10  21+ 10  21+ | 
 | 396 |      *                                                    11      11 | 
 | 397 |      * | 
 | 398 |      * So the greatest amount is added to tmp2[10] and tmp2[12]. If | 
 | 399 |      * tmp2[10/12] has an initial value of <2**29, then the maximum value | 
 | 400 |      * will be < 2**31 + 2**30 + 2**28 + 2**21 + 2**11, which is < 2**32, | 
 | 401 |      * as required. */ | 
 | 402 |     tmp2[i + 3] += (x << 10) & kBottom28Bits; | 
 | 403 |     tmp2[i + 4] += (x >> 18); | 
 | 404 |  | 
 | 405 |     tmp2[i + 6] += (x << 21) & kBottom29Bits; | 
 | 406 |     tmp2[i + 7] += x >> 8; | 
 | 407 |  | 
 | 408 |     /* At position 200, which is the starting bit position for word 7, we | 
 | 409 |      * have a factor of 0xf000000 = 2**28 - 2**24. */ | 
 | 410 |     tmp2[i + 7] += 0x10000000 & xMask; | 
 | 411 |     /* Word 7 is 28 bits wide, so the 2**28 term exactly hits word 8. */ | 
 | 412 |     tmp2[i + 8] += (x - 1) & xMask; | 
 | 413 |     tmp2[i + 7] -= (x << 24) & kBottom28Bits; | 
 | 414 |     tmp2[i + 8] -= x >> 4; | 
 | 415 |  | 
 | 416 |     tmp2[i + 8] += 0x20000000 & xMask; | 
 | 417 |     tmp2[i + 8] -= x; | 
 | 418 |     tmp2[i + 8] += (x << 28) & kBottom29Bits; | 
 | 419 |     tmp2[i + 9] += ((x >> 1) - 1) & xMask; | 
 | 420 |  | 
 | 421 |     if (i+1 == NLIMBS) | 
 | 422 |       break; | 
 | 423 |     tmp2[i + 2] += tmp2[i + 1] >> 28; | 
 | 424 |     x = tmp2[i + 1] & kBottom28Bits; | 
 | 425 |     xMask = NON_ZERO_TO_ALL_ONES(x); | 
 | 426 |     tmp2[i + 1] = 0; | 
 | 427 |  | 
 | 428 |     tmp2[i + 4] += (x << 11) & kBottom29Bits; | 
 | 429 |     tmp2[i + 5] += (x >> 18); | 
 | 430 |  | 
 | 431 |     tmp2[i + 7] += (x << 21) & kBottom28Bits; | 
 | 432 |     tmp2[i + 8] += x >> 7; | 
 | 433 |  | 
 | 434 |     /* At position 199, which is the starting bit of the 8th word when | 
 | 435 |      * dealing with a context starting on an odd word, we have a factor of | 
 | 436 |      * 0x1e000000 = 2**29 - 2**25. Since we have not updated i, the 8th | 
 | 437 |      * word from i+1 is i+8. */ | 
 | 438 |     tmp2[i + 8] += 0x20000000 & xMask; | 
 | 439 |     tmp2[i + 9] += (x - 1) & xMask; | 
 | 440 |     tmp2[i + 8] -= (x << 25) & kBottom29Bits; | 
 | 441 |     tmp2[i + 9] -= x >> 4; | 
 | 442 |  | 
 | 443 |     tmp2[i + 9] += 0x10000000 & xMask; | 
 | 444 |     tmp2[i + 9] -= x; | 
 | 445 |     tmp2[i + 10] += (x - 1) & xMask; | 
 | 446 |   } | 
 | 447 |  | 
 | 448 |   /* We merge the right shift with a carry chain. The words above 2**257 have | 
 | 449 |    * widths of 28,29,... which we need to correct when copying them down.  */ | 
 | 450 |   carry = 0; | 
 | 451 |   for (i = 0; i < 8; i++) { | 
 | 452 |     /* The maximum value of tmp2[i + 9] occurs on the first iteration and | 
 | 453 |      * is < 2**30+2**29+2**28. Adding 2**29 (from tmp2[i + 10]) is | 
 | 454 |      * therefore safe. */ | 
 | 455 |     out[i] = tmp2[i + 9]; | 
 | 456 |     out[i] += carry; | 
 | 457 |     out[i] += (tmp2[i + 10] << 28) & kBottom29Bits; | 
 | 458 |     carry = out[i] >> 29; | 
 | 459 |     out[i] &= kBottom29Bits; | 
 | 460 |  | 
 | 461 |     i++; | 
 | 462 |     out[i] = tmp2[i + 9] >> 1; | 
 | 463 |     out[i] += carry; | 
 | 464 |     carry = out[i] >> 28; | 
 | 465 |     out[i] &= kBottom28Bits; | 
 | 466 |   } | 
 | 467 |  | 
 | 468 |   out[8] = tmp2[17]; | 
 | 469 |   out[8] += carry; | 
 | 470 |   carry = out[8] >> 29; | 
 | 471 |   out[8] &= kBottom29Bits; | 
 | 472 |  | 
 | 473 |   felem_reduce_carry(out, carry); | 
 | 474 | } | 
 | 475 |  | 
 | 476 | /* felem_square sets out=in*in. | 
 | 477 |  * | 
 | 478 |  * On entry: in[0,2,...] < 2**30, in[1,3,...] < 2**29. | 
 | 479 |  * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. */ | 
 | 480 | static void felem_square(felem out, const felem in) { | 
 | 481 |   u64 tmp[17]; | 
 | 482 |  | 
 | 483 |   tmp[0] = ((u64) in[0]) * in[0]; | 
 | 484 |   tmp[1] = ((u64) in[0]) * (in[1] << 1); | 
 | 485 |   tmp[2] = ((u64) in[0]) * (in[2] << 1) + | 
 | 486 |            ((u64) in[1]) * (in[1] << 1); | 
 | 487 |   tmp[3] = ((u64) in[0]) * (in[3] << 1) + | 
 | 488 |            ((u64) in[1]) * (in[2] << 1); | 
 | 489 |   tmp[4] = ((u64) in[0]) * (in[4] << 1) + | 
 | 490 |            ((u64) in[1]) * (in[3] << 2) + ((u64) in[2]) * in[2]; | 
 | 491 |   tmp[5] = ((u64) in[0]) * (in[5] << 1) + ((u64) in[1]) * | 
 | 492 |            (in[4] << 1) + ((u64) in[2]) * (in[3] << 1); | 
 | 493 |   tmp[6] = ((u64) in[0]) * (in[6] << 1) + ((u64) in[1]) * | 
 | 494 |            (in[5] << 2) + ((u64) in[2]) * (in[4] << 1) + | 
 | 495 |            ((u64) in[3]) * (in[3] << 1); | 
 | 496 |   tmp[7] = ((u64) in[0]) * (in[7] << 1) + ((u64) in[1]) * | 
 | 497 |            (in[6] << 1) + ((u64) in[2]) * (in[5] << 1) + | 
 | 498 |            ((u64) in[3]) * (in[4] << 1); | 
 | 499 |   /* tmp[8] has the greatest value of 2**61 + 2**60 + 2**61 + 2**60 + 2**60, | 
