| Kenny Root | db0850c | 2013-10-08 12:52:07 -0700 | [diff] [blame] | 1 | /* | 
|  | 2 | * Copyright 2013 The Android Open Source Project | 
|  | 3 | * | 
|  | 4 | * Redistribution and use in source and binary forms, with or without | 
|  | 5 | * modification, are permitted provided that the following conditions are met: | 
|  | 6 | *     * Redistributions of source code must retain the above copyright | 
|  | 7 | *       notice, this list of conditions and the following disclaimer. | 
|  | 8 | *     * Redistributions in binary form must reproduce the above copyright | 
|  | 9 | *       notice, this list of conditions and the following disclaimer in the | 
|  | 10 | *       documentation and/or other materials provided with the distribution. | 
|  | 11 | *     * Neither the name of Google Inc. nor the names of its contributors may | 
|  | 12 | *       be used to endorse or promote products derived from this software | 
|  | 13 | *       without specific prior written permission. | 
|  | 14 | * | 
|  | 15 | * THIS SOFTWARE IS PROVIDED BY Google Inc. ``AS IS'' AND ANY EXPRESS OR | 
|  | 16 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF | 
|  | 17 | * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO | 
|  | 18 | * EVENT SHALL Google Inc. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
|  | 19 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | 
|  | 20 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; | 
|  | 21 | * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, | 
|  | 22 | * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR | 
|  | 23 | * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF | 
|  | 24 | * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  | 25 | */ | 
|  | 26 |  | 
|  | 27 | // This is an implementation of the P256 elliptic curve group. It's written to | 
|  | 28 | // be portable 32-bit, although it's still constant-time. | 
|  | 29 | // | 
|  | 30 | // WARNING: Implementing these functions in a constant-time manner is far from | 
|  | 31 | //          obvious. Be careful when touching this code. | 
|  | 32 | // | 
|  | 33 | // See http://www.imperialviolet.org/2010/12/04/ecc.html ([1]) for background. | 
|  | 34 |  | 
|  | 35 | #include <stdint.h> | 
|  | 36 | #include <stdio.h> | 
|  | 37 |  | 
|  | 38 | #include <string.h> | 
|  | 39 | #include <stdlib.h> | 
|  | 40 |  | 
|  | 41 | #include "mincrypt/p256.h" | 
|  | 42 |  | 
|  | 43 | typedef uint8_t u8; | 
|  | 44 | typedef uint32_t u32; | 
|  | 45 | typedef int32_t s32; | 
|  | 46 | typedef uint64_t u64; | 
|  | 47 |  | 
|  | 48 | /* Our field elements are represented as nine 32-bit limbs. | 
|  | 49 | * | 
|  | 50 | * The value of an felem (field element) is: | 
|  | 51 | *   x[0] + (x[1] * 2**29) + (x[2] * 2**57) + ... + (x[8] * 2**228) | 
|  | 52 | * | 
|  | 53 | * That is, each limb is alternately 29 or 28-bits wide in little-endian | 
|  | 54 | * order. | 
|  | 55 | * | 
|  | 56 | * This means that an felem hits 2**257, rather than 2**256 as we would like. A | 
|  | 57 | * 28, 29, ... pattern would cause us to hit 2**256, but that causes problems | 
|  | 58 | * when multiplying as terms end up one bit short of a limb which would require | 
|  | 59 | * much bit-shifting to correct. | 
|  | 60 | * | 
|  | 61 | * Finally, the values stored in an felem are in Montgomery form. So the value | 
|  | 62 | * |y| is stored as (y*R) mod p, where p is the P-256 prime and R is 2**257. | 
|  | 63 | */ | 
|  | 64 | typedef u32 limb; | 
|  | 65 | #define NLIMBS 9 | 
|  | 66 | typedef limb felem[NLIMBS]; | 
|  | 67 |  | 
|  | 68 | static const limb kBottom28Bits = 0xfffffff; | 
|  | 69 | static const limb kBottom29Bits = 0x1fffffff; | 
|  | 70 |  | 
|  | 71 | /* kOne is the number 1 as an felem. It's 2**257 mod p split up into 29 and | 
|  | 72 | * 28-bit words. */ | 
|  | 73 | static const felem kOne = { | 
|  | 74 | 2, 0, 0, 0xffff800, | 
|  | 75 | 0x1fffffff, 0xfffffff, 0x1fbfffff, 0x1ffffff, | 
|  | 76 | 0 | 
|  | 77 | }; | 
|  | 78 | static const felem kZero = {0}; | 
|  | 79 | static const felem kP = { | 
|  | 80 | 0x1fffffff, 0xfffffff, 0x1fffffff, 0x3ff, | 
|  | 81 | 0, 0, 0x200000, 0xf000000, | 
|  | 82 | 0xfffffff | 
|  | 83 | }; | 
|  | 84 | static const felem k2P = { | 
|  | 85 | 0x1ffffffe, 0xfffffff, 0x1fffffff, 0x7ff, | 
|  | 86 | 0, 0, 0x400000, 0xe000000, | 
|  | 87 | 0x1fffffff | 
|  | 88 | }; | 
|  | 89 | /* kPrecomputed contains precomputed values to aid the calculation of scalar | 
|  | 90 | * multiples of the base point, G. It's actually two, equal length, tables | 
|  | 91 | * concatenated. | 
|  | 92 | * | 
|  | 93 | * The first table contains (x,y) felem pairs for 16 multiples of the base | 
|  | 94 | * point, G. | 
|  | 95 | * | 
|  | 96 | *   Index  |  Index (binary) | Value | 
|  | 97 | *       0  |           0000  | 0G (all zeros, omitted) | 
|  | 98 | *       1  |           0001  | G | 
|  | 99 | *       2  |           0010  | 2**64G | 
|  | 100 | *       3  |           0011  | 2**64G + G | 
|  | 101 | *       4  |           0100  | 2**128G | 
|  | 102 | *       5  |           0101  | 2**128G + G | 
|  | 103 | *       6  |           0110  | 2**128G + 2**64G | 
|  | 104 | *       7  |           0111  | 2**128G + 2**64G + G | 
|  | 105 | *       8  |           1000  | 2**192G | 
|  | 106 | *       9  |           1001  | 2**192G + G | 
|  | 107 | *      10  |           1010  | 2**192G + 2**64G | 
|  | 108 | *      11  |           1011  | 2**192G + 2**64G + G | 
|  | 109 | *      12  |           1100  | 2**192G + 2**128G | 
|  | 110 | *      13  |           1101  | 2**192G + 2**128G + G | 
|  | 111 | *      14  |           1110  | 2**192G + 2**128G + 2**64G | 
|  | 112 | *      15  |           1111  | 2**192G + 2**128G + 2**64G + G | 
|  | 113 | * | 
|  | 114 | * The second table follows the same style, but the terms are 2**32G, | 
|  | 115 | * 2**96G, 2**160G, 2**224G. | 
|  | 116 | * | 
|  | 117 | * This is ~2KB of data. */ | 
|  | 118 | static const limb kPrecomputed[NLIMBS * 2 * 15 * 2] = { | 
|  | 119 | 0x11522878, 0xe730d41, 0xdb60179, 0x4afe2ff, 0x12883add, 0xcaddd88, 0x119e7edc, 0xd4a6eab, 0x3120bee, | 
|  | 120 | 0x1d2aac15, 0xf25357c, 0x19e45cdd, 0x5c721d0, 0x1992c5a5, 0xa237487, 0x154ba21, 0x14b10bb, 0xae3fe3, | 
|  | 121 | 0xd41a576, 0x922fc51, 0x234994f, 0x60b60d3, 0x164586ae, 0xce95f18, 0x1fe49073, 0x3fa36cc, 0x5ebcd2c, | 
|  | 122 | 0xb402f2f, 0x15c70bf, 0x1561925c, 0x5a26704, 0xda91e90, 0xcdc1c7f, 0x1ea12446, 0xe1ade1e, 0xec91f22, | 
|  | 123 | 0x26f7778, 0x566847e, 0xa0bec9e, 0x234f453, 0x1a31f21a, 0xd85e75c, 0x56c7109, 0xa267a00, 0xb57c050, | 
|  | 124 | 0x98fb57, 0xaa837cc, 0x60c0792, 0xcfa5e19, 0x61bab9e, 0x589e39b, 0xa324c5, 0x7d6dee7, 0x2976e4b, | 
|  | 125 | 0x1fc4124a, 0xa8c244b, 0x1ce86762, 0xcd61c7e, 0x1831c8e0, 0x75774e1, 0x1d96a5a9, 0x843a649, 0xc3ab0fa, | 
|  | 126 | 0x6e2e7d5, 0x7673a2a, 0x178b65e8, 0x4003e9b, 0x1a1f11c2, 0x7816ea, 0xf643e11, 0x58c43df, 0xf423fc2, | 
