| Kenny Root | db0850c | 2013-10-08 12:52:07 -0700 | [diff] [blame] | 1 | /* | 
|  | 2 | * Copyright 2013 The Android Open Source Project | 
|  | 3 | * | 
|  | 4 | * Redistribution and use in source and binary forms, with or without | 
|  | 5 | * modification, are permitted provided that the following conditions are met: | 
|  | 6 | *     * Redistributions of source code must retain the above copyright | 
|  | 7 | *       notice, this list of conditions and the following disclaimer. | 
|  | 8 | *     * Redistributions in binary form must reproduce the above copyright | 
|  | 9 | *       notice, this list of conditions and the following disclaimer in the | 
|  | 10 | *       documentation and/or other materials provided with the distribution. | 
|  | 11 | *     * Neither the name of Google Inc. nor the names of its contributors may | 
|  | 12 | *       be used to endorse or promote products derived from this software | 
|  | 13 | *       without specific prior written permission. | 
|  | 14 | * | 
|  | 15 | * THIS SOFTWARE IS PROVIDED BY Google Inc. ``AS IS'' AND ANY EXPRESS OR | 
|  | 16 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF | 
|  | 17 | * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO | 
|  | 18 | * EVENT SHALL Google Inc. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
|  | 19 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | 
|  | 20 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; | 
|  | 21 | * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, | 
|  | 22 | * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR | 
|  | 23 | * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF | 
|  | 24 | * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  | 25 | */ | 
|  | 26 |  | 
|  | 27 | // This is an implementation of the P256 elliptic curve group. It's written to | 
|  | 28 | // be portable 32-bit, although it's still constant-time. | 
|  | 29 | // | 
|  | 30 | // WARNING: Implementing these functions in a constant-time manner is far from | 
|  | 31 | //          obvious. Be careful when touching this code. | 
|  | 32 | // | 
|  | 33 | // See http://www.imperialviolet.org/2010/12/04/ecc.html ([1]) for background. | 
|  | 34 |  | 
|  | 35 | #include <assert.h> | 
|  | 36 | #include <stdint.h> | 
|  | 37 | #include <string.h> | 
|  | 38 | #include <stdio.h> | 
|  | 39 |  | 
|  | 40 | #include "mincrypt/p256.h" | 
|  | 41 |  | 
|  | 42 | const p256_int SECP256r1_n =  // curve order | 
|  | 43 | {{0xfc632551, 0xf3b9cac2, 0xa7179e84, 0xbce6faad, -1, -1, 0, -1}}; | 
|  | 44 |  | 
|  | 45 | const p256_int SECP256r1_p =  // curve field size | 
|  | 46 | {{-1, -1, -1, 0, 0, 0, 1, -1 }}; | 
|  | 47 |  | 
|  | 48 | const p256_int SECP256r1_b =  // curve b | 
|  | 49 | {{0x27d2604b, 0x3bce3c3e, 0xcc53b0f6, 0x651d06b0, | 
|  | 50 | 0x769886bc, 0xb3ebbd55, 0xaa3a93e7, 0x5ac635d8}}; | 
|  | 51 |  | 
| Kenny Root | db0850c | 2013-10-08 12:52:07 -0700 | [diff] [blame] | 52 | void p256_init(p256_int* a) { | 
|  | 53 | memset(a, 0, sizeof(*a)); | 
|  | 54 | } | 