 | 500 |    * which is < 2**64 as required. */ | 
 | 501 |   tmp[8] = ((u64) in[0]) * (in[8] << 1) + ((u64) in[1]) * | 
 | 502 |            (in[7] << 2) + ((u64) in[2]) * (in[6] << 1) + | 
 | 503 |            ((u64) in[3]) * (in[5] << 2) + ((u64) in[4]) * in[4]; | 
 | 504 |   tmp[9] = ((u64) in[1]) * (in[8] << 1) + ((u64) in[2]) * | 
 | 505 |            (in[7] << 1) + ((u64) in[3]) * (in[6] << 1) + | 
 | 506 |            ((u64) in[4]) * (in[5] << 1); | 
 | 507 |   tmp[10] = ((u64) in[2]) * (in[8] << 1) + ((u64) in[3]) * | 
 | 508 |             (in[7] << 2) + ((u64) in[4]) * (in[6] << 1) + | 
 | 509 |             ((u64) in[5]) * (in[5] << 1); | 
 | 510 |   tmp[11] = ((u64) in[3]) * (in[8] << 1) + ((u64) in[4]) * | 
 | 511 |             (in[7] << 1) + ((u64) in[5]) * (in[6] << 1); | 
 | 512 |   tmp[12] = ((u64) in[4]) * (in[8] << 1) + | 
 | 513 |             ((u64) in[5]) * (in[7] << 2) + ((u64) in[6]) * in[6]; | 
 | 514 |   tmp[13] = ((u64) in[5]) * (in[8] << 1) + | 
 | 515 |             ((u64) in[6]) * (in[7] << 1); | 
 | 516 |   tmp[14] = ((u64) in[6]) * (in[8] << 1) + | 
 | 517 |             ((u64) in[7]) * (in[7] << 1); | 
 | 518 |   tmp[15] = ((u64) in[7]) * (in[8] << 1); | 
 | 519 |   tmp[16] = ((u64) in[8]) * in[8]; | 
 | 520 |  | 
 | 521 |   felem_reduce_degree(out, tmp); | 
 | 522 | } | 
 | 523 |  | 
 | 524 | /* felem_mul sets out=in*in2. | 
 | 525 |  * | 
 | 526 |  * On entry: in[0,2,...] < 2**30, in[1,3,...] < 2**29 and | 
 | 527 |  *           in2[0,2,...] < 2**30, in2[1,3,...] < 2**29. | 
 | 528 |  * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. */ | 
 | 529 | static void felem_mul(felem out, const felem in, const felem in2) { | 
 | 530 |   u64 tmp[17]; | 
 | 531 |  | 
 | 532 |   tmp[0] = ((u64) in[0]) * in2[0]; | 
 | 533 |   tmp[1] = ((u64) in[0]) * (in2[1] << 0) + | 
 | 534 |            ((u64) in[1]) * (in2[0] << 0); | 
 | 535 |   tmp[2] = ((u64) in[0]) * (in2[2] << 0) + ((u64) in[1]) * | 
 | 536 |            (in2[1] << 1) + ((u64) in[2]) * (in2[0] << 0); | 
 | 537 |   tmp[3] = ((u64) in[0]) * (in2[3] << 0) + ((u64) in[1]) * | 
 | 538 |            (in2[2] << 0) + ((u64) in[2]) * (in2[1] << 0) + | 
 | 539 |            ((u64) in[3]) * (in2[0] << 0); | 
 | 540 |   tmp[4] = ((u64) in[0]) * (in2[4] << 0) + ((u64) in[1]) * | 
 | 541 |            (in2[3] << 1) + ((u64) in[2]) * (in2[2] << 0) + | 
 | 542 |            ((u64) in[3]) * (in2[1] << 1) + | 
 | 543 |            ((u64) in[4]) * (in2[0] << 0); | 
 | 544 |   tmp[5] = ((u64) in[0]) * (in2[5] << 0) + ((u64) in[1]) * | 
 | 545 |            (in2[4] << 0) + ((u64) in[2]) * (in2[3] << 0) + | 
 | 546 |            ((u64) in[3]) * (in2[2] << 0) + ((u64) in[4]) * | 
 | 547 |            (in2[1] << 0) + ((u64) in[5]) * (in2[0] << 0); | 
 | 548 |   tmp[6] = ((u64) in[0]) * (in2[6] << 0) + ((u64) in[1]) * | 
 | 549 |            (in2[5] << 1) + ((u64) in[2]) * (in2[4] << 0) + | 
 | 550 |            ((u64) in[3]) * (in2[3] << 1) + ((u64) in[4]) * | 
 | 551 |            (in2[2] << 0) + ((u64) in[5]) * (in2[1] << 1) + | 
 | 552 |            ((u64) in[6]) * (in2[0] << 0); | 
 | 553 |   tmp[7] = ((u64) in[0]) * (in2[7] << 0) + ((u64) in[1]) * | 
 | 554 |            (in2[6] << 0) + ((u64) in[2]) * (in2[5] << 0) + | 
 | 555 |            ((u64) in[3]) * (in2[4] << 0) + ((u64) in[4]) * | 
 | 556 |            (in2[3] << 0) + ((u64) in[5]) * (in2[2] << 0) + | 
 | 557 |            ((u64) in[6]) * (in2[1] << 0) + | 
 | 558 |            ((u64) in[7]) * (in2[0] << 0); | 
 | 559 |   /* tmp[8] has the greatest value but doesn't overflow. See logic in | 
 | 560 |    * felem_square. */ | 
 | 561 |   tmp[8] = ((u64) in[0]) * (in2[8] << 0) + ((u64) in[1]) * | 
 | 562 |            (in2[7] << 1) + ((u64) in[2]) * (in2[6] << 0) + | 
 | 563 |            ((u64) in[3]) * (in2[5] << 1) + ((u64) in[4]) * | 
 | 564 |            (in2[4] << 0) + ((u64) in[5]) * (in2[3] << 1) + | 
 | 565 |            ((u64) in[6]) * (in2[2] << 0) + ((u64) in[7]) * | 
 | 566 |            (in2[1] << 1) + ((u64) in[8]) * (in2[0] << 0); | 
 | 567 |   tmp[9] = ((u64) in[1]) * (in2[8] << 0) + ((u64) in[2]) * | 
 | 568 |            (in2[7] << 0) + ((u64) in[3]) * (in2[6] << 0) + | 
 | 569 |            ((u64) in[4]) * (in2[5] << 0) + ((u64) in[5]) * | 
 | 570 |            (in2[4] << 0) + ((u64) in[6]) * (in2[3] << 0) + | 
 | 571 |            ((u64) in[7]) * (in2[2] << 0) + | 
 | 572 |            ((u64) in[8]) * (in2[1] << 0); | 
 | 573 |   tmp[10] = ((u64) in[2]) * (in2[8] << 0) + ((u64) in[3]) * | 
 | 574 |             (in2[7] << 1) + ((u64) in[4]) * (in2[6] << 0) + | 
 | 575 |             ((u64) in[5]) * (in2[5] << 1) + ((u64) in[6]) * | 
 | 576 |             (in2[4] << 0) + ((u64) in[7]) * (in2[3] << 1) + | 
 | 577 |             ((u64) in[8]) * (in2[2] << 0); | 
 | 578 |   tmp[11] = ((u64) in[3]) * (in2[8] << 0) + ((u64) in[4]) * | 
 | 579 |             (in2[7] << 0) + ((u64) in[5]) * (in2[6] << 0) + | 
 | 580 |             ((u64) in[6]) * (in2[5] << 0) + ((u64) in[7]) * | 