|  | 127 | 0x19633ffa, 0x891f2b2, 0x123c231c, 0x46add8c, 0x54700dd, 0x59e2b17, 0x172db40f, 0x83e277d, 0xb0dd609, | 
|  | 128 | 0xfd1da12, 0x35c6e52, 0x19ede20c, 0xd19e0c0, 0x97d0f40, 0xb015b19, 0x449e3f5, 0xe10c9e, 0x33ab581, | 
|  | 129 | 0x56a67ab, 0x577734d, 0x1dddc062, 0xc57b10d, 0x149b39d, 0x26a9e7b, 0xc35df9f, 0x48764cd, 0x76dbcca, | 
|  | 130 | 0xca4b366, 0xe9303ab, 0x1a7480e7, 0x57e9e81, 0x1e13eb50, 0xf466cf3, 0x6f16b20, 0x4ba3173, 0xc168c33, | 
|  | 131 | 0x15cb5439, 0x6a38e11, 0x73658bd, 0xb29564f, 0x3f6dc5b, 0x53b97e, 0x1322c4c0, 0x65dd7ff, 0x3a1e4f6, | 
|  | 132 | 0x14e614aa, 0x9246317, 0x1bc83aca, 0xad97eed, 0xd38ce4a, 0xf82b006, 0x341f077, 0xa6add89, 0x4894acd, | 
|  | 133 | 0x9f162d5, 0xf8410ef, 0x1b266a56, 0xd7f223, 0x3e0cb92, 0xe39b672, 0x6a2901a, 0x69a8556, 0x7e7c0, | 
|  | 134 | 0x9b7d8d3, 0x309a80, 0x1ad05f7f, 0xc2fb5dd, 0xcbfd41d, 0x9ceb638, 0x1051825c, 0xda0cf5b, 0x812e881, | 
|  | 135 | 0x6f35669, 0x6a56f2c, 0x1df8d184, 0x345820, 0x1477d477, 0x1645db1, 0xbe80c51, 0xc22be3e, 0xe35e65a, | 
|  | 136 | 0x1aeb7aa0, 0xc375315, 0xf67bc99, 0x7fdd7b9, 0x191fc1be, 0x61235d, 0x2c184e9, 0x1c5a839, 0x47a1e26, | 
|  | 137 | 0xb7cb456, 0x93e225d, 0x14f3c6ed, 0xccc1ac9, 0x17fe37f3, 0x4988989, 0x1a90c502, 0x2f32042, 0xa17769b, | 
|  | 138 | 0xafd8c7c, 0x8191c6e, 0x1dcdb237, 0x16200c0, 0x107b32a1, 0x66c08db, 0x10d06a02, 0x3fc93, 0x5620023, | 
|  | 139 | 0x16722b27, 0x68b5c59, 0x270fcfc, 0xfad0ecc, 0xe5de1c2, 0xeab466b, 0x2fc513c, 0x407f75c, 0xbaab133, | 
|  | 140 | 0x9705fe9, 0xb88b8e7, 0x734c993, 0x1e1ff8f, 0x19156970, 0xabd0f00, 0x10469ea7, 0x3293ac0, 0xcdc98aa, | 
|  | 141 | 0x1d843fd, 0xe14bfe8, 0x15be825f, 0x8b5212, 0xeb3fb67, 0x81cbd29, 0xbc62f16, 0x2b6fcc7, 0xf5a4e29, | 
|  | 142 | 0x13560b66, 0xc0b6ac2, 0x51ae690, 0xd41e271, 0xf3e9bd4, 0x1d70aab, 0x1029f72, 0x73e1c35, 0xee70fbc, | 
|  | 143 | 0xad81baf, 0x9ecc49a, 0x86c741e, 0xfe6be30, 0x176752e7, 0x23d416, 0x1f83de85, 0x27de188, 0x66f70b8, | 
|  | 144 | 0x181cd51f, 0x96b6e4c, 0x188f2335, 0xa5df759, 0x17a77eb6, 0xfeb0e73, 0x154ae914, 0x2f3ec51, 0x3826b59, | 
|  | 145 | 0xb91f17d, 0x1c72949, 0x1362bf0a, 0xe23fddf, 0xa5614b0, 0xf7d8f, 0x79061, 0x823d9d2, 0x8213f39, | 
|  | 146 | 0x1128ae0b, 0xd095d05, 0xb85c0c2, 0x1ecb2ef, 0x24ddc84, 0xe35e901, 0x18411a4a, 0xf5ddc3d, 0x3786689, | 
|  | 147 | 0x52260e8, 0x5ae3564, 0x542b10d, 0x8d93a45, 0x19952aa4, 0x996cc41, 0x1051a729, 0x4be3499, 0x52b23aa, | 
|  | 148 | 0x109f307e, 0x6f5b6bb, 0x1f84e1e7, 0x77a0cfa, 0x10c4df3f, 0x25a02ea, 0xb048035, 0xe31de66, 0xc6ecaa3, | 
|  | 149 | 0x28ea335, 0x2886024, 0x1372f020, 0xf55d35, 0x15e4684c, 0xf2a9e17, 0x1a4a7529, 0xcb7beb1, 0xb2a78a1, | 
|  | 150 | 0x1ab21f1f, 0x6361ccf, 0x6c9179d, 0xb135627, 0x1267b974, 0x4408bad, 0x1cbff658, 0xe3d6511, 0xc7d76f, | 
|  | 151 | 0x1cc7a69, 0xe7ee31b, 0x54fab4f, 0x2b914f, 0x1ad27a30, 0xcd3579e, 0xc50124c, 0x50daa90, 0xb13f72, | 
|  | 152 | 0xb06aa75, 0x70f5cc6, 0x1649e5aa, 0x84a5312, 0x329043c, 0x41c4011, 0x13d32411, 0xb04a838, 0xd760d2d, | 
|  | 153 | 0x1713b532, 0xbaa0c03, 0x84022ab, 0x6bcf5c1, 0x2f45379, 0x18ae070, 0x18c9e11e, 0x20bca9a, 0x66f496b, | 
|  | 154 | 0x3eef294, 0x67500d2, 0xd7f613c, 0x2dbbeb, 0xb741038, 0xe04133f, 0x1582968d, 0xbe985f7, 0x1acbc1a, | 
|  | 155 | 0x1a6a939f, 0x33e50f6, 0xd665ed4, 0xb4b7bd6, 0x1e5a3799, 0x6b33847, 0x17fa56ff, 0x65ef930, 0x21dc4a, | 
|  | 156 | 0x2b37659, 0x450fe17, 0xb357b65, 0xdf5efac, 0x15397bef, 0x9d35a7f, 0x112ac15f, 0x624e62e, 0xa90ae2f, | 
|  | 157 | 0x107eecd2, 0x1f69bbe, 0x77d6bce, 0x5741394, 0x13c684fc, 0x950c910, 0x725522b, 0xdc78583, 0x40eeabb, | 
|  | 158 | 0x1fde328a, 0xbd61d96, 0xd28c387, 0x9e77d89, 0x12550c40, 0x759cb7d, 0x367ef34, 0xae2a960, 0x91b8bdc, | 
|  | 159 | 0x93462a9, 0xf469ef, 0xb2e9aef, 0xd2ca771, 0x54e1f42, 0x7aaa49, 0x6316abb, 0x2413c8e, 0x5425bf9, | 
|  | 160 | 0x1bed3e3a, 0xf272274, 0x1f5e7326, 0x6416517, 0xea27072, 0x9cedea7, 0x6e7633, 0x7c91952, 0xd806dce, | 
|  | 161 | 0x8e2a7e1, 0xe421e1a, 0x418c9e1, 0x1dbc890, 0x1b395c36, 0xa1dc175, 0x1dc4ef73, 0x8956f34, 0xe4b5cf2, | 
|  | 162 | 0x1b0d3a18, 0x3194a36, 0x6c2641f, 0xe44124c, 0xa2f4eaa, 0xa8c25ba, 0xf927ed7, 0x627b614, 0x7371cca, | 
|  | 163 | 0xba16694, 0x417bc03, 0x7c0a7e3, 0x9c35c19, 0x1168a205, 0x8b6b00d, 0x10e3edc9, 0x9c19bf2, 0x5882229, | 
|  | 164 | 0x1b2b4162, 0xa5cef1a, 0x1543622b, 0x9bd433e, 0x364e04d, 0x7480792, 0x5c9b5b3, 0xe85ff25, 0x408ef57, | 
|  | 165 | 0x1814cfa4, 0x121b41b, 0xd248a0f, 0x3b05222, 0x39bb16a, 0xc75966d, 0xa038113, 0xa4a1769, 0x11fbc6c, | 
|  | 166 | 0x917e50e, 0xeec3da8, 0x169d6eac, 0x10c1699, 0xa416153, 0xf724912, 0x15cd60b7, 0x4acbad9, 0x5efc5fa, | 
|  | 167 | 0xf150ed7, 0x122b51, 0x1104b40a, 0xcb7f442, 0xfbb28ff, 0x6ac53ca, 0x196142cc, 0x7bf0fa9, 0x957651, | 
|  | 168 | 0x4e0f215, 0xed439f8, 0x3f46bd5, 0x5ace82f, 0x110916b6, 0x6db078, 0xffd7d57, 0xf2ecaac, 0xca86dec, | 
|  | 169 | 0x15d6b2da, 0x965ecc9, 0x1c92b4c2, 0x1f3811, 0x1cb080f5, 0x2d8b804, 0x19d1c12d, 0xf20bd46, 0x1951fa7, | 
|  | 170 | 0xa3656c3, 0x523a425, 0xfcd0692, 0xd44ddc8, 0x131f0f5b, 0xaf80e4a, 0xcd9fc74, 0x99bb618, 0x2db944c, | 
|  | 171 | 0xa673090, 0x1c210e1, 0x178c8d23, 0x1474383, 0x10b8743d, 0x985a55b, 0x2e74779, 0x576138, 0x9587927, | 
|  | 172 | 0x133130fa, 0xbe05516, 0x9f4d619, 0xbb62570, 0x99ec591, 0xd9468fe, 0x1d07782d, 0xfc72e0b, 0x701b298, | 
|  | 173 | 0x1863863b, 0x85954b8, 0x121a0c36, 0x9e7fedf, 0xf64b429, 0x9b9d71e, 0x14e2f5d8, 0xf858d3a, 0x942eea8, | 
|  | 174 | 0xda5b765, 0x6edafff, 0xa9d18cc, 0xc65e4ba, 0x1c747e86, 0xe4ea915, 0x1981d7a1, 0x8395659, 0x52ed4e2, | 
|  | 175 | 0x87d43b7, 0x37ab11b, 0x19d292ce, 0xf8d4692, 0x18c3053f, 0x8863e13, 0x4c146c0, 0x6bdf55a, 0x4e4457d, | 
|  | 176 | 0x16152289, 0xac78ec2, 0x1a59c5a2, 0x2028b97, 0x71c2d01, 0x295851f, 0x404747b, 0x878558d, 0x7d29aa4, | 
|  | 177 | 0x13d8341f, 0x8daefd7, 0x139c972d, 0x6b7ea75, 0xd4a9dde, 0xff163d8, 0x81d55d7, 0xa5bef68, 0xb7b30d8, | 
|  | 178 | 0xbe73d6f, 0xaa88141, 0xd976c81, 0x7e7a9cc, 0x18beb771, 0xd773cbd, 0x13f51951, 0x9d0c177, 0x1c49a78, | 
|  | 179 | }; | 
|  | 180 |  | 
|  | 181 |  | 
|  | 182 | /* Field element operations: */ | 
|  | 183 |  | 
|  | 184 | /* NON_ZERO_TO_ALL_ONES returns: | 
|  | 185 | *   0xffffffff for 0 < x <= 2**31 | 
|  | 186 | *   0 for x == 0 or x > 2**31. | 
|  | 187 | * | 
|  | 188 | * x must be a u32 or an equivalent type such as limb. */ | 
|  | 189 | #define NON_ZERO_TO_ALL_ONES(x) ((((u32)(x) - 1) >> 31) - 1) | 
|  | 190 |  | 
|  | 191 | /* felem_reduce_carry adds a multiple of p in order to cancel |carry|, | 
|  | 192 | * which is a term at 2**257. | 
|  | 193 | * | 
|  | 194 | * On entry: carry < 2**3, inout[0,2,...] < 2**29, inout[1,3,...] < 2**28. | 
|  | 195 | * On exit: inout[0,2,..] < 2**30, inout[1,3,...] < 2**29. */ | 
|  | 196 | static void felem_reduce_carry(felem inout, limb carry) { | 
|  | 197 | const u32 carry_mask = NON_ZERO_TO_ALL_ONES(carry); | 
|  | 198 |  | 
|  | 199 | inout[0] += carry << 1; | 
|  | 200 | inout[3] += 0x10000000 & carry_mask; | 
|  | 201 | /* carry < 2**3 thus (carry << 11) < 2**14 and we added 2**28 in the | 