|  | 55 |  | 
|  | 56 | void p256_clear(p256_int* a) { p256_init(a); } | 
|  | 57 |  | 
|  | 58 | int p256_get_bit(const p256_int* scalar, int bit) { | 
|  | 59 | return (P256_DIGIT(scalar, bit / P256_BITSPERDIGIT) | 
|  | 60 | >> (bit & (P256_BITSPERDIGIT - 1))) & 1; | 
|  | 61 | } | 
|  | 62 |  | 
|  | 63 | int p256_is_zero(const p256_int* a) { | 
|  | 64 | int i, result = 0; | 
|  | 65 | for (i = 0; i < P256_NDIGITS; ++i) result |= P256_DIGIT(a, i); | 
|  | 66 | return !result; | 
|  | 67 | } | 
|  | 68 |  | 
|  | 69 | // top, c[] += a[] * b | 
|  | 70 | // Returns new top | 
|  | 71 | static p256_digit mulAdd(const p256_int* a, | 
|  | 72 | p256_digit b, | 
|  | 73 | p256_digit top, | 
|  | 74 | p256_digit* c) { | 
|  | 75 | int i; | 
|  | 76 | p256_ddigit carry = 0; | 
|  | 77 |  | 
|  | 78 | for (i = 0; i < P256_NDIGITS; ++i) { | 
|  | 79 | carry += *c; | 
|  | 80 | carry += (p256_ddigit)P256_DIGIT(a, i) * b; | 
|  | 81 | *c++ = (p256_digit)carry; | 
|  | 82 | carry >>= P256_BITSPERDIGIT; | 
|  | 83 | } | 
|  | 84 | return top + (p256_digit)carry; | 
|  | 85 | } | 
|  | 86 |  | 
|  | 87 | // top, c[] -= top_a, a[] | 
|  | 88 | static p256_digit subTop(p256_digit top_a, | 
|  | 89 | const p256_digit* a, | 
|  | 90 | p256_digit top_c, | 
|  | 91 | p256_digit* c) { | 
|  | 92 | int i; | 
|  | 93 | p256_sddigit borrow = 0; | 
|  | 94 |  | 
|  | 95 | for (i = 0; i < P256_NDIGITS; ++i) { | 
|  | 96 | borrow += *c; | 
|  | 97 | borrow -= *a++; | 
|  | 98 | *c++ = (p256_digit)borrow; | 
|  | 99 | borrow >>= P256_BITSPERDIGIT; | 
|  | 100 | } | 
|  | 101 | borrow += top_c; | 
|  | 102 | borrow -= top_a; | 
|  | 103 | top_c = (p256_digit)borrow; | 
|  | 104 | assert((borrow >> P256_BITSPERDIGIT) == 0); | 
|  | 105 | return top_c; | 
|  | 106 | } | 
|  | 107 |  | 
|  | 108 | // top, c[] -= MOD[] & mask (0 or -1) | 
|  | 109 | // returns new top. | 
|  | 110 | static p256_digit subM(const p256_int* MOD, | 
|  | 111 | p256_digit top, | 
|  | 112 | p256_digit* c, | 
|  | 113 | p256_digit mask) { | 
|  | 114 | int i; | 
|  | 115 | p256_sddigit borrow = 0; | 
|  | 116 | for (i = 0; i < P256_NDIGITS; ++i) { | 
|  | 117 | borrow += *c; | 
|  | 118 | borrow -= P256_DIGIT(MOD, i) & mask; | 
|  | 119 | *c++ = (p256_digit)borrow; | 
|  | 120 | borrow >>= P256_BITSPERDIGIT; | 
|  | 121 | } | 
|  | 122 | return top + (p256_digit)borrow; | 
|  | 123 | } | 
|  | 124 |  | 
|  | 125 | // top, c[] += MOD[] & mask (0 or -1) | 
|  | 126 | // returns new top. | 
|  | 127 | static p256_digit addM(const p256_int* MOD, | 
|  | 128 | p256_digit top, | 
|  | 129 | p256_digit* c, | 
|  | 130 | p256_digit mask) { | 
|  | 131 | int i; | 
|  | 132 | p256_ddigit carry = 0; | 
|  | 133 | for (i = 0; i < P256_NDIGITS; ++i) { | 
|  | 134 | carry += *c; | 
|  | 135 | carry += P256_DIGIT(MOD, i) & mask; | 
|  | 136 | *c++ = (p256_digit)carry; | 
|  | 137 | carry >>= P256_BITSPERDIGIT; | 
|  | 138 | } | 
|  | 139 | return top + (p256_digit)carry; | 
|  | 140 | } | 
|  | 141 |  | 
|  | 142 | // c = a * b mod MOD. c can be a and/or b. | 