 | 581 |             (in2[4] << 0) + ((u64) in[8]) * (in2[3] << 0); | 
 | 582 |   tmp[12] = ((u64) in[4]) * (in2[8] << 0) + ((u64) in[5]) * | 
 | 583 |             (in2[7] << 1) + ((u64) in[6]) * (in2[6] << 0) + | 
 | 584 |             ((u64) in[7]) * (in2[5] << 1) + | 
 | 585 |             ((u64) in[8]) * (in2[4] << 0); | 
 | 586 |   tmp[13] = ((u64) in[5]) * (in2[8] << 0) + ((u64) in[6]) * | 
 | 587 |             (in2[7] << 0) + ((u64) in[7]) * (in2[6] << 0) + | 
 | 588 |             ((u64) in[8]) * (in2[5] << 0); | 
 | 589 |   tmp[14] = ((u64) in[6]) * (in2[8] << 0) + ((u64) in[7]) * | 
 | 590 |             (in2[7] << 1) + ((u64) in[8]) * (in2[6] << 0); | 
 | 591 |   tmp[15] = ((u64) in[7]) * (in2[8] << 0) + | 
 | 592 |             ((u64) in[8]) * (in2[7] << 0); | 
 | 593 |   tmp[16] = ((u64) in[8]) * (in2[8] << 0); | 
 | 594 |  | 
 | 595 |   felem_reduce_degree(out, tmp); | 
 | 596 | } | 
 | 597 |  | 
 | 598 | static void felem_assign(felem out, const felem in) { | 
 | 599 |   memcpy(out, in, sizeof(felem)); | 
 | 600 | } | 
 | 601 |  | 
 | 602 | /* felem_inv calculates |out| = |in|^{-1} | 
 | 603 |  * | 
 | 604 |  * Based on Fermat's Little Theorem: | 
 | 605 |  *   a^p = a (mod p) | 
 | 606 |  *   a^{p-1} = 1 (mod p) | 
 | 607 |  *   a^{p-2} = a^{-1} (mod p) | 
 | 608 |  */ | 
 | 609 | static void felem_inv(felem out, const felem in) { | 
 | 610 |   felem ftmp, ftmp2; | 
 | 611 |   /* each e_I will hold |in|^{2^I - 1} */ | 
 | 612 |   felem e2, e4, e8, e16, e32, e64; | 
 | 613 |   unsigned i; | 
 | 614 |  | 
 | 615 |   felem_square(ftmp, in); /* 2^1 */ | 
 | 616 |   felem_mul(ftmp, in, ftmp); /* 2^2 - 2^0 */ | 
 | 617 |   felem_assign(e2, ftmp); | 
 | 618 |   felem_square(ftmp, ftmp); /* 2^3 - 2^1 */ | 
 | 619 |   felem_square(ftmp, ftmp); /* 2^4 - 2^2 */ | 
 | 620 |   felem_mul(ftmp, ftmp, e2); /* 2^4 - 2^0 */ | 
 | 621 |   felem_assign(e4, ftmp); | 
 | 622 |   felem_square(ftmp, ftmp); /* 2^5 - 2^1 */ | 
 | 623 |   felem_square(ftmp, ftmp); /* 2^6 - 2^2 */ | 
 | 624 |   felem_square(ftmp, ftmp); /* 2^7 - 2^3 */ | 
 | 625 |   felem_square(ftmp, ftmp); /* 2^8 - 2^4 */ | 
 | 626 |   felem_mul(ftmp, ftmp, e4); /* 2^8 - 2^0 */ | 
 | 627 |   felem_assign(e8, ftmp); | 
 | 628 |   for (i = 0; i < 8; i++) { | 
 | 629 |     felem_square(ftmp, ftmp); | 
 | 630 |   } /* 2^16 - 2^8 */ | 
 | 631 |   felem_mul(ftmp, ftmp, e8); /* 2^16 - 2^0 */ | 
 | 632 |   felem_assign(e16, ftmp); | 
 | 633 |   for (i = 0; i < 16; i++) { | 
 | 634 |     felem_square(ftmp, ftmp); | 
 | 635 |   } /* 2^32 - 2^16 */ | 
 | 636 |   felem_mul(ftmp, ftmp, e16); /* 2^32 - 2^0 */ | 
 | 637 |   felem_assign(e32, ftmp); | 
 | 638 |   for (i = 0; i < 32; i++) { | 
 | 639 |     felem_square(ftmp, ftmp); | 
 | 640 |   } /* 2^64 - 2^32 */ | 
 | 641 |   felem_assign(e64, ftmp); | 
 | 642 |   felem_mul(ftmp, ftmp, in); /* 2^64 - 2^32 + 2^0 */ | 
 | 643 |   for (i = 0; i < 192; i++) { | 
 | 644 |     felem_square(ftmp, ftmp); | 
 | 645 |   } /* 2^256 - 2^224 + 2^192 */ | 
 | 646 |  | 
 | 647 |   felem_mul(ftmp2, e64, e32); /* 2^64 - 2^0 */ | 
 | 648 |   for (i = 0; i < 16; i++) { | 
 | 649 |     felem_square(ftmp2, ftmp2); | 
 | 650 |   } /* 2^80 - 2^16 */ | 
 | 651 |   felem_mul(ftmp2, ftmp2, e16); /* 2^80 - 2^0 */ | 
 | 652 |   for (i = 0; i < 8; i++) { | 
 | 653 |     felem_square(ftmp2, ftmp2); | 
 | 654 |   } /* 2^88 - 2^8 */ | 
 | 655 |   felem_mul(ftmp2, ftmp2, e8); /* 2^88 - 2^0 */ | 
 | 656 |   for (i = 0; i < 4; i++) { | 
 | 657 |     felem_square(ftmp2, ftmp2); | 
 | 658 |   } /* 2^92 - 2^4 */ | 
 | 659 |   felem_mul(ftmp2, ftmp2, e4); /* 2^92 - 2^0 */ | 
 | 660 |   felem_square(ftmp2, ftmp2); /* 2^93 - 2^1 */ | 
 | 661 |   felem_square(ftmp2, ftmp2); /* 2^94 - 2^2 */ | 
 | 662 |   felem_mul(ftmp2, ftmp2, e2); /* 2^94 - 2^0 */ | 
 | 663 |   felem_square(ftmp2, ftmp2); /* 2^95 - 2^1 */ | 
 | 664 |   felem_square(ftmp2, ftmp2); /* 2^96 - 2^2 */ | 
 | 665 |   felem_mul(ftmp2, ftmp2, in); /* 2^96 - 3 */ | 
 | 666 |  | 
 | 667 |   felem_mul(out, ftmp2, ftmp); /* 2^256 - 2^224 + 2^192 + 2^96 - 3 */ | 
 | 668 | } | 
 | 669 |  | 
 | 670 | /* felem_scalar_3 sets out=3*out. | 
 | 671 |  * | 
 | 672 |  * On entry: out[0,2,...] < 2**30, out[1,3,...] < 2**29. | 
 | 673 |  * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. */ | 
 | 674 | static void felem_scalar_3(felem out) { | 
 | 675 |   limb carry = 0; | 
 | 676 |   unsigned i; | 
 | 677 |  | 
 | 678 |   for (i = 0;; i++) { | 
 | 679 |     out[i] *= 3; | 
 | 680 |     out[i] += carry; | 
 | 681 |     carry = out[i] >> 29; | 
 | 682 |     out[i] &= kBottom29Bits; | 
 | 683 |  | 
 | 684 |     i++; | 
 | 685 |     if (i == NLIMBS) | 
 | 686 |       break; | 
 | 687 |  | 
 | 688 |     out[i] *= 3; | 
 | 689 |     out[i] += carry; | 
 | 690 |     carry = out[i] >> 28; | 
 | 691 |     out[i] &= kBottom28Bits; | 
 | 692 |   } | 
 | 693 |  | 
 | 694 |   felem_reduce_carry(out, carry); | 