|  | 202 | * previous line therefore this doesn't underflow. */ | 
|  | 203 | inout[3] -= carry << 11; | 
|  | 204 | inout[4] += (0x20000000 - 1) & carry_mask; | 
|  | 205 | inout[5] += (0x10000000 - 1) & carry_mask; | 
|  | 206 | inout[6] += (0x20000000 - 1) & carry_mask; | 
|  | 207 | inout[6] -= carry << 22; | 
|  | 208 | /* This may underflow if carry is non-zero but, if so, we'll fix it in the | 
|  | 209 | * next line. */ | 
|  | 210 | inout[7] -= 1 & carry_mask; | 
|  | 211 | inout[7] += carry << 25; | 
|  | 212 | } | 
|  | 213 |  | 
|  | 214 | /* felem_sum sets out = in+in2. | 
|  | 215 | * | 
|  | 216 | * On entry, in[i]+in2[i] must not overflow a 32-bit word. | 
|  | 217 | * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29 */ | 
|  | 218 | static void felem_sum(felem out, const felem in, const felem in2) { | 
|  | 219 | limb carry = 0; | 
|  | 220 | unsigned i; | 
|  | 221 |  | 
|  | 222 | for (i = 0;; i++) { | 
|  | 223 | out[i] = in[i] + in2[i]; | 
|  | 224 | out[i] += carry; | 
|  | 225 | carry = out[i] >> 29; | 
|  | 226 | out[i] &= kBottom29Bits; | 
|  | 227 |  | 
|  | 228 | i++; | 
|  | 229 | if (i == NLIMBS) | 
|  | 230 | break; | 
|  | 231 |  | 
|  | 232 | out[i] = in[i] + in2[i]; | 
|  | 233 | out[i] += carry; | 
|  | 234 | carry = out[i] >> 28; | 
|  | 235 | out[i] &= kBottom28Bits; | 
|  | 236 | } | 
|  | 237 |  | 
|  | 238 | felem_reduce_carry(out, carry); | 
|  | 239 | } | 
|  | 240 |  | 
|  | 241 | #define two31m3 (((limb)1) << 31) - (((limb)1) << 3) | 
|  | 242 | #define two30m2 (((limb)1) << 30) - (((limb)1) << 2) | 
|  | 243 | #define two30p13m2 (((limb)1) << 30) + (((limb)1) << 13) - (((limb)1) << 2) | 
|  | 244 | #define two31m2 (((limb)1) << 31) - (((limb)1) << 2) | 
|  | 245 | #define two31p24m2 (((limb)1) << 31) + (((limb)1) << 24) - (((limb)1) << 2) | 
|  | 246 | #define two30m27m2 (((limb)1) << 30) - (((limb)1) << 27) - (((limb)1) << 2) | 
|  | 247 |  | 
|  | 248 | /* zero31 is 0 mod p. */ | 
|  | 249 | static const felem zero31 = { two31m3, two30m2, two31m2, two30p13m2, two31m2, two30m2, two31p24m2, two30m27m2, two31m2 }; | 
|  | 250 |  | 
|  | 251 | /* felem_diff sets out = in-in2. | 
|  | 252 | * | 
|  | 253 | * On entry: in[0,2,...] < 2**30, in[1,3,...] < 2**29 and | 
|  | 254 | *           in2[0,2,...] < 2**30, in2[1,3,...] < 2**29. | 
|  | 255 | * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. */ | 
|  | 256 | static void felem_diff(felem out, const felem in, const felem in2) { | 
|  | 257 | limb carry = 0; | 
|  | 258 | unsigned i; | 
|  | 259 |  | 
|  | 260 | for (i = 0;; i++) { | 
|  | 261 | out[i] = in[i] - in2[i]; | 
|  | 262 | out[i] += zero31[i]; | 
|  | 263 | out[i] += carry; | 
|  | 264 | carry = out[i] >> 29; | 
|  | 265 | out[i] &= kBottom29Bits; | 
|  | 266 |  | 
|  | 267 | i++; | 
|  | 268 | if (i == NLIMBS) | 
|  | 269 | break; | 
|  | 270 |  | 
|  | 271 | out[i] = in[i] - in2[i]; | 
|  | 272 | out[i] += zero31[i]; | 
|  | 273 | out[i] += carry; | 
|  | 274 | carry = out[i] >> 28; | 
|  | 275 | out[i] &= kBottom28Bits; | 
|  | 276 | } | 
|  | 277 |  | 
|  | 278 | felem_reduce_carry(out, carry); | 
|  | 279 | } | 
|  | 280 |  | 
|  | 281 | /* felem_reduce_degree sets out = tmp/R mod p where tmp contains 64-bit words | 
|  | 282 | * with the same 29,28,... bit positions as an felem. | 
|  | 283 | * | 
|  | 284 | * The values in felems are in Montgomery form: x*R mod p where R = 2**257. | 
|  | 285 | * Since we just multiplied two Montgomery values together, the result is | 
|  | 286 | * x*y*R*R mod p. We wish to divide by R in order for the result also to be | 
|  | 287 | * in Montgomery form. | 
|  | 288 | * | 
|  | 289 | * On entry: tmp[i] < 2**64 | 
|  | 290 | * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29 */ | 
|  | 291 | static void felem_reduce_degree(felem out, u64 tmp[17]) { | 
|  | 292 | /* The following table may be helpful when reading this code: | 
|  | 293 | * | 
|  | 294 | * Limb number:   0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10... | 
|  | 295 | * Width (bits):  29| 28| 29| 28| 29| 28| 29| 28| 29| 28| 29 | 
|  | 296 | * Start bit:     0 | 29| 57| 86|114|143|171|200|228|257|285 | 
|  | 297 | *   (odd phase): 0 | 28| 57| 85|114|142|171|199|228|256|285 */ | 
|  | 298 | limb tmp2[18], carry, x, xMask; | 
|  | 299 | unsigned i; | 
|  | 300 |  | 
|  | 301 | /* tmp contains 64-bit words with the same 29,28,29-bit positions as an | 
|  | 302 | * felem. So the top of an element of tmp might overlap with another | 
|  | 303 | * element two positions down. The following loop eliminates this | 
|  | 304 | * overlap. */ | 
|  | 305 | tmp2[0] = (limb)(tmp[0] & kBottom29Bits); | 
|  | 306 |  | 
|  | 307 | /* In the following we use "(limb) tmp[x]" and "(limb) (tmp[x]>>32)" to try | 
|  | 308 | * and hint to the compiler that it can do a single-word shift by selecting | 
|  | 309 | * the right register rather than doing a double-word shift and truncating | 
|  | 310 | * afterwards. */ | 
|  | 311 | tmp2[1] = ((limb) tmp[0]) >> 29; | 
|  | 312 | tmp2[1] |= (((limb)(tmp[0] >> 32)) << 3) & kBottom28Bits; | 
|  | 313 | tmp2[1] += ((limb) tmp[1]) & kBottom28Bits; | 
|  | 314 | carry = tmp2[1] >> 28; | 
|  | 315 | tmp2[1] &= kBottom28Bits; | 
|  | 316 |  | 
|  | 317 | for (i = 2; i < 17; i++) { | 
|  | 318 | tmp2[i] = ((limb)(tmp[i - 2] >> 32)) >> 25; | 
|  | 319 | tmp2[i] += ((limb)(tmp[i - 1])) >> 28; | 
|  | 320 | tmp2[i] += (((limb)(tmp[i - 1] >> 32)) << 4) & kBottom29Bits; | 
|  | 321 | tmp2[i] += ((limb) tmp[i]) & kBottom29Bits; | 
|  | 322 | tmp2[i] += carry; | 
|  | 323 | carry = tmp2[i] >> 29; | 
|  | 324 | tmp2[i] &= kBottom29Bits; | 
|  | 325 |  | 
|  | 326 | i++; | 
|  | 327 | if (i == 17) | 
|  | 328 | break; | 
|  | 329 | tmp2[i] = ((limb)(tmp[i - 2] >> 32)) >> 25; | 
|  | 330 | tmp2[i] += ((limb)(tmp[i - 1])) >> 29; | 
|  | 331 | tmp2[i] += (((limb)(tmp[i - 1] >> 32)) << 3) & kBottom28Bits; | 
|  | 332 | tmp2[i] += ((limb) tmp[i]) & kBottom28Bits; | 
|  | 333 | tmp2[i] += carry; | 
|  | 334 | carry = tmp2[i] >> 28; | 
|  | 335 | tmp2[i] &= kBottom28Bits; | 
|  | 336 | } | 
|  | 337 |  | 
|  | 338 | tmp2[17] = ((limb)(tmp[15] >> 32)) >> 25; | 
|  | 339 | tmp2[17] += ((limb)(tmp[16])) >> 29; | 
|  | 340 | tmp2[17] += (((limb)(tmp[16] >> 32)) << 3); | 
|  | 341 | tmp2[17] += carry; | 
|  | 342 |  | 
|  | 343 | /* Montgomery elimination of terms. | 
|  | 344 | * | 
|  | 345 | * Since R is 2**257, we can divide by R with a bitwise shift if we can | 
|  | 346 | * ensure that the right-most 257 bits are all zero. We can make that true by | 
|  | 347 | * adding multiplies of p without affecting the value. | 
|  | 348 | * | 
|  | 349 | * So we eliminate limbs from right to left. Since the bottom 29 bits of p | 
|  | 350 | * are all ones, then by adding tmp2[0]*p to tmp2 we'll make tmp2[0] == 0. | 
|  | 351 | * We can do that for 8 further limbs and then right shift to eliminate the | 
|  | 352 | * extra factor of R. */ | 