|  | 143 | void p256_modmul(const p256_int* MOD, | 
|  | 144 | const p256_int* a, | 
|  | 145 | const p256_digit top_b, | 
|  | 146 | const p256_int* b, | 
|  | 147 | p256_int* c) { | 
|  | 148 | p256_digit tmp[P256_NDIGITS * 2 + 1] = { 0 }; | 
|  | 149 | p256_digit top = 0; | 
|  | 150 | int i; | 
|  | 151 |  | 
|  | 152 | // Multiply/add into tmp. | 
|  | 153 | for (i = 0; i < P256_NDIGITS; ++i) { | 
|  | 154 | if (i) tmp[i + P256_NDIGITS - 1] = top; | 
|  | 155 | top = mulAdd(a, P256_DIGIT(b, i), 0, tmp + i); | 
|  | 156 | } | 
|  | 157 |  | 
|  | 158 | // Multiply/add top digit | 
|  | 159 | tmp[i + P256_NDIGITS - 1] = top; | 
|  | 160 | top = mulAdd(a, top_b, 0, tmp + i); | 
|  | 161 |  | 
|  | 162 | // Reduce tmp, digit by digit. | 
|  | 163 | for (; i >= 0; --i) { | 
|  | 164 | p256_digit reducer[P256_NDIGITS] = { 0 }; | 
|  | 165 | p256_digit top_reducer; | 
|  | 166 |  | 
|  | 167 | // top can be any value at this point. | 
|  | 168 | // Guestimate reducer as top * MOD, since msw of MOD is -1. | 
|  | 169 | top_reducer = mulAdd(MOD, top, 0, reducer); | 
|  | 170 |  | 
|  | 171 | // Subtract reducer from top | tmp. | 
|  | 172 | top = subTop(top_reducer, reducer, top, tmp + i); | 
|  | 173 |  | 
|  | 174 | // top is now either 0 or 1. Make it 0, fixed-timing. | 
|  | 175 | assert(top <= 1); | 
|  | 176 |  | 
|  | 177 | top = subM(MOD, top, tmp + i, ~(top - 1)); | 
|  | 178 |  | 
|  | 179 | assert(top == 0); | 
|  | 180 |  | 
|  | 181 | // We have now reduced the top digit off tmp. Fetch new top digit. | 
|  | 182 | top = tmp[i + P256_NDIGITS - 1]; | 
|  | 183 | } | 
|  | 184 |  | 
|  | 185 | // tmp might still be larger than MOD, yet same bit length. | 
|  | 186 | // Make sure it is less, fixed-timing. | 
|  | 187 | addM(MOD, 0, tmp, subM(MOD, 0, tmp, -1)); | 
|  | 188 |  | 
|  | 189 | memcpy(c, tmp, P256_NBYTES); | 
|  | 190 | } | 
|  | 191 | int p256_is_odd(const p256_int* a) { return P256_DIGIT(a, 0) & 1; } | 
|  | 192 | int p256_is_even(const p256_int* a) { return !(P256_DIGIT(a, 0) & 1); } | 
|  | 193 |  | 
|  | 194 | p256_digit p256_shl(const p256_int* a, int n, p256_int* b) { | 
|  | 195 | int i; | 
|  | 196 | p256_digit top = P256_DIGIT(a, P256_NDIGITS - 1); | 
|  | 197 |  | 
|  | 198 | n %= P256_BITSPERDIGIT; | 
|  | 199 | for (i = P256_NDIGITS - 1; i > 0; --i) { | 
|  | 200 | p256_digit accu = (P256_DIGIT(a, i) << n); | 
|  | 201 | accu |= (P256_DIGIT(a, i - 1) >> (P256_BITSPERDIGIT - n)); | 
|  | 202 | P256_DIGIT(b, i) = accu; | 
|  | 203 | } | 
|  | 204 | P256_DIGIT(b, i) = (P256_DIGIT(a, i) << n); | 
|  | 205 |  | 
|  | 206 | top = (p256_digit)((((p256_ddigit)top) << n) >> P256_BITSPERDIGIT); | 
|  | 207 |  | 
|  | 208 | return top; | 
|  | 209 | } | 
|  | 210 |  | 
|  | 211 | void p256_shr(const p256_int* a, int n, p256_int* b) { | 
|  | 212 | int i; | 
|  | 213 |  | 
|  | 214 | n %= P256_BITSPERDIGIT; | 
|  | 215 | for (i = 0; i < P256_NDIGITS - 1; ++i) { | 
|  | 216 | p256_digit accu = (P256_DIGIT(a, i) >> n); | 