 | 695 | } | 
 | 696 |  | 
 | 697 | /* felem_scalar_4 sets out=4*out. | 
 | 698 |  * | 
 | 699 |  * On entry: out[0,2,...] < 2**30, out[1,3,...] < 2**29. | 
 | 700 |  * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. */ | 
 | 701 | static void felem_scalar_4(felem out) { | 
 | 702 |   limb carry = 0, next_carry; | 
 | 703 |   unsigned i; | 
 | 704 |  | 
 | 705 |   for (i = 0;; i++) { | 
 | 706 |     next_carry = out[i] >> 27; | 
 | 707 |     out[i] <<= 2; | 
 | 708 |     out[i] &= kBottom29Bits; | 
 | 709 |     out[i] += carry; | 
 | 710 |     carry = next_carry + (out[i] >> 29); | 
 | 711 |     out[i] &= kBottom29Bits; | 
 | 712 |  | 
 | 713 |     i++; | 
 | 714 |     if (i == NLIMBS) | 
 | 715 |       break; | 
 | 716 |  | 
 | 717 |     next_carry = out[i] >> 26; | 
 | 718 |     out[i] <<= 2; | 
 | 719 |     out[i] &= kBottom28Bits; | 
 | 720 |     out[i] += carry; | 
 | 721 |     carry = next_carry + (out[i] >> 28); | 
 | 722 |     out[i] &= kBottom28Bits; | 
 | 723 |   } | 
 | 724 |  | 
 | 725 |   felem_reduce_carry(out, carry); | 
 | 726 | } | 
 | 727 |  | 
 | 728 | /* felem_scalar_8 sets out=8*out. | 
 | 729 |  * | 
 | 730 |  * On entry: out[0,2,...] < 2**30, out[1,3,...] < 2**29. | 
 | 731 |  * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. */ | 
 | 732 | static void felem_scalar_8(felem out) { | 
 | 733 |   limb carry = 0, next_carry; | 
 | 734 |   unsigned i; | 
 | 735 |  | 
 | 736 |   for (i = 0;; i++) { | 
 | 737 |     next_carry = out[i] >> 26; | 
 | 738 |     out[i] <<= 3; | 
 | 739 |     out[i] &= kBottom29Bits; | 
 | 740 |     out[i] += carry; | 
 | 741 |     carry = next_carry + (out[i] >> 29); | 
 | 742 |     out[i] &= kBottom29Bits; | 
 | 743 |  | 
 | 744 |     i++; | 
 | 745 |     if (i == NLIMBS) | 
 | 746 |       break; | 
 | 747 |  | 
 | 748 |     next_carry = out[i] >> 25; | 
 | 749 |     out[i] <<= 3; | 
 | 750 |     out[i] &= kBottom28Bits; | 
 | 751 |     out[i] += carry; | 
 | 752 |     carry = next_carry + (out[i] >> 28); | 
 | 753 |     out[i] &= kBottom28Bits; | 
 | 754 |   } | 
 | 755 |  | 
 | 756 |   felem_reduce_carry(out, carry); | 
 | 757 | } | 
 | 758 |  | 
 | 759 | /* felem_is_zero_vartime returns 1 iff |in| == 0. It takes a variable amount of | 
 | 760 |  * time depending on the value of |in|. */ | 
 | 761 | static char felem_is_zero_vartime(const felem in) { | 
 | 762 |   limb carry; | 
 | 763 |   int i; | 
 | 764 |   limb tmp[NLIMBS]; | 
 | 765 |  | 
 | 766 |   felem_assign(tmp, in); | 
 | 767 |  | 
 | 768 |   /* First, reduce tmp to a minimal form. */ | 
 | 769 |   do { | 
 | 770 |     carry = 0; | 
 | 771 |     for (i = 0;; i++) { | 
 | 772 |       tmp[i] += carry; | 
 | 773 |       carry = tmp[i] >> 29; | 
 | 774 |       tmp[i] &= kBottom29Bits; | 
 | 775 |  | 
 | 776 |       i++; | 
 | 777 |       if (i == NLIMBS) | 
 | 778 |         break; | 
 | 779 |  | 
 | 780 |       tmp[i] += carry; | 
 | 781 |       carry = tmp[i] >> 28; | 
 | 782 |       tmp[i] &= kBottom28Bits; | 
 | 783 |     } | 
 | 784 |  | 
 | 785 |     felem_reduce_carry(tmp, carry); | 
 | 786 |   } while (carry); | 
 | 787 |  | 
 | 788 |   /* tmp < 2**257, so the only possible zero values are 0, p and 2p. */ | 
 | 789 |   return memcmp(tmp, kZero, sizeof(tmp)) == 0 || | 
 | 790 |          memcmp(tmp, kP, sizeof(tmp)) == 0 || | 
 | 791 |          memcmp(tmp, k2P, sizeof(tmp)) == 0; | 
 | 792 | } | 
 | 793 |  | 
 | 794 |  | 
 | 795 | /* Group operations: | 
 | 796 |  * | 
 | 797 |  * Elements of the elliptic curve group are represented in Jacobian | 
 | 798 |  * coordinates: (x, y, z). An affine point (x', y') is x'=x/z**2, y'=y/z**3 in | 
 | 799 |  * Jacobian form. */ | 
 | 800 |  | 
 | 801 | /* point_double sets {x_out,y_out,z_out} = 2*{x,y,z}. | 
 | 802 |  * | 
 | 803 |  * See http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l */ | 
 | 804 | static void point_double(felem x_out, felem y_out, felem z_out, const felem x, | 
 | 805 |                          const felem y, const felem z) { | 
 | 806 |   felem delta, gamma, alpha, beta, tmp, tmp2; | 
 | 807 |  | 
 | 808 |   felem_square(delta, z); | 
 | 809 |   felem_square(gamma, y); | 
 | 810 |   felem_mul(beta, x, gamma); | 
 | 811 |  | 
 | 812 |   felem_sum(tmp, x, delta); | 
 | 813 |   felem_diff(tmp2, x, delta); | 
 | 814 |   felem_mul(alpha, tmp, tmp2); | 
 | 815 |   felem_scalar_3(alpha); | 
 | 816 |  | 
 | 817 |   felem_sum(tmp, y, z); | 
 | 818 |   felem_square(tmp, tmp); | 
 | 819 |   felem_diff(tmp, tmp, gamma); | 
 | 820 |   felem_diff(z_out, tmp, delta); | 
 | 821 |  | 
 | 822 |   felem_scalar_4(beta); | 
 | 823 |   felem_square(x_out, alpha); | 
 | 824 |   felem_diff(x_out, x_out, beta); | 
 | 825 |   felem_diff(x_out, x_out, beta); | 
 | 826 |  | 
 | 827 |   felem_diff(tmp, beta, x_out); | 
 | 828 |   felem_mul(tmp, alpha, tmp); | 
 | 829 |   felem_square(tmp2, gamma); | 
 | 830 |   felem_scalar_8(tmp2); | 
 | 831 |   felem_diff(y_out, tmp, tmp2); | 