|  | 353 | for (i = 0;; i += 2) { | 
|  | 354 | tmp2[i + 1] += tmp2[i] >> 29; | 
|  | 355 | x = tmp2[i] & kBottom29Bits; | 
|  | 356 | xMask = NON_ZERO_TO_ALL_ONES(x); | 
|  | 357 | tmp2[i] = 0; | 
|  | 358 |  | 
|  | 359 | /* The bounds calculations for this loop are tricky. Each iteration of | 
|  | 360 | * the loop eliminates two words by adding values to words to their | 
|  | 361 | * right. | 
|  | 362 | * | 
|  | 363 | * The following table contains the amounts added to each word (as an | 
|  | 364 | * offset from the value of i at the top of the loop). The amounts are | 
|  | 365 | * accounted for from the first and second half of the loop separately | 
|  | 366 | * and are written as, for example, 28 to mean a value <2**28. | 
|  | 367 | * | 
|  | 368 | * Word:                   3   4   5   6   7   8   9   10 | 
|  | 369 | * Added in top half:     28  11      29  21  29  28 | 
|  | 370 | *                                        28  29 | 
|  | 371 | *                                            29 | 
|  | 372 | * Added in bottom half:      29  10      28  21  28   28 | 
|  | 373 | *                                            29 | 
|  | 374 | * | 
|  | 375 | * The value that is currently offset 7 will be offset 5 for the next | 
|  | 376 | * iteration and then offset 3 for the iteration after that. Therefore | 
|  | 377 | * the total value added will be the values added at 7, 5 and 3. | 
|  | 378 | * | 
|  | 379 | * The following table accumulates these values. The sums at the bottom | 
|  | 380 | * are written as, for example, 29+28, to mean a value < 2**29+2**28. | 
|  | 381 | * | 
|  | 382 | * Word:                   3   4   5   6   7   8   9  10  11  12  13 | 
|  | 383 | *                        28  11  10  29  21  29  28  28  28  28  28 | 
|  | 384 | *                            29  28  11  28  29  28  29  28  29  28 | 
|  | 385 | *                                    29  28  21  21  29  21  29  21 | 
|  | 386 | *                                        10  29  28  21  28  21  28 | 
|  | 387 | *                                        28  29  28  29  28  29  28 | 
|  | 388 | *                                            11  10  29  10  29  10 | 
|  | 389 | *                                            29  28  11  28  11 | 
|  | 390 | *                                                    29      29 | 
|  | 391 | *                        -------------------------------------------- | 
|  | 392 | *                                                30+ 31+ 30+ 31+ 30+ | 
|  | 393 | *                                                28+ 29+ 28+ 29+ 21+ | 
|  | 394 | *                                                21+ 28+ 21+ 28+ 10 | 
|  | 395 | *                                                10  21+ 10  21+ | 
|  | 396 | *                                                    11      11 | 
|  | 397 | * | 
|  | 398 | * So the greatest amount is added to tmp2[10] and tmp2[12]. If | 
|  | 399 | * tmp2[10/12] has an initial value of <2**29, then the maximum value | 
|  | 400 | * will be < 2**31 + 2**30 + 2**28 + 2**21 + 2**11, which is < 2**32, | 
|  | 401 | * as required. */ | 
|  | 402 | tmp2[i + 3] += (x << 10) & kBottom28Bits; | 
|  | 403 | tmp2[i + 4] += (x >> 18); | 
|  | 404 |  | 
|  | 405 | tmp2[i + 6] += (x << 21) & kBottom29Bits; | 
|  | 406 | tmp2[i + 7] += x >> 8; | 
|  | 407 |  | 
|  | 408 | /* At position 200, which is the starting bit position for word 7, we | 
|  | 409 | * have a factor of 0xf000000 = 2**28 - 2**24. */ | 
|  | 410 | tmp2[i + 7] += 0x10000000 & xMask; | 
|  | 411 | /* Word 7 is 28 bits wide, so the 2**28 term exactly hits word 8. */ | 
|  | 412 | tmp2[i + 8] += (x - 1) & xMask; | 
|  | 413 | tmp2[i + 7] -= (x << 24) & kBottom28Bits; | 
|  | 414 | tmp2[i + 8] -= x >> 4; | 
|  | 415 |  | 
|  | 416 | tmp2[i + 8] += 0x20000000 & xMask; | 
|  | 417 | tmp2[i + 8] -= x; | 
|  | 418 | tmp2[i + 8] += (x << 28) & kBottom29Bits; | 
|  | 419 | tmp2[i + 9] += ((x >> 1) - 1) & xMask; | 
|  | 420 |  | 
|  | 421 | if (i+1 == NLIMBS) | 
|  | 422 | break; | 
|  | 423 | tmp2[i + 2] += tmp2[i + 1] >> 28; | 
|  | 424 | x = tmp2[i + 1] & kBottom28Bits; | 
|  | 425 | xMask = NON_ZERO_TO_ALL_ONES(x); | 
|  | 426 | tmp2[i + 1] = 0; | 
|  | 427 |  | 
|  | 428 | tmp2[i + 4] += (x << 11) & kBottom29Bits; | 
|  | 429 | tmp2[i + 5] += (x >> 18); | 
|  | 430 |  | 
|  | 431 | tmp2[i + 7] += (x << 21) & kBottom28Bits; | 
|  | 432 | tmp2[i + 8] += x >> 7; | 
|  | 433 |  | 
|  | 434 | /* At position 199, which is the starting bit of the 8th word when | 
|  | 435 | * dealing with a context starting on an odd word, we have a factor of | 
|  | 436 | * 0x1e000000 = 2**29 - 2**25. Since we have not updated i, the 8th | 
|  | 437 | * word from i+1 is i+8. */ | 
|  | 438 | tmp2[i + 8] += 0x20000000 & xMask; | 
|  | 439 | tmp2[i + 9] += (x - 1) & xMask; | 
|  | 440 | tmp2[i + 8] -= (x << 25) & kBottom29Bits; | 
|  | 441 | tmp2[i + 9] -= x >> 4; | 
|  | 442 |  | 
|  | 443 | tmp2[i + 9] += 0x10000000 & xMask; | 
|  | 444 | tmp2[i + 9] -= x; | 
|  | 445 | tmp2[i + 10] += (x - 1) & xMask; | 
|  | 446 | } | 
|  | 447 |  | 
|  | 448 | /* We merge the right shift with a carry chain. The words above 2**257 have | 
|  | 449 | * widths of 28,29,... which we need to correct when copying them down.  */ | 
|  | 450 | carry = 0; | 
|  | 451 | for (i = 0; i < 8; i++) { | 
|  | 452 | /* The maximum value of tmp2[i + 9] occurs on the first iteration and | 
|  | 453 | * is < 2**30+2**29+2**28. Adding 2**29 (from tmp2[i + 10]) is | 
|  | 454 | * therefore safe. */ | 
|  | 455 | out[i] = tmp2[i + 9]; | 
|  | 456 | out[i] += carry; | 
|  | 457 | out[i] += (tmp2[i + 10] << 28) & kBottom29Bits; | 
|  | 458 | carry = out[i] >> 29; | 
|  | 459 | out[i] &= kBottom29Bits; | 
|  | 460 |  | 
|  | 461 | i++; | 
|  | 462 | out[i] = tmp2[i + 9] >> 1; | 
|  | 463 | out[i] += carry; | 
|  | 464 | carry = out[i] >> 28; | 
|  | 465 | out[i] &= kBottom28Bits; | 
|  | 466 | } | 
|  | 467 |  | 
|  | 468 | out[8] = tmp2[17]; | 
|  | 469 | out[8] += carry; | 
|  | 470 | carry = out[8] >> 29; | 
|  | 471 | out[8] &= kBottom29Bits; | 
|  | 472 |  | 
|  | 473 | felem_reduce_carry(out, carry); | 
|  | 474 | } | 
|  | 475 |  | 
|  | 476 | /* felem_square sets out=in*in. | 
|  | 477 | * | 
|  | 478 | * On entry: in[0,2,...] < 2**30, in[1,3,...] < 2**29. | 
|  | 479 | * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. */ | 
|  | 480 | static void felem_square(felem out, const felem in) { | 
|  | 481 | u64 tmp[17]; | 
|  | 482 |  | 
|  | 483 | tmp[0] = ((u64) in[0]) * in[0]; | 
|  | 484 | tmp[1] = ((u64) in[0]) * (in[1] << 1); | 
|  | 485 | tmp[2] = ((u64) in[0]) * (in[2] << 1) + | 
|  | 486 | ((u64) in[1]) * (in[1] << 1); | 
|  | 487 | tmp[3] = ((u64) in[0]) * (in[3] << 1) + | 
|  | 488 | ((u64) in[1]) * (in[2] << 1); | 
|  | 489 | tmp[4] = ((u64) in[0]) * (in[4] << 1) + | 
|  | 490 | ((u64) in[1]) * (in[3] << 2) + ((u64) in[2]) * in[2]; | 
|  | 491 | tmp[5] = ((u64) in[0]) * (in[5] << 1) + ((u64) in[1]) * | 