|  | 217 | accu |= (P256_DIGIT(a, i + 1) << (P256_BITSPERDIGIT - n)); | 
|  | 218 | P256_DIGIT(b, i) = accu; | 
|  | 219 | } | 
|  | 220 | P256_DIGIT(b, i) = (P256_DIGIT(a, i) >> n); | 
|  | 221 | } | 
|  | 222 |  | 
|  | 223 | static void p256_shr1(const p256_int* a, int highbit, p256_int* b) { | 
|  | 224 | int i; | 
|  | 225 |  | 
|  | 226 | for (i = 0; i < P256_NDIGITS - 1; ++i) { | 
|  | 227 | p256_digit accu = (P256_DIGIT(a, i) >> 1); | 
|  | 228 | accu |= (P256_DIGIT(a, i + 1) << (P256_BITSPERDIGIT - 1)); | 
|  | 229 | P256_DIGIT(b, i) = accu; | 
|  | 230 | } | 
|  | 231 | P256_DIGIT(b, i) = (P256_DIGIT(a, i) >> 1) | | 
|  | 232 | (highbit << (P256_BITSPERDIGIT - 1)); | 
|  | 233 | } | 
|  | 234 |  | 
|  | 235 | // Return -1, 0, 1 for a < b, a == b or a > b respectively. | 
|  | 236 | int p256_cmp(const p256_int* a, const p256_int* b) { | 
|  | 237 | int i; | 
|  | 238 | p256_sddigit borrow = 0; | 
|  | 239 | p256_digit notzero = 0; | 
|  | 240 |  | 
|  | 241 | for (i = 0; i < P256_NDIGITS; ++i) { | 
|  | 242 | borrow += (p256_sddigit)P256_DIGIT(a, i) - P256_DIGIT(b, i); | 
|  | 243 | // Track whether any result digit is ever not zero. | 
|  | 244 | // Relies on !!(non-zero) evaluating to 1, e.g., !!(-1) evaluating to 1. | 
|  | 245 | notzero |= !!((p256_digit)borrow); | 
|  | 246 | borrow >>= P256_BITSPERDIGIT; | 
|  | 247 | } | 
|  | 248 | return (int)borrow | notzero; | 
|  | 249 | } | 
|  | 250 |  | 
|  | 251 | // c = a - b. Returns borrow: 0 or -1. | 
|  | 252 | int p256_sub(const p256_int* a, const p256_int* b, p256_int* c) { | 
|  | 253 | int i; | 
|  | 254 | p256_sddigit borrow = 0; | 
|  | 255 |  | 
|  | 256 | for (i = 0; i < P256_NDIGITS; ++i) { | 
|  | 257 | borrow += (p256_sddigit)P256_DIGIT(a, i) - P256_DIGIT(b, i); | 
|  | 258 | if (c) P256_DIGIT(c, i) = (p256_digit)borrow; | 
|  | 259 | borrow >>= P256_BITSPERDIGIT; | 
|  | 260 | } | 
|  | 261 | return (int)borrow; | 
|  | 262 | } | 
|  | 263 |  | 
|  | 264 | // c = a + b. Returns carry: 0 or 1. | 
|  | 265 | int p256_add(const p256_int* a, const p256_int* b, p256_int* c) { | 
|  | 266 | int i; | 
|  | 267 | p256_ddigit carry = 0; | 
|  | 268 |  | 
|  | 269 | for (i = 0; i < P256_NDIGITS; ++i) { | 
|  | 270 | carry += (p256_ddigit)P256_DIGIT(a, i) + P256_DIGIT(b, i); | 
|  | 271 | if (c) P256_DIGIT(c, i) = (p256_digit)carry; | 
|  | 272 | carry >>= P256_BITSPERDIGIT; | 
|  | 273 | } | 
|  | 274 | return (int)carry; | 
|  | 275 | } | 
|  | 276 |  | 
|  | 277 | // b = a + d. Returns carry, 0 or 1. | 
|  | 278 | int p256_add_d(const p256_int* a, p256_digit d, p256_int* b) { | 
|  | 279 | int i; | 
|  | 280 | p256_ddigit carry = d; | 
|  | 281 |  | 
|  | 282 | for (i = 0; i < P256_NDIGITS; ++i) { | 
|  | 283 | carry += (p256_ddigit)P256_DIGIT(a, i); | 
|  | 284 | if (b) P256_DIGIT(b, i) = (p256_digit)carry; | 
|  | 285 | carry >>= P256_BITSPERDIGIT; | 
|  | 286 | } | 
|  | 287 | return (int)carry; | 
|  | 288 | } | 
|  | 289 |  | 
|  | 290 | // b = 1/a mod MOD, binary euclid. | 
|  | 291 | void p256_modinv_vartime(const p256_int* MOD, | 