 | 832 | } | 
 | 833 |  | 
 | 834 | /* point_add_mixed sets {x_out,y_out,z_out} = {x1,y1,z1} + {x2,y2,1}. | 
 | 835 |  * (i.e. the second point is affine.) | 
 | 836 |  * | 
 | 837 |  * See http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl | 
 | 838 |  * | 
 | 839 |  * Note that this function does not handle P+P, infinity+P nor P+infinity | 
 | 840 |  * correctly. */ | 
 | 841 | static void point_add_mixed(felem x_out, felem y_out, felem z_out, | 
 | 842 |                             const felem x1, const felem y1, const felem z1, | 
 | 843 |                             const felem x2, const felem y2) { | 
 | 844 |   felem z1z1, z1z1z1, s2, u2, h, i, j, r, rr, v, tmp; | 
 | 845 |  | 
 | 846 |   felem_square(z1z1, z1); | 
 | 847 |   felem_sum(tmp, z1, z1); | 
 | 848 |  | 
 | 849 |   felem_mul(u2, x2, z1z1); | 
 | 850 |   felem_mul(z1z1z1, z1, z1z1); | 
 | 851 |   felem_mul(s2, y2, z1z1z1); | 
 | 852 |   felem_diff(h, u2, x1); | 
 | 853 |   felem_sum(i, h, h); | 
 | 854 |   felem_square(i, i); | 
 | 855 |   felem_mul(j, h, i); | 
 | 856 |   felem_diff(r, s2, y1); | 
 | 857 |   felem_sum(r, r, r); | 
 | 858 |   felem_mul(v, x1, i); | 
 | 859 |  | 
 | 860 |   felem_mul(z_out, tmp, h); | 
 | 861 |   felem_square(rr, r); | 
 | 862 |   felem_diff(x_out, rr, j); | 
 | 863 |   felem_diff(x_out, x_out, v); | 
 | 864 |   felem_diff(x_out, x_out, v); | 
 | 865 |  | 
 | 866 |   felem_diff(tmp, v, x_out); | 
 | 867 |   felem_mul(y_out, tmp, r); | 
 | 868 |   felem_mul(tmp, y1, j); | 
 | 869 |   felem_diff(y_out, y_out, tmp); | 
 | 870 |   felem_diff(y_out, y_out, tmp); | 
 | 871 | } | 
 | 872 |  | 
 | 873 | /* point_add sets {x_out,y_out,z_out} = {x1,y1,z1} + {x2,y2,z2}. | 
 | 874 |  * | 
 | 875 |  * See http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl | 
 | 876 |  * | 
 | 877 |  * Note that this function does not handle P+P, infinity+P nor P+infinity | 
 | 878 |  * correctly. */ | 
 | 879 | static void point_add(felem x_out, felem y_out, felem z_out, const felem x1, | 
 | 880 |                       const felem y1, const felem z1, const felem x2, | 
 | 881 |                       const felem y2, const felem z2) { | 
 | 882 |   felem z1z1, z1z1z1, z2z2, z2z2z2, s1, s2, u1, u2, h, i, j, r, rr, v, tmp; | 
 | 883 |  | 
 | 884 |   felem_square(z1z1, z1); | 
 | 885 |   felem_square(z2z2, z2); | 
 | 886 |   felem_mul(u1, x1, z2z2); | 
 | 887 |  | 
 | 888 |   felem_sum(tmp, z1, z2); | 
 | 889 |   felem_square(tmp, tmp); | 
 | 890 |   felem_diff(tmp, tmp, z1z1); | 
 | 891 |   felem_diff(tmp, tmp, z2z2); | 
 | 892 |  | 
 | 893 |   felem_mul(z2z2z2, z2, z2z2); | 
 | 894 |   felem_mul(s1, y1, z2z2z2); | 
 | 895 |  | 
 | 896 |   felem_mul(u2, x2, z1z1); | 
 | 897 |   felem_mul(z1z1z1, z1, z1z1); | 
 | 898 |   felem_mul(s2, y2, z1z1z1); | 
 | 899 |   felem_diff(h, u2, u1); | 
 | 900 |   felem_sum(i, h, h); | 
 | 901 |   felem_square(i, i); | 
 | 902 |   felem_mul(j, h, i); | 
 | 903 |   felem_diff(r, s2, s1); | 
 | 904 |   felem_sum(r, r, r); | 
 | 905 |   felem_mul(v, u1, i); | 
 | 906 |  | 
 | 907 |   felem_mul(z_out, tmp, h); | 
 | 908 |   felem_square(rr, r); | 
 | 909 |   felem_diff(x_out, rr, j); | 
 | 910 |   felem_diff(x_out, x_out, v); | 
 | 911 |   felem_diff(x_out, x_out, v); | 
 | 912 |  | 
 | 913 |   felem_diff(tmp, v, x_out); | 
 | 914 |   felem_mul(y_out, tmp, r); | 
 | 915 |   felem_mul(tmp, s1, j); | 
 | 916 |   felem_diff(y_out, y_out, tmp); | 
 | 917 |   felem_diff(y_out, y_out, tmp); | 
 | 918 | } | 
 | 919 |  | 
 | 920 | /* point_add_or_double_vartime sets {x_out,y_out,z_out} = {x1,y1,z1} + | 
 | 921 |  *                                                        {x2,y2,z2}. | 
 | 922 |  * | 
 | 923 |  * See http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl | 
 | 924 |  * | 
 | 925 |  * This function handles the case where {x1,y1,z1}={x2,y2,z2}. */ | 
 | 926 | static void point_add_or_double_vartime( | 
 | 927 |     felem x_out, felem y_out, felem z_out, const felem x1, const felem y1, | 
 | 928 |     const felem z1, const felem x2, const felem y2, const felem z2) { | 
 | 929 |   felem z1z1, z1z1z1, z2z2, z2z2z2, s1, s2, u1, u2, h, i, j, r, rr, v, tmp; | 
 | 930 |   char x_equal, y_equal; | 
 | 931 |  | 
 | 932 |   felem_square(z1z1, z1); | 
 | 933 |   felem_square(z2z2, z2); | 
 | 934 |   felem_mul(u1, x1, z2z2); | 
 | 935 |  | 
 | 936 |   felem_sum(tmp, z1, z2); | 
 | 937 |   felem_square(tmp, tmp); | 
 | 938 |   felem_diff(tmp, tmp, z1z1); | 
 | 939 |   felem_diff(tmp, tmp, z2z2); | 
 | 940 |  | 
 | 941 |   felem_mul(z2z2z2, z2, z2z2); | 
 | 942 |   felem_mul(s1, y1, z2z2z2); | 
 | 943 |  | 
 | 944 |   felem_mul(u2, x2, z1z1); | 
 | 945 |   felem_mul(z1z1z1, z1, z1z1); | 
 | 946 |   felem_mul(s2, y2, z1z1z1); | 
 | 947 |   felem_diff(h, u2, u1); | 
 | 948 |   x_equal = felem_is_zero_vartime(h); | 
 | 949 |   felem_sum(i, h, h); | 
 | 950 |   felem_square(i, i); | 
 | 951 |   felem_mul(j, h, i); | 