|  | 492 | (in[4] << 1) + ((u64) in[2]) * (in[3] << 1); | 
|  | 493 | tmp[6] = ((u64) in[0]) * (in[6] << 1) + ((u64) in[1]) * | 
|  | 494 | (in[5] << 2) + ((u64) in[2]) * (in[4] << 1) + | 
|  | 495 | ((u64) in[3]) * (in[3] << 1); | 
|  | 496 | tmp[7] = ((u64) in[0]) * (in[7] << 1) + ((u64) in[1]) * | 
|  | 497 | (in[6] << 1) + ((u64) in[2]) * (in[5] << 1) + | 
|  | 498 | ((u64) in[3]) * (in[4] << 1); | 
|  | 499 | /* tmp[8] has the greatest value of 2**61 + 2**60 + 2**61 + 2**60 + 2**60, | 
|  | 500 | * which is < 2**64 as required. */ | 
|  | 501 | tmp[8] = ((u64) in[0]) * (in[8] << 1) + ((u64) in[1]) * | 
|  | 502 | (in[7] << 2) + ((u64) in[2]) * (in[6] << 1) + | 
|  | 503 | ((u64) in[3]) * (in[5] << 2) + ((u64) in[4]) * in[4]; | 
|  | 504 | tmp[9] = ((u64) in[1]) * (in[8] << 1) + ((u64) in[2]) * | 
|  | 505 | (in[7] << 1) + ((u64) in[3]) * (in[6] << 1) + | 
|  | 506 | ((u64) in[4]) * (in[5] << 1); | 
|  | 507 | tmp[10] = ((u64) in[2]) * (in[8] << 1) + ((u64) in[3]) * | 
|  | 508 | (in[7] << 2) + ((u64) in[4]) * (in[6] << 1) + | 
|  | 509 | ((u64) in[5]) * (in[5] << 1); | 
|  | 510 | tmp[11] = ((u64) in[3]) * (in[8] << 1) + ((u64) in[4]) * | 
|  | 511 | (in[7] << 1) + ((u64) in[5]) * (in[6] << 1); | 
|  | 512 | tmp[12] = ((u64) in[4]) * (in[8] << 1) + | 
|  | 513 | ((u64) in[5]) * (in[7] << 2) + ((u64) in[6]) * in[6]; | 
|  | 514 | tmp[13] = ((u64) in[5]) * (in[8] << 1) + | 
|  | 515 | ((u64) in[6]) * (in[7] << 1); | 
|  | 516 | tmp[14] = ((u64) in[6]) * (in[8] << 1) + | 
|  | 517 | ((u64) in[7]) * (in[7] << 1); | 
|  | 518 | tmp[15] = ((u64) in[7]) * (in[8] << 1); | 
|  | 519 | tmp[16] = ((u64) in[8]) * in[8]; | 
|  | 520 |  | 
|  | 521 | felem_reduce_degree(out, tmp); | 
|  | 522 | } | 
|  | 523 |  | 
|  | 524 | /* felem_mul sets out=in*in2. | 
|  | 525 | * | 
|  | 526 | * On entry: in[0,2,...] < 2**30, in[1,3,...] < 2**29 and | 
|  | 527 | *           in2[0,2,...] < 2**30, in2[1,3,...] < 2**29. | 
|  | 528 | * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. */ | 
|  | 529 | static void felem_mul(felem out, const felem in, const felem in2) { | 
|  | 530 | u64 tmp[17]; | 
|  | 531 |  | 
|  | 532 | tmp[0] = ((u64) in[0]) * in2[0]; | 
|  | 533 | tmp[1] = ((u64) in[0]) * (in2[1] << 0) + | 
|  | 534 | ((u64) in[1]) * (in2[0] << 0); | 
|  | 535 | tmp[2] = ((u64) in[0]) * (in2[2] << 0) + ((u64) in[1]) * | 
|  | 536 | (in2[1] << 1) + ((u64) in[2]) * (in2[0] << 0); | 
|  | 537 | tmp[3] = ((u64) in[0]) * (in2[3] << 0) + ((u64) in[1]) * | 
|  | 538 | (in2[2] << 0) + ((u64) in[2]) * (in2[1] << 0) + | 
|  | 539 | ((u64) in[3]) * (in2[0] << 0); | 
|  | 540 | tmp[4] = ((u64) in[0]) * (in2[4] << 0) + ((u64) in[1]) * | 
|  | 541 | (in2[3] << 1) + ((u64) in[2]) * (in2[2] << 0) + | 
|  | 542 | ((u64) in[3]) * (in2[1] << 1) + | 
|  | 543 | ((u64) in[4]) * (in2[0] << 0); | 
|  | 544 | tmp[5] = ((u64) in[0]) * (in2[5] << 0) + ((u64) in[1]) * | 
|  | 545 | (in2[4] << 0) + ((u64) in[2]) * (in2[3] << 0) + | 
|  | 546 | ((u64) in[3]) * (in2[2] << 0) + ((u64) in[4]) * | 
|  | 547 | (in2[1] << 0) + ((u64) in[5]) * (in2[0] << 0); | 
|  | 548 | tmp[6] = ((u64) in[0]) * (in2[6] << 0) + ((u64) in[1]) * | 
|  | 549 | (in2[5] << 1) + ((u64) in[2]) * (in2[4] << 0) + | 
|  | 550 | ((u64) in[3]) * (in2[3] << 1) + ((u64) in[4]) * | 
|  | 551 | (in2[2] << 0) + ((u64) in[5]) * (in2[1] << 1) + | 
|  | 552 | ((u64) in[6]) * (in2[0] << 0); | 
|  | 553 | tmp[7] = ((u64) in[0]) * (in2[7] << 0) + ((u64) in[1]) * | 
|  | 554 | (in2[6] << 0) + ((u64) in[2]) * (in2[5] << 0) + | 
|  | 555 | ((u64) in[3]) * (in2[4] << 0) + ((u64) in[4]) * | 
|  | 556 | (in2[3] << 0) + ((u64) in[5]) * (in2[2] << 0) + | 
|  | 557 | ((u64) in[6]) * (in2[1] << 0) + | 
|  | 558 | ((u64) in[7]) * (in2[0] << 0); | 
|  | 559 | /* tmp[8] has the greatest value but doesn't overflow. See logic in | 
|  | 560 | * felem_square. */ | 
|  | 561 | tmp[8] = ((u64) in[0]) * (in2[8] << 0) + ((u64) in[1]) * | 
|  | 562 | (in2[7] << 1) + ((u64) in[2]) * (in2[6] << 0) + | 
|  | 563 | ((u64) in[3]) * (in2[5] << 1) + ((u64) in[4]) * | 
|  | 564 | (in2[4] << 0) + ((u64) in[5]) * (in2[3] << 1) + | 
|  | 565 | ((u64) in[6]) * (in2[2] << 0) + ((u64) in[7]) * | 
|  | 566 | (in2[1] << 1) + ((u64) in[8]) * (in2[0] << 0); | 
|  | 567 | tmp[9] = ((u64) in[1]) * (in2[8] << 0) + ((u64) in[2]) * | 
|  | 568 | (in2[7] << 0) + ((u64) in[3]) * (in2[6] << 0) + | 
|  | 569 | ((u64) in[4]) * (in2[5] << 0) + ((u64) in[5]) * | 
|  | 570 | (in2[4] << 0) + ((u64) in[6]) * (in2[3] << 0) + | 
|  | 571 | ((u64) in[7]) * (in2[2] << 0) + | 
|  | 572 | ((u64) in[8]) * (in2[1] << 0); | 
|  | 573 | tmp[10] = ((u64) in[2]) * (in2[8] << 0) + ((u64) in[3]) * | 
|  | 574 | (in2[7] << 1) + ((u64) in[4]) * (in2[6] << 0) + | 
|  | 575 | ((u64) in[5]) * (in2[5] << 1) + ((u64) in[6]) * | 
|  | 576 | (in2[4] << 0) + ((u64) in[7]) * (in2[3] << 1) + | 
|  | 577 | ((u64) in[8]) * (in2[2] << 0); | 
|  | 578 | tmp[11] = ((u64) in[3]) * (in2[8] << 0) + ((u64) in[4]) * | 
|  | 579 | (in2[7] << 0) + ((u64) in[5]) * (in2[6] << 0) + | 
|  | 580 | ((u64) in[6]) * (in2[5] << 0) + ((u64) in[7]) * | 
|  | 581 | (in2[4] << 0) + ((u64) in[8]) * (in2[3] << 0); | 
|  | 582 | tmp[12] = ((u64) in[4]) * (in2[8] << 0) + ((u64) in[5]) * | 
|  | 583 | (in2[7] << 1) + ((u64) in[6]) * (in2[6] << 0) + | 
|  | 584 | ((u64) in[7]) * (in2[5] << 1) + | 
|  | 585 | ((u64) in[8]) * (in2[4] << 0); | 
|  | 586 | tmp[13] = ((u64) in[5]) * (in2[8] << 0) + ((u64) in[6]) * | 
|  | 587 | (in2[7] << 0) + ((u64) in[7]) * (in2[6] << 0) + | 
|  | 588 | ((u64) in[8]) * (in2[5] << 0); | 
|  | 589 | tmp[14] = ((u64) in[6]) * (in2[8] << 0) + ((u64) in[7]) * | 
|  | 590 | (in2[7] << 1) + ((u64) in[8]) * (in2[6] << 0); | 
|  | 591 | tmp[15] = ((u64) in[7]) * (in2[8] << 0) + | 
|  | 592 | ((u64) in[8]) * (in2[7] << 0); | 
|  | 593 | tmp[16] = ((u64) in[8]) * (in2[8] << 0); | 
|  | 594 |  | 
|  | 595 | felem_reduce_degree(out, tmp); | 
|  | 596 | } | 
|  | 597 |  | 
|  | 598 | static void felem_assign(felem out, const felem in) { | 
|  | 599 | memcpy(out, in, sizeof(felem)); | 
|  | 600 | } | 
|  | 601 |  | 
|  | 602 | /* felem_inv calculates |out| = |in|^{-1} | 
|  | 603 | * | 
|  | 604 | * Based on Fermat's Little Theorem: | 
|  | 605 | *   a^p = a (mod p) | 
|  | 606 | *   a^{p-1} = 1 (mod p) | 
|  | 607 | *   a^{p-2} = a^{-1} (mod p) | 
|  | 608 | */ | 
|  | 609 | static void felem_inv(felem out, const felem in) { | 
|  | 610 | felem ftmp, ftmp2; | 
|  | 611 | /* each e_I will hold |in|^{2^I - 1} */ | 
|  | 612 | felem e2, e4, e8, e16, e32, e64; | 
|  | 613 | unsigned i; | 
|  | 614 |  | 
|  | 615 | felem_square(ftmp, in); /* 2^1 */ | 
|  | 616 | felem_mul(ftmp, in, ftmp); /* 2^2 - 2^0 */ | 
|  | 617 | felem_assign(e2, ftmp); | 
|  | 618 | felem_square(ftmp, ftmp); /* 2^3 - 2^1 */ | 
|  | 619 | felem_square(ftmp, ftmp); /* 2^4 - 2^2 */ | 
|  | 620 | felem_mul(ftmp, ftmp, e2); /* 2^4 - 2^0 */ | 
|  | 621 | felem_assign(e4, ftmp); | 
|  | 622 | felem_square(ftmp, ftmp); /* 2^5 - 2^1 */ | 