|  | 292 | const p256_int* a, | 
|  | 293 | p256_int* b) { | 
|  | 294 | p256_int R = P256_ZERO; | 
|  | 295 | p256_int S = P256_ONE; | 
|  | 296 | p256_int U = *MOD; | 
|  | 297 | p256_int V = *a; | 
|  | 298 |  | 
|  | 299 | for (;;) { | 
|  | 300 | if (p256_is_even(&U)) { | 
|  | 301 | p256_shr1(&U, 0, &U); | 
|  | 302 | if (p256_is_even(&R)) { | 
|  | 303 | p256_shr1(&R, 0, &R); | 
|  | 304 | } else { | 
|  | 305 | // R = (R+MOD)/2 | 
|  | 306 | p256_shr1(&R, p256_add(&R, MOD, &R), &R); | 
|  | 307 | } | 
|  | 308 | } else if (p256_is_even(&V)) { | 
|  | 309 | p256_shr1(&V, 0, &V); | 
|  | 310 | if (p256_is_even(&S)) { | 
|  | 311 | p256_shr1(&S, 0, &S); | 
|  | 312 | } else { | 
|  | 313 | // S = (S+MOD)/2 | 
|  | 314 | p256_shr1(&S, p256_add(&S, MOD, &S) , &S); | 
|  | 315 | } | 
|  | 316 | } else {  // U,V both odd. | 
|  | 317 | if (!p256_sub(&V, &U, NULL)) { | 
|  | 318 | p256_sub(&V, &U, &V); | 
|  | 319 | if (p256_sub(&S, &R, &S)) p256_add(&S, MOD, &S); | 
|  | 320 | if (p256_is_zero(&V)) break;  // done. | 
|  | 321 | } else { | 
|  | 322 | p256_sub(&U, &V, &U); | 
|  | 323 | if (p256_sub(&R, &S, &R)) p256_add(&R, MOD, &R); | 
|  | 324 | } | 
|  | 325 | } | 
|  | 326 | } | 
|  | 327 |  | 
|  | 328 | p256_mod(MOD, &R, b); | 
|  | 329 | } | 
|  | 330 |  | 
|  | 331 | void p256_mod(const p256_int* MOD, | 
|  | 332 | const p256_int* in, | 
|  | 333 | p256_int* out) { | 
|  | 334 | if (out != in) *out = *in; | 
|  | 335 | addM(MOD, 0, P256_DIGITS(out), subM(MOD, 0, P256_DIGITS(out), -1)); | 
|  | 336 | } | 
|  | 337 |  | 
|  | 338 | // Verify y^2 == x^3 - 3x + b mod p | 
|  | 339 | // and 0 < x < p and 0 < y < p | 
|  | 340 | int p256_is_valid_point(const p256_int* x, const p256_int* y) { | 
|  | 341 | p256_int y2, x3; | 
|  | 342 |  | 
|  | 343 | if (p256_cmp(&SECP256r1_p, x) <= 0 || | 
|  | 344 | p256_cmp(&SECP256r1_p, y) <= 0 || | 
|  | 345 | p256_is_zero(x) || | 
|  | 346 | p256_is_zero(y)) return 0; | 
|  | 347 |  | 
|  | 348 | p256_modmul(&SECP256r1_p, y, 0, y, &y2);  // y^2 | 
|  | 349 |  | 
|  | 350 | p256_modmul(&SECP256r1_p, x, 0, x, &x3);  // x^2 | 
|  | 351 | p256_modmul(&SECP256r1_p, x, 0, &x3, &x3);  // x^3 | 
|  | 352 | if (p256_sub(&x3, x, &x3)) p256_add(&x3, &SECP256r1_p, &x3);  // x^3 - x | 
|  | 353 | if (p256_sub(&x3, x, &x3)) p256_add(&x3, &SECP256r1_p, &x3);  // x^3 - 2x | 
|  | 354 | if (p256_sub(&x3, x, &x3)) p256_add(&x3, &SECP256r1_p, &x3);  // x^3 - 3x | 
|  | 355 | if (p256_add(&x3, &SECP256r1_b, &x3))  // x^3 - 3x + b | 
|  | 356 | p256_sub(&x3, &SECP256r1_p, &x3); | 
|  | 357 |  | 
|  | 358 | return p256_cmp(&y2, &x3) == 0; | 
|  | 359 | } | 
|  | 360 |  | 
|  | 361 | void p256_from_bin(const uint8_t src[P256_NBYTES], p256_int* dst) { | 
|  | 362 | int i; | 
|  | 363 | const uint8_t* p = &src[0]; | 
|  | 364 |  | 
|  | 365 | for (i = P256_NDIGITS - 1; i >= 0; --i) { | 
|  | 366 | P256_DIGIT(dst, i) = | 
|  | 367 | (p[0] << 24) | | 
|  | 368 | (p[1] << 16) | | 
|  | 369 | (p[2] << 8) | | 
|  | 370 | p[3]; | 
|  | 371 | p += 4; | 
|  | 372 | } | 
|  | 373 | } |