 | 952 |   felem_diff(r, s2, s1); | 
 | 953 |   y_equal = felem_is_zero_vartime(r); | 
 | 954 |   if (x_equal && y_equal) { | 
 | 955 |     point_double(x_out, y_out, z_out, x1, y1, z1); | 
 | 956 |     return; | 
 | 957 |   } | 
 | 958 |   felem_sum(r, r, r); | 
 | 959 |   felem_mul(v, u1, i); | 
 | 960 |  | 
 | 961 |   felem_mul(z_out, tmp, h); | 
 | 962 |   felem_square(rr, r); | 
 | 963 |   felem_diff(x_out, rr, j); | 
 | 964 |   felem_diff(x_out, x_out, v); | 
 | 965 |   felem_diff(x_out, x_out, v); | 
 | 966 |  | 
 | 967 |   felem_diff(tmp, v, x_out); | 
 | 968 |   felem_mul(y_out, tmp, r); | 
 | 969 |   felem_mul(tmp, s1, j); | 
 | 970 |   felem_diff(y_out, y_out, tmp); | 
 | 971 |   felem_diff(y_out, y_out, tmp); | 
 | 972 | } | 
 | 973 |  | 
 | 974 | /* copy_conditional sets out=in if mask = 0xffffffff in constant time. | 
 | 975 |  * | 
 | 976 |  * On entry: mask is either 0 or 0xffffffff. */ | 
 | 977 | static void copy_conditional(felem out, const felem in, limb mask) { | 
 | 978 |   int i; | 
 | 979 |  | 
 | 980 |   for (i = 0; i < NLIMBS; i++) { | 
 | 981 |     const limb tmp = mask & (in[i] ^ out[i]); | 
 | 982 |     out[i] ^= tmp; | 
 | 983 |   } | 
 | 984 | } | 
 | 985 |  | 
 | 986 | /* select_affine_point sets {out_x,out_y} to the index'th entry of table. | 
 | 987 |  * On entry: index < 16, table[0] must be zero. */ | 
 | 988 | static void select_affine_point(felem out_x, felem out_y, const limb* table, | 
 | 989 |                                 limb index) { | 
 | 990 |   limb i, j; | 
 | 991 |  | 
 | 992 |   memset(out_x, 0, sizeof(felem)); | 
 | 993 |   memset(out_y, 0, sizeof(felem)); | 
 | 994 |  | 
 | 995 |   for (i = 1; i < 16; i++) { | 
 | 996 |     limb mask = i ^ index; | 
 | 997 |     mask |= mask >> 2; | 
 | 998 |     mask |= mask >> 1; | 
 | 999 |     mask &= 1; | 
 | 1000 |     mask--; | 
 | 1001 |     for (j = 0; j < NLIMBS; j++, table++) { | 
 | 1002 |       out_x[j] |= *table & mask; | 
 | 1003 |     } | 
 | 1004 |     for (j = 0; j < NLIMBS; j++, table++) { | 
 | 1005 |       out_y[j] |= *table & mask; | 
 | 1006 |     } | 
 | 1007 |   } | 
 | 1008 | } | 
 | 1009 |  | 
 | 1010 | /* select_jacobian_point sets {out_x,out_y,out_z} to the index'th entry of | 
 | 1011 |  * table. On entry: index < 16, table[0] must be zero. */ | 
 | 1012 | static void select_jacobian_point(felem out_x, felem out_y, felem out_z, | 
 | 1013 |                                   const limb* table, limb index) { | 
 | 1014 |   limb i, j; | 
 | 1015 |  | 
 | 1016 |   memset(out_x, 0, sizeof(felem)); | 
 | 1017 |   memset(out_y, 0, sizeof(felem)); | 
 | 1018 |   memset(out_z, 0, sizeof(felem)); | 
 | 1019 |  | 
 | 1020 |   /* The implicit value at index 0 is all zero. We don't need to perform that | 
 | 1021 |    * iteration of the loop because we already set out_* to zero. */ | 
 | 1022 |   table += 3 * NLIMBS; | 
 | 1023 |  | 
 | 1024 |   // Hit all entries to obscure cache profiling. | 
 | 1025 |   for (i = 1; i < 16; i++) { | 
 | 1026 |     limb mask = i ^ index; | 
 | 1027 |     mask |= mask >> 2; | 
 | 1028 |     mask |= mask >> 1; | 
 | 1029 |     mask &= 1; | 
 | 1030 |     mask--; | 
 | 1031 |     for (j = 0; j < NLIMBS; j++, table++) { | 
 | 1032 |       out_x[j] |= *table & mask; | 
 | 1033 |     } | 
 | 1034 |     for (j = 0; j < NLIMBS; j++, table++) { | 
 | 1035 |       out_y[j] |= *table & mask; | 
 | 1036 |     } | 
 | 1037 |     for (j = 0; j < NLIMBS; j++, table++) { | 
 | 1038 |       out_z[j] |= *table & mask; | 
 | 1039 |     } | 
 | 1040 |   } | 
 | 1041 | } | 
 | 1042 |  | 
 | 1043 | /* scalar_base_mult sets {nx,ny,nz} = scalar*G where scalar is a little-endian | 
 | 1044 |  * number. Note that the value of scalar must be less than the order of the | 
 | 1045 |  * group. */ | 
 | 1046 | static void scalar_base_mult(felem nx, felem ny, felem nz, | 
 | 1047 |                              const p256_int* scalar) { | 
 | 1048 |   int i, j; | 
 | 1049 |   limb n_is_infinity_mask = -1, p_is_noninfinite_mask, mask; | 
 | 1050 |   u32 table_offset; | 
 | 1051 |  | 
 | 1052 |   felem px, py; | 
 | 1053 |   felem tx, ty, tz; | 
 | 1054 |  | 
 | 1055 |   memset(nx, 0, sizeof(felem)); | 
 | 1056 |   memset(ny, 0, sizeof(felem)); | 
 | 1057 |   memset(nz, 0, sizeof(felem)); | 
 | 1058 |  | 
 | 1059 |   /* The loop adds bits at positions 0, 64, 128 and 192, followed by | 
 | 1060 |    * positions 32,96,160 and 224 and does this 32 times. */ | 
 | 1061 |   for (i = 0; i < 32; i++) { | 
 | 1062 |     if (i) { | 
 | 1063 |       point_double(nx, ny, nz, nx, ny, nz); | 
 | 1064 |     } | 
 | 1065 |     table_offset = 0; | 
 | 1066 |     for (j = 0; j <= 32; j += 32) { | 
 | 1067 |       char bit0 = p256_get_bit(scalar, 31 - i + j); | 
 | 1068 |       char bit1 = p256_get_bit(scalar, 95 - i + j); | 
 | 1069 |       char bit2 = p256_get_bit(scalar, 159 - i + j); | 
 | 1070 |       char bit3 = p256_get_bit(scalar, 223 - i + j); | 