|  | 623 | felem_square(ftmp, ftmp); /* 2^6 - 2^2 */ | 
|  | 624 | felem_square(ftmp, ftmp); /* 2^7 - 2^3 */ | 
|  | 625 | felem_square(ftmp, ftmp); /* 2^8 - 2^4 */ | 
|  | 626 | felem_mul(ftmp, ftmp, e4); /* 2^8 - 2^0 */ | 
|  | 627 | felem_assign(e8, ftmp); | 
|  | 628 | for (i = 0; i < 8; i++) { | 
|  | 629 | felem_square(ftmp, ftmp); | 
|  | 630 | } /* 2^16 - 2^8 */ | 
|  | 631 | felem_mul(ftmp, ftmp, e8); /* 2^16 - 2^0 */ | 
|  | 632 | felem_assign(e16, ftmp); | 
|  | 633 | for (i = 0; i < 16; i++) { | 
|  | 634 | felem_square(ftmp, ftmp); | 
|  | 635 | } /* 2^32 - 2^16 */ | 
|  | 636 | felem_mul(ftmp, ftmp, e16); /* 2^32 - 2^0 */ | 
|  | 637 | felem_assign(e32, ftmp); | 
|  | 638 | for (i = 0; i < 32; i++) { | 
|  | 639 | felem_square(ftmp, ftmp); | 
|  | 640 | } /* 2^64 - 2^32 */ | 
|  | 641 | felem_assign(e64, ftmp); | 
|  | 642 | felem_mul(ftmp, ftmp, in); /* 2^64 - 2^32 + 2^0 */ | 
|  | 643 | for (i = 0; i < 192; i++) { | 
|  | 644 | felem_square(ftmp, ftmp); | 
|  | 645 | } /* 2^256 - 2^224 + 2^192 */ | 
|  | 646 |  | 
|  | 647 | felem_mul(ftmp2, e64, e32); /* 2^64 - 2^0 */ | 
|  | 648 | for (i = 0; i < 16; i++) { | 
|  | 649 | felem_square(ftmp2, ftmp2); | 
|  | 650 | } /* 2^80 - 2^16 */ | 
|  | 651 | felem_mul(ftmp2, ftmp2, e16); /* 2^80 - 2^0 */ | 
|  | 652 | for (i = 0; i < 8; i++) { | 
|  | 653 | felem_square(ftmp2, ftmp2); | 
|  | 654 | } /* 2^88 - 2^8 */ | 
|  | 655 | felem_mul(ftmp2, ftmp2, e8); /* 2^88 - 2^0 */ | 
|  | 656 | for (i = 0; i < 4; i++) { | 
|  | 657 | felem_square(ftmp2, ftmp2); | 
|  | 658 | } /* 2^92 - 2^4 */ | 
|  | 659 | felem_mul(ftmp2, ftmp2, e4); /* 2^92 - 2^0 */ | 
|  | 660 | felem_square(ftmp2, ftmp2); /* 2^93 - 2^1 */ | 
|  | 661 | felem_square(ftmp2, ftmp2); /* 2^94 - 2^2 */ | 
|  | 662 | felem_mul(ftmp2, ftmp2, e2); /* 2^94 - 2^0 */ | 
|  | 663 | felem_square(ftmp2, ftmp2); /* 2^95 - 2^1 */ | 
|  | 664 | felem_square(ftmp2, ftmp2); /* 2^96 - 2^2 */ | 
|  | 665 | felem_mul(ftmp2, ftmp2, in); /* 2^96 - 3 */ | 
|  | 666 |  | 
|  | 667 | felem_mul(out, ftmp2, ftmp); /* 2^256 - 2^224 + 2^192 + 2^96 - 3 */ | 
|  | 668 | } | 
|  | 669 |  | 
|  | 670 | /* felem_scalar_3 sets out=3*out. | 
|  | 671 | * | 
|  | 672 | * On entry: out[0,2,...] < 2**30, out[1,3,...] < 2**29. | 
|  | 673 | * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. */ | 
|  | 674 | static void felem_scalar_3(felem out) { | 
|  | 675 | limb carry = 0; | 
|  | 676 | unsigned i; | 
|  | 677 |  | 
|  | 678 | for (i = 0;; i++) { | 
|  | 679 | out[i] *= 3; | 
|  | 680 | out[i] += carry; | 
|  | 681 | carry = out[i] >> 29; | 
|  | 682 | out[i] &= kBottom29Bits; | 
|  | 683 |  | 
|  | 684 | i++; | 
|  | 685 | if (i == NLIMBS) | 
|  | 686 | break; | 
|  | 687 |  | 
|  | 688 | out[i] *= 3; | 
|  | 689 | out[i] += carry; | 
|  | 690 | carry = out[i] >> 28; | 
|  | 691 | out[i] &= kBottom28Bits; | 
|  | 692 | } | 
|  | 693 |  | 
|  | 694 | felem_reduce_carry(out, carry); | 
|  | 695 | } | 
|  | 696 |  | 
|  | 697 | /* felem_scalar_4 sets out=4*out. | 
|  | 698 | * | 
|  | 699 | * On entry: out[0,2,...] < 2**30, out[1,3,...] < 2**29. | 
|  | 700 | * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. */ | 
|  | 701 | static void felem_scalar_4(felem out) { | 
|  | 702 | limb carry = 0, next_carry; | 
|  | 703 | unsigned i; | 
|  | 704 |  | 
|  | 705 | for (i = 0;; i++) { | 
|  | 706 | next_carry = out[i] >> 27; | 
|  | 707 | out[i] <<= 2; | 
|  | 708 | out[i] &= kBottom29Bits; | 
|  | 709 | out[i] += carry; | 
|  | 710 | carry = next_carry + (out[i] >> 29); | 
|  | 711 | out[i] &= kBottom29Bits; | 
|  | 712 |  | 
|  | 713 | i++; | 
|  | 714 | if (i == NLIMBS) | 
|  | 715 | break; | 
|  | 716 |  | 
|  | 717 | next_carry = out[i] >> 26; | 
|  | 718 | out[i] <<= 2; | 
|  | 719 | out[i] &= kBottom28Bits; | 
|  | 720 | out[i] += carry; | 
|  | 721 | carry = next_carry + (out[i] >> 28); | 
|  | 722 | out[i] &= kBottom28Bits; | 
|  | 723 | } | 
|  | 724 |  | 
|  | 725 | felem_reduce_carry(out, carry); | 
|  | 726 | } | 
|  | 727 |  | 
|  | 728 | /* felem_scalar_8 sets out=8*out. | 
|  | 729 | * | 
|  | 730 | * On entry: out[0,2,...] < 2**30, out[1,3,...] < 2**29. | 
|  | 731 | * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. */ | 
|  | 732 | static void felem_scalar_8(felem out) { | 
|  | 733 | limb carry = 0, next_carry; | 
|  | 734 | unsigned i; | 
|  | 735 |  | 
|  | 736 | for (i = 0;; i++) { | 
|  | 737 | next_carry = out[i] >> 26; | 
|  | 738 | out[i] <<= 3; | 
|  | 739 | out[i] &= kBottom29Bits; | 
|  | 740 | out[i] += carry; | 
|  | 741 | carry = next_carry + (out[i] >> 29); | 
|  | 742 | out[i] &= kBottom29Bits; | 
|  | 743 |  | 
|  | 744 | i++; | 
|  | 745 | if (i == NLIMBS) | 
|  | 746 | break; | 
|  | 747 |  | 
|  | 748 | next_carry = out[i] >> 25; | 
|  | 749 | out[i] <<= 3; | 
|  | 750 | out[i] &= kBottom28Bits; | 
|  | 751 | out[i] += carry; | 
|  | 752 | carry = next_carry + (out[i] >> 28); | 
|  | 753 | out[i] &= kBottom28Bits; | 
|  | 754 | } | 
|  | 755 |  | 
|  | 756 | felem_reduce_carry(out, carry); | 
|  | 757 | } | 
|  | 758 |  | 
|  | 759 | /* felem_is_zero_vartime returns 1 iff |in| == 0. It takes a variable amount of | 
|  | 760 | * time depending on the value of |in|. */ | 
|  | 761 | static char felem_is_zero_vartime(const felem in) { | 
|  | 762 | limb carry; | 
|  | 763 | int i; | 
|  | 764 | limb tmp[NLIMBS]; | 
|  | 765 |  | 
|  | 766 | felem_assign(tmp, in); | 
|  | 767 |  | 
|  | 768 | /* First, reduce tmp to a minimal form. */ | 
|  | 769 | do { | 
|  | 770 | carry = 0; | 
|  | 771 | for (i = 0;; i++) { | 
|  | 772 | tmp[i] += carry; | 
|  | 773 | carry = tmp[i] >> 29; | 
|  | 774 | tmp[i] &= kBottom29Bits; | 
|  | 775 |  | 
|  | 776 | i++; | 
|  | 777 | if (i == NLIMBS) | 
|  | 778 | break; | 
|  | 779 |  | 
|  | 780 | tmp[i] += carry; | 
|  | 781 | carry = tmp[i] >> 28; | 
|  | 782 | tmp[i] &= kBottom28Bits; | 
|  | 783 | } | 
|  | 784 |  | 
|  | 785 | felem_reduce_carry(tmp, carry); | 
|  | 786 | } while (carry); | 
|  | 787 |  | 
|  | 788 | /* tmp < 2**257, so the only possible zero values are 0, p and 2p. */ | 
|  | 789 | return memcmp(tmp, kZero, sizeof(tmp)) == 0 || | 
|  | 790 | memcmp(tmp, kP, sizeof(tmp)) == 0 || | 
|  | 791 | memcmp(tmp, k2P, sizeof(tmp)) == 0; | 
|  | 792 | } | 
|  | 793 |  | 
|  | 794 |  | 
|  | 795 | /* Group operations: | 
|  | 796 | * | 
|  | 797 | * Elements of the elliptic curve group are represented in Jacobian | 
|  | 798 | * coordinates: (x, y, z). An affine point (x', y') is x'=x/z**2, y'=y/z**3 in | 
|  | 799 | * Jacobian form. */ | 
|  | 800 |  | 
|  | 801 | /* point_double sets {x_out,y_out,z_out} = 2*{x,y,z}. | 
|  | 802 | * | 
|  | 803 | * See http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l */ | 
|  | 804 | static void point_double(felem x_out, felem y_out, felem z_out, const felem x, | 
|  | 805 | const felem y, const felem z) { | 
|  | 806 | felem delta, gamma, alpha, beta, tmp, tmp2; | 
|  | 807 |  | 
|  | 808 | felem_square(delta, z); | 