 | 1071 |       limb index = bit0 | (bit1 << 1) | (bit2 << 2) | (bit3 << 3); | 
 | 1072 |  | 
 | 1073 |       select_affine_point(px, py, kPrecomputed + table_offset, index); | 
 | 1074 |       table_offset += 30 * NLIMBS; | 
 | 1075 |  | 
 | 1076 |       /* Since scalar is less than the order of the group, we know that | 
 | 1077 |        * {nx,ny,nz} != {px,py,1}, unless both are zero, which we handle | 
 | 1078 |        * below. */ | 
 | 1079 |       point_add_mixed(tx, ty, tz, nx, ny, nz, px, py); | 
 | 1080 |       /* The result of point_add_mixed is incorrect if {nx,ny,nz} is zero | 
 | 1081 |        * (a.k.a.  the point at infinity). We handle that situation by | 
 | 1082 |        * copying the point from the table. */ | 
 | 1083 |       copy_conditional(nx, px, n_is_infinity_mask); | 
 | 1084 |       copy_conditional(ny, py, n_is_infinity_mask); | 
 | 1085 |       copy_conditional(nz, kOne, n_is_infinity_mask); | 
 | 1086 |  | 
 | 1087 |       /* Equally, the result is also wrong if the point from the table is | 
 | 1088 |        * zero, which happens when the index is zero. We handle that by | 
 | 1089 |        * only copying from {tx,ty,tz} to {nx,ny,nz} if index != 0. */ | 
 | 1090 |       p_is_noninfinite_mask = NON_ZERO_TO_ALL_ONES(index); | 
 | 1091 |       mask = p_is_noninfinite_mask & ~n_is_infinity_mask; | 
 | 1092 |       copy_conditional(nx, tx, mask); | 
 | 1093 |       copy_conditional(ny, ty, mask); | 
 | 1094 |       copy_conditional(nz, tz, mask); | 
 | 1095 |       /* If p was not zero, then n is now non-zero. */ | 
 | 1096 |       n_is_infinity_mask &= ~p_is_noninfinite_mask; | 
 | 1097 |     } | 
 | 1098 |   } | 
 | 1099 | } | 
 | 1100 |  | 
 | 1101 | /* point_to_affine converts a Jacobian point to an affine point. If the input | 
 | 1102 |  * is the point at infinity then it returns (0, 0) in constant time. */ | 
 | 1103 | static void point_to_affine(felem x_out, felem y_out, const felem nx, | 
 | 1104 |                             const felem ny, const felem nz) { | 
 | 1105 |   felem z_inv, z_inv_sq; | 
 | 1106 |   felem_inv(z_inv, nz); | 
 | 1107 |   felem_square(z_inv_sq, z_inv); | 
 | 1108 |   felem_mul(x_out, nx, z_inv_sq); | 
 | 1109 |   felem_mul(z_inv, z_inv, z_inv_sq); | 
 | 1110 |   felem_mul(y_out, ny, z_inv); | 
 | 1111 | } | 
 | 1112 |  | 
 | 1113 | /* scalar_base_mult sets {nx,ny,nz} = scalar*{x,y}. */ | 
 | 1114 | static void scalar_mult(felem nx, felem ny, felem nz, const felem x, | 
 | 1115 |                         const felem y, const p256_int* scalar) { | 
 | 1116 |   int i; | 
 | 1117 |   felem px, py, pz, tx, ty, tz; | 
 | 1118 |   felem precomp[16][3]; | 
 | 1119 |   limb n_is_infinity_mask, index, p_is_noninfinite_mask, mask; | 
 | 1120 |  | 
 | 1121 |   /* We precompute 0,1,2,... times {x,y}. */ | 
 | 1122 |   memset(precomp, 0, sizeof(felem) * 3); | 
 | 1123 |   memcpy(&precomp[1][0], x, sizeof(felem)); | 
 | 1124 |   memcpy(&precomp[1][1], y, sizeof(felem)); | 
 | 1125 |   memcpy(&precomp[1][2], kOne, sizeof(felem)); | 
 | 1126 |  | 
 | 1127 |   for (i = 2; i < 16; i += 2) { | 
 | 1128 |     point_double(precomp[i][0], precomp[i][1], precomp[i][2], | 
 | 1129 |                  precomp[i / 2][0], precomp[i / 2][1], precomp[i / 2][2]); | 
 | 1130 |  | 
 | 1131 |     point_add_mixed(precomp[i + 1][0], precomp[i + 1][1], precomp[i + 1][2], | 
 | 1132 |                     precomp[i][0], precomp[i][1], precomp[i][2], x, y); | 
 | 1133 |   } | 
 | 1134 |  | 
 | 1135 |   memset(nx, 0, sizeof(felem)); | 
 | 1136 |   memset(ny, 0, sizeof(felem)); | 
 | 1137 |   memset(nz, 0, sizeof(felem)); | 
 | 1138 |   n_is_infinity_mask = -1; | 
 | 1139 |  | 
 | 1140 |   /* We add in a window of four bits each iteration and do this 64 times. */ | 
 | 1141 |   for (i = 0; i < 256; i += 4) { | 
 | 1142 |     if (i) { | 
 | 1143 |       point_double(nx, ny, nz, nx, ny, nz); | 
 | 1144 |       point_double(nx, ny, nz, nx, ny, nz); | 
 | 1145 |       point_double(nx, ny, nz, nx, ny, nz); | 
 | 1146 |       point_double(nx, ny, nz, nx, ny, nz); | 
 | 1147 |     } | 
 | 1148 |  | 
 | 1149 |     index = (p256_get_bit(scalar, 255 - i - 0) << 3) | | 
 | 1150 |             (p256_get_bit(scalar, 255 - i - 1) << 2) | | 
 | 1151 |             (p256_get_bit(scalar, 255 - i - 2) << 1) | | 
 | 1152 |             p256_get_bit(scalar, 255 - i - 3); | 
 | 1153 |  | 
 | 1154 |     /* See the comments in scalar_base_mult about handling infinities. */ | 
 | 1155 |     select_jacobian_point(px, py, pz, precomp[0][0], index); | 
 | 1156 |     point_add(tx, ty, tz, nx, ny, nz, px, py, pz); | 
 | 1157 |     copy_conditional(nx, px, n_is_infinity_mask); | 
 | 1158 |     copy_conditional(ny, py, n_is_infinity_mask); | 
 | 1159 |     copy_conditional(nz, pz, n_is_infinity_mask); | 
 | 1160 |  | 
 | 1161 |     p_is_noninfinite_mask = NON_ZERO_TO_ALL_ONES(index); | 
 | 1162 |     mask = p_is_noninfinite_mask & ~n_is_infinity_mask; | 
 | 1163 |  | 
 | 1164 |     copy_conditional(nx, tx, mask); | 
 | 1165 |     copy_conditional(ny, ty, mask); | 
 | 1166 |     copy_conditional(nz, tz, mask); | 
 | 1167 |     n_is_infinity_mask &= ~p_is_noninfinite_mask; | 
 | 1168 |   } | 
 | 1169 | } | 
 | 1170 |  | 
 | 1171 | #define kRDigits {2, 0, 0, 0xfffffffe, 0xffffffff, 0xffffffff, 0xfffffffd, 1} // 2^257 mod p256.p | 
 | 1172 |  | 
 | 1173 | #define kRInvDigits {0x80000000, 1, 0xffffffff, 0, 0x80000001, 0xfffffffe, 1, 0x7fffffff}  // 1 / 2^257 mod p256.p | 
 | 1174 |  | 
 | 1175 | static const p256_int kR = { kRDigits }; | 
 | 1176 | static const p256_int kRInv = { kRInvDigits }; | 
 | 1177 |  | 
 | 1178 | /* to_montgomery sets out = R*in. */ | 
 | 1179 | static void to_montgomery(felem out, const p256_int* in) { | 
 | 1180 |   p256_int in_shifted; | 
 | 1181 |   int i; | 
 | 1182 |  | 
 | 1183 |   p256_init(&in_shifted); | 
 | 1184 |   p256_modmul(&SECP256r1_p, in, 0, &kR, &in_shifted); | 
 | 1185 |  | 
 | 1186 |   for (i = 0; i < NLIMBS; i++) { | 
 | 1187 |     if ((i & 1) == 0) { | 
 | 1188 |       out[i] = P256_DIGIT(&in_shifted, 0) & kBottom29Bits; | 
 | 1189 |       p256_shr(&in_shifted, 29, &in_shifted); | 
 | 1190 |     } else { | 
 | 1191 |       out[i] = P256_DIGIT(&in_shifted, 0) & kBottom28Bits; | 
 | 1192 |       p256_shr(&in_shifted, 28, &in_shifted); | 
 | 1193 |     } | 
 | 1194 |   } | 
 | 1195 |  | 
 | 1196 |   p256_clear(&in_shifted); | 
 | 1197 | } | 
 | 1198 |  | 
 | 1199 | /* from_montgomery sets out=in/R. */ | 
 | 1200 | static void from_montgomery(p256_int* out, const felem in) { | 
 | 1201 |   p256_int result, tmp; | 
 | 1202 |   int i, top; | 
 | 1203 |  | 
 | 1204 |   p256_init(&result); | 
 | 1205 |   p256_init(&tmp); | 
 | 1206 |  | 
 | 1207 |   p256_add_d(&tmp, in[NLIMBS - 1], &result); | 
 | 1208 |   for (i = NLIMBS - 2; i >= 0; i--) { | 
 | 1209 |     if ((i & 1) == 0) { | 
 | 1210 |       top = p256_shl(&result, 29, &tmp); | 
 | 1211 |     } else { | 
 | 1212 |       top = p256_shl(&result, 28, &tmp); | 
 | 1213 |     } | 
 | 1214 |     top |= p256_add_d(&tmp, in[i], &result); | 
 | 1215 |   } | 
 | 1216 |  | 
 | 1217 |   p256_modmul(&SECP256r1_p, &kRInv, top, &result, out); | 
 | 1218 |  | 
 | 1219 |   p256_clear(&result); | 
 | 1220 |   p256_clear(&tmp); | 
 | 1221 | } | 
 | 1222 |  | 
 | 1223 | /* p256_base_point_mul sets {out_x,out_y} = nG, where n is < the | 
 | 1224 |  * order of the group. */ | 
 | 1225 | void p256_base_point_mul(const p256_int* n, p256_int* out_x, p256_int* out_y) { | 
 | 1226 |   felem x, y, z; | 
 | 1227 |  | 
 | 1228 |   scalar_base_mult(x, y, z, n); | 
 | 1229 |  | 
 | 1230 |   { | 
 | 1231 |     felem x_affine, y_affine; | 
 | 1232 |  | 
 | 1233 |     point_to_affine(x_affine, y_affine, x, y, z); | 
 | 1234 |     from_montgomery(out_x, x_affine); | 
 | 1235 |     from_montgomery(out_y, y_affine); | 
 | 1236 |   } | 
 | 1237 | } | 
 | 1238 |  | 
 | 1239 | /* p256_points_mul_vartime sets {out_x,out_y} = n1*G + n2*{in_x,in_y}, where | 
 | 1240 |  * n1 and n2 are < the order of the group. | 
 | 1241 |  * | 
 | 1242 |  * As indicated by the name, this function operates in variable time. This | 
 | 1243 |  * is safe because it's used for signature validation which doesn't deal | 
 | 1244 |  * with secrets. */ | 
 | 1245 | void p256_points_mul_vartime( | 
 | 1246 |     const p256_int* n1, const p256_int* n2, const p256_int* in_x, | 
 | 1247 |     const p256_int* in_y, p256_int* out_x, p256_int* out_y) { | 
 | 1248 |   felem x1, y1, z1, x2, y2, z2, px, py; | 
 | 1249 |  | 
 | 1250 |   /* If both scalars are zero, then the result is the point at infinity. */ | 
 | 1251 |   if (p256_is_zero(n1) != 0 && p256_is_zero(n2) != 0) { | 
 | 1252 |     p256_clear(out_x); | 
 | 1253 |     p256_clear(out_y); | 
 | 1254 |     return; | 
 | 1255 |   } | 
 | 1256 |  | 
 | 1257 |   to_montgomery(px, in_x); | 
 | 1258 |   to_montgomery(py, in_y); | 
 | 1259 |   scalar_base_mult(x1, y1, z1, n1); | 
 | 1260 |   scalar_mult(x2, y2, z2, px, py, n2); | 
 | 1261 |  | 
 | 1262 |   if (p256_is_zero(n2) != 0) { | 
 | 1263 |     /* If n2 == 0, then {x2,y2,z2} is zero and the result is just | 
 | 1264 |          * {x1,y1,z1}. */ | 
 | 1265 |   } else if (p256_is_zero(n1) != 0) { | 
 | 1266 |     /* If n1 == 0, then {x1,y1,z1} is zero and the result is just | 
 | 1267 |          * {x2,y2,z2}. */ | 
 | 1268 |     memcpy(x1, x2, sizeof(x2)); | 
 | 1269 |     memcpy(y1, y2, sizeof(y2)); | 
 | 1270 |     memcpy(z1, z2, sizeof(z2)); | 
 | 1271 |   } else { | 
 | 1272 |     /* This function handles the case where {x1,y1,z1} == {x2,y2,z2}. */ | 
 | 1273 |     point_add_or_double_vartime(x1, y1, z1, x1, y1, z1, x2, y2, z2); | 
 | 1274 |   } | 
 | 1275 |  | 
 | 1276 |   point_to_affine(px, py, x1, y1, z1); | 
 | 1277 |   from_montgomery(out_x, px); | 
 | 1278 |   from_montgomery(out_y, py); | 
 | 1279 | } |