|  | 809 | felem_square(gamma, y); | 
|  | 810 | felem_mul(beta, x, gamma); | 
|  | 811 |  | 
|  | 812 | felem_sum(tmp, x, delta); | 
|  | 813 | felem_diff(tmp2, x, delta); | 
|  | 814 | felem_mul(alpha, tmp, tmp2); | 
|  | 815 | felem_scalar_3(alpha); | 
|  | 816 |  | 
|  | 817 | felem_sum(tmp, y, z); | 
|  | 818 | felem_square(tmp, tmp); | 
|  | 819 | felem_diff(tmp, tmp, gamma); | 
|  | 820 | felem_diff(z_out, tmp, delta); | 
|  | 821 |  | 
|  | 822 | felem_scalar_4(beta); | 
|  | 823 | felem_square(x_out, alpha); | 
|  | 824 | felem_diff(x_out, x_out, beta); | 
|  | 825 | felem_diff(x_out, x_out, beta); | 
|  | 826 |  | 
|  | 827 | felem_diff(tmp, beta, x_out); | 
|  | 828 | felem_mul(tmp, alpha, tmp); | 
|  | 829 | felem_square(tmp2, gamma); | 
|  | 830 | felem_scalar_8(tmp2); | 
|  | 831 | felem_diff(y_out, tmp, tmp2); | 
|  | 832 | } | 
|  | 833 |  | 
|  | 834 | /* point_add_mixed sets {x_out,y_out,z_out} = {x1,y1,z1} + {x2,y2,1}. | 
|  | 835 | * (i.e. the second point is affine.) | 
|  | 836 | * | 
|  | 837 | * See http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl | 
|  | 838 | * | 
|  | 839 | * Note that this function does not handle P+P, infinity+P nor P+infinity | 
|  | 840 | * correctly. */ | 
|  | 841 | static void point_add_mixed(felem x_out, felem y_out, felem z_out, | 
|  | 842 | const felem x1, const felem y1, const felem z1, | 
|  | 843 | const felem x2, const felem y2) { | 
|  | 844 | felem z1z1, z1z1z1, s2, u2, h, i, j, r, rr, v, tmp; | 
|  | 845 |  | 
|  | 846 | felem_square(z1z1, z1); | 
|  | 847 | felem_sum(tmp, z1, z1); | 
|  | 848 |  | 
|  | 849 | felem_mul(u2, x2, z1z1); | 
|  | 850 | felem_mul(z1z1z1, z1, z1z1); | 
|  | 851 | felem_mul(s2, y2, z1z1z1); | 
|  | 852 | felem_diff(h, u2, x1); | 
|  | 853 | felem_sum(i, h, h); | 
|  | 854 | felem_square(i, i); | 
|  | 855 | felem_mul(j, h, i); | 
|  | 856 | felem_diff(r, s2, y1); | 
|  | 857 | felem_sum(r, r, r); | 
|  | 858 | felem_mul(v, x1, i); | 
|  | 859 |  | 
|  | 860 | felem_mul(z_out, tmp, h); | 
|  | 861 | felem_square(rr, r); | 
|  | 862 | felem_diff(x_out, rr, j); | 
|  | 863 | felem_diff(x_out, x_out, v); | 
|  | 864 | felem_diff(x_out, x_out, v); | 
|  | 865 |  | 
|  | 866 | felem_diff(tmp, v, x_out); | 
|  | 867 | felem_mul(y_out, tmp, r); | 
|  | 868 | felem_mul(tmp, y1, j); | 
|  | 869 | felem_diff(y_out, y_out, tmp); | 
|  | 870 | felem_diff(y_out, y_out, tmp); | 
|  | 871 | } | 
|  | 872 |  | 
|  | 873 | /* point_add sets {x_out,y_out,z_out} = {x1,y1,z1} + {x2,y2,z2}. | 
|  | 874 | * | 
|  | 875 | * See http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl | 
|  | 876 | * | 
|  | 877 | * Note that this function does not handle P+P, infinity+P nor P+infinity | 
|  | 878 | * correctly. */ | 
|  | 879 | static void point_add(felem x_out, felem y_out, felem z_out, const felem x1, | 
|  | 880 | const felem y1, const felem z1, const felem x2, | 
|  | 881 | const felem y2, const felem z2) { | 
|  | 882 | felem z1z1, z1z1z1, z2z2, z2z2z2, s1, s2, u1, u2, h, i, j, r, rr, v, tmp; | 
|  | 883 |  | 
|  | 884 | felem_square(z1z1, z1); | 
|  | 885 | felem_square(z2z2, z2); | 
|  | 886 | felem_mul(u1, x1, z2z2); | 
|  | 887 |  | 
|  | 888 | felem_sum(tmp, z1, z2); | 
|  | 889 | felem_square(tmp, tmp); | 
|  | 890 | felem_diff(tmp, tmp, z1z1); | 
|  | 891 | felem_diff(tmp, tmp, z2z2); | 
|  | 892 |  | 
|  | 893 | felem_mul(z2z2z2, z2, z2z2); | 
|  | 894 | felem_mul(s1, y1, z2z2z2); | 
|  | 895 |  | 
|  | 896 | felem_mul(u2, x2, z1z1); | 
|  | 897 | felem_mul(z1z1z1, z1, z1z1); | 
|  | 898 | felem_mul(s2, y2, z1z1z1); | 
|  | 899 | felem_diff(h, u2, u1); | 
|  | 900 | felem_sum(i, h, h); | 
|  | 901 | felem_square(i, i); | 
|  | 902 | felem_mul(j, h, i); | 
|  | 903 | felem_diff(r, s2, s1); | 
|  | 904 | felem_sum(r, r, r); | 
|  | 905 | felem_mul(v, u1, i); | 
|  | 906 |  | 
|  | 907 | felem_mul(z_out, tmp, h); | 
|  | 908 | felem_square(rr, r); | 
|  | 909 | felem_diff(x_out, rr, j); | 
|  | 910 | felem_diff(x_out, x_out, v); | 
|  | 911 | felem_diff(x_out, x_out, v); | 
|  | 912 |  | 
|  | 913 | felem_diff(tmp, v, x_out); | 
|  | 914 | felem_mul(y_out, tmp, r); | 
|  | 915 | felem_mul(tmp, s1, j); | 
|  | 916 | felem_diff(y_out, y_out, tmp); | 
|  | 917 | felem_diff(y_out, y_out, tmp); | 
|  | 918 | } | 
|  | 919 |  | 
|  | 920 | /* point_add_or_double_vartime sets {x_out,y_out,z_out} = {x1,y1,z1} + | 
|  | 921 | *                                                        {x2,y2,z2}. | 
|  | 922 | * | 
|  | 923 | * See http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl | 
|  | 924 | * | 
|  | 925 | * This function handles the case where {x1,y1,z1}={x2,y2,z2}. */ | 
|  | 926 | static void point_add_or_double_vartime( | 
|  | 927 | felem x_out, felem y_out, felem z_out, const felem x1, const felem y1, | 
|  | 928 | const felem z1, const felem x2, const felem y2, const felem z2) { | 
|  | 929 | felem z1z1, z1z1z1, z2z2, z2z2z2, s1, s2, u1, u2, h, i, j, r, rr, v, tmp; | 
|  | 930 | char x_equal, y_equal; | 
|  | 931 |  | 
|  | 932 | felem_square(z1z1, z1); | 
|  | 933 | felem_square(z2z2, z2); | 
|  | 934 | felem_mul(u1, x1, z2z2); | 
|  | 935 |  | 
|  | 936 | felem_sum(tmp, z1, z2); | 
|  | 937 | felem_square(tmp, tmp); | 
|  | 938 | felem_diff(tmp, tmp, z1z1); | 
|  | 939 | felem_diff(tmp, tmp, z2z2); | 
|  | 940 |  | 
|  | 941 | felem_mul(z2z2z2, z2, z2z2); | 
|  | 942 | felem_mul(s1, y1, z2z2z2); | 
|  | 943 |  | 
|  | 944 | felem_mul(u2, x2, z1z1); | 
|  | 945 | felem_mul(z1z1z1, z1, z1z1); | 
|  | 946 | felem_mul(s2, y2, z1z1z1); | 
|  | 947 | felem_diff(h, u2, u1); | 
|  | 948 | x_equal = felem_is_zero_vartime(h); | 
|  | 949 | felem_sum(i, h, h); | 
|  | 950 | felem_square(i, i); | 
|  | 951 | felem_mul(j, h, i); | 
|  | 952 | felem_diff(r, s2, s1); | 
|  | 953 | y_equal = felem_is_zero_vartime(r); | 
|  | 954 | if (x_equal && y_equal) { | 
|  | 955 | point_double(x_out, y_out, z_out, x1, y1, z1); | 
|  | 956 | return; | 
|  | 957 | } | 
|  | 958 | felem_sum(r, r, r); | 
|  | 959 | felem_mul(v, u1, i); | 
|  | 960 |  | 
|  | 961 | felem_mul(z_out, tmp, h); | 
|  | 962 | felem_square(rr, r); | 
|  | 963 | felem_diff(x_out, rr, j); | 
|  | 964 | felem_diff(x_out, x_out, v); | 
|  | 965 | felem_diff(x_out, x_out, v); | 
|  | 966 |  | 
|  | 967 | felem_diff(tmp, v, x_out); | 
|  | 968 | felem_mul(y_out, tmp, r); | 
|  | 969 | felem_mul(tmp, s1, j); | 
|  | 970 | felem_diff(y_out, y_out, tmp); | 
|  | 971 | felem_diff(y_out, y_out, tmp); | 
|  | 972 | } | 
|  | 973 |  | 
|  | 974 | /* copy_conditional sets out=in if mask = 0xffffffff in constant time. | 
|  | 975 | * | 
|  | 976 | * On entry: mask is either 0 or 0xffffffff. */ | 
|  | 977 | static void copy_conditional(felem out, const felem in, limb mask) { | 
|  | 978 | int i; | 
|  | 979 |  | 
|  | 980 | for (i = 0; i < NLIMBS; i++) { | 
|  | 981 | const limb tmp = mask & (in[i] ^ out[i]); | 
|  | 982 | out[i] ^= tmp; | 
|  | 983 | } | 
|  | 984 | } | 
|  | 985 |  | 
|  | 986 | /* select_affine_point sets {out_x,out_y} to the index'th entry of table. | 
|  | 987 | * On entry: index < 16, table[0] must be zero. */ | 
|  | 988 | static void select_affine_point(felem out_x, felem out_y, const limb* table, | 
|  | 989 | limb index) { | 
|  | 990 | limb i, j; | 
|  | 991 |  | 
|  | 992 | memset(out_x, 0, sizeof(felem)); | 
|  | 993 | memset(out_y, 0, sizeof(felem)); | 
|  | 994 |  | 
|  | 995 | for (i = 1; i < 16; i++) { | 
|  | 996 | limb mask = i ^ index; | 
|  | 997 | mask |= mask >> 2; | 
|  | 998 | mask |= mask >> 1; | 
|  | 999 | mask &= 1; | 
|  | 1000 | mask--; | 
|  | 1001 | for (j = 0; j < NLIMBS; j++, table++) { | 
|  | 1002 | out_x[j] |= *table & mask; | 
|  | 1003 | } | 
|  | 1004 | for (j = 0; j < NLIMBS; j++, table++) { | 
|  | 1005 | out_y[j] |= *table & mask; | 
|  | 1006 | } | 
|  | 1007 | } | 
|  | 1008 | } | 
|  | 1009 |  | 
|  | 1010 | /* select_jacobian_point sets {out_x,out_y,out_z} to the index'th entry of | 
|  | 1011 | * table. On entry: index < 16, table[0] must be zero. */ | 
|  | 1012 | static void select_jacobian_point(felem out_x, felem out_y, felem out_z, | 
|  | 1013 | const limb* table, limb index) { | 
|  | 1014 | limb i, j; | 
|  | 1015 |  | 
|  | 1016 | memset(out_x, 0, sizeof(felem)); | 
|  | 1017 | memset(out_y, 0, sizeof(felem)); | 
|  | 1018 | memset(out_z, 0, sizeof(felem)); | 
|  | 1019 |  | 
|  | 1020 | /* The implicit value at index 0 is all zero. We don't need to perform that | 
|  | 1021 | * iteration of the loop because we already set out_* to zero. */ | 
|  | 1022 | table += 3 * NLIMBS; | 
|  | 1023 |  | 
|  | 1024 | // Hit all entries to obscure cache profiling. | 
|  | 1025 | for (i = 1; i < 16; i++) { | 
|  | 1026 | limb mask = i ^ index; | 
|  | 1027 | mask |= mask >> 2; | 
|  | 1028 | mask |= mask >> 1; | 
|  | 1029 | mask &= 1; | 
|  | 1030 | mask--; | 
|  | 1031 | for (j = 0; j < NLIMBS; j++, table++) { | 
|  | 1032 | out_x[j] |= *table & mask; | 
|  | 1033 | } | 
|  | 1034 | for (j = 0; j < NLIMBS; j++, table++) { | 
|  | 1035 | out_y[j] |= *table & mask; | 
|  | 1036 | } | 
|  | 1037 | for (j = 0; j < NLIMBS; j++, table++) { | 
|  | 1038 | out_z[j] |= *table & mask; | 
|  | 1039 | } | 
|  | 1040 | } | 
|  | 1041 | } | 
|  | 1042 |  | 
|  | 1043 | /* scalar_base_mult sets {nx,ny,nz} = scalar*G where scalar is a little-endian | 
|  | 1044 | * number. Note that the value of scalar must be less than the order of the | 
|  | 1045 | * group. */ | 
|  | 1046 | static void scalar_base_mult(felem nx, felem ny, felem nz, | 
|  | 1047 | const p256_int* scalar) { | 
|  | 1048 | int i, j; | 
|  | 1049 | limb n_is_infinity_mask = -1, p_is_noninfinite_mask, mask; | 
|  | 1050 | u32 table_offset; | 
|  | 1051 |  | 
|  | 1052 | felem px, py; | 
|  | 1053 | felem tx, ty, tz; | 
|  | 1054 |  | 
|  | 1055 | memset(nx, 0, sizeof(felem)); | 
|  | 1056 | memset(ny, 0, sizeof(felem)); | 
|  | 1057 | memset(nz, 0, sizeof(felem)); | 
|  | 1058 |  | 
|  | 1059 | /* The loop adds bits at positions 0, 64, 128 and 192, followed by | 
|  | 1060 | * positions 32,96,160 and 224 and does this 32 times. */ | 
|  | 1061 | for (i = 0; i < 32; i++) { | 
|  | 1062 | if (i) { | 
|  | 1063 | point_double(nx, ny, nz, nx, ny, nz); | 
|  | 1064 | } | 
|  | 1065 | table_offset = 0; | 
|  | 1066 | for (j = 0; j <= 32; j += 32) { | 
|  | 1067 | char bit0 = p256_get_bit(scalar, 31 - i + j); | 
|  | 1068 | char bit1 = p256_get_bit(scalar, 95 - i + j); | 
|  | 1069 | char bit2 = p256_get_bit(scalar, 159 - i + j); | 
|  | 1070 | char bit3 = p256_get_bit(scalar, 223 - i + j); | 
|  | 1071 | limb index = bit0 | (bit1 << 1) | (bit2 << 2) | (bit3 << 3); | 
|  | 1072 |  | 
|  | 1073 | select_affine_point(px, py, kPrecomputed + table_offset, index); | 
|  | 1074 | table_offset += 30 * NLIMBS; | 
|  | 1075 |  | 
|  | 1076 | /* Since scalar is less than the order of the group, we know that | 
|  | 1077 | * {nx,ny,nz} != {px,py,1}, unless both are zero, which we handle | 
|  | 1078 | * below. */ | 
|  | 1079 | point_add_mixed(tx, ty, tz, nx, ny, nz, px, py); | 
|  | 1080 | /* The result of point_add_mixed is incorrect if {nx,ny,nz} is zero | 
|  | 1081 | * (a.k.a.  the point at infinity). We handle that situation by | 
|  | 1082 | * copying the point from the table. */ | 
|  | 1083 | copy_conditional(nx, px, n_is_infinity_mask); | 
|  | 1084 | copy_conditional(ny, py, n_is_infinity_mask); | 
|  | 1085 | copy_conditional(nz, kOne, n_is_infinity_mask); | 
|  | 1086 |  | 
|  | 1087 | /* Equally, the result is also wrong if the point from the table is | 
|  | 1088 | * zero, which happens when the index is zero. We handle that by | 
|  | 1089 | * only copying from {tx,ty,tz} to {nx,ny,nz} if index != 0. */ | 
|  | 1090 | p_is_noninfinite_mask = NON_ZERO_TO_ALL_ONES(index); | 
|  | 1091 | mask = p_is_noninfinite_mask & ~n_is_infinity_mask; | 
|  | 1092 | copy_conditional(nx, tx, mask); | 
|  | 1093 | copy_conditional(ny, ty, mask); | 
|  | 1094 | copy_conditional(nz, tz, mask); | 
|  | 1095 | /* If p was not zero, then n is now non-zero. */ | 
|  | 1096 | n_is_infinity_mask &= ~p_is_noninfinite_mask; | 
|  | 1097 | } | 
|  | 1098 | } | 
|  | 1099 | } | 
|  | 1100 |  | 
|  | 1101 | /* point_to_affine converts a Jacobian point to an affine point. If the input | 
|  | 1102 | * is the point at infinity then it returns (0, 0) in constant time. */ | 
|  | 1103 | static void point_to_affine(felem x_out, felem y_out, const felem nx, | 
|  | 1104 | const felem ny, const felem nz) { | 
|  | 1105 | felem z_inv, z_inv_sq; | 
|  | 1106 | felem_inv(z_inv, nz); | 
|  | 1107 | felem_square(z_inv_sq, z_inv); | 
|  | 1108 | felem_mul(x_out, nx, z_inv_sq); | 
|  | 1109 | felem_mul(z_inv, z_inv, z_inv_sq); | 
|  | 1110 | felem_mul(y_out, ny, z_inv); | 
|  | 1111 | } | 
|  | 1112 |  | 
|  | 1113 | /* scalar_base_mult sets {nx,ny,nz} = scalar*{x,y}. */ | 
|  | 1114 | static void scalar_mult(felem nx, felem ny, felem nz, const felem x, | 
|  | 1115 | const felem y, const p256_int* scalar) { | 
|  | 1116 | int i; | 
|  | 1117 | felem px, py, pz, tx, ty, tz; | 
|  | 1118 | felem precomp[16][3]; | 
|  | 1119 | limb n_is_infinity_mask, index, p_is_noninfinite_mask, mask; | 
|  | 1120 |  | 
|  | 1121 | /* We precompute 0,1,2,... times {x,y}. */ | 
|  | 1122 | memset(precomp, 0, sizeof(felem) * 3); | 
|  | 1123 | memcpy(&precomp[1][0], x, sizeof(felem)); | 
|  | 1124 | memcpy(&precomp[1][1], y, sizeof(felem)); | 
|  | 1125 | memcpy(&precomp[1][2], kOne, sizeof(felem)); | 
|  | 1126 |  | 
|  | 1127 | for (i = 2; i < 16; i += 2) { | 
|  | 1128 | point_double(precomp[i][0], precomp[i][1], precomp[i][2], | 
|  | 1129 | precomp[i / 2][0], precomp[i / 2][1], precomp[i / 2][2]); | 
|  | 1130 |  | 
|  | 1131 | point_add_mixed(precomp[i + 1][0], precomp[i + 1][1], precomp[i + 1][2], | 
|  | 1132 | precomp[i][0], precomp[i][1], precomp[i][2], x, y); | 
|  | 1133 | } | 
|  | 1134 |  | 
|  | 1135 | memset(nx, 0, sizeof(felem)); | 
|  | 1136 | memset(ny, 0, sizeof(felem)); | 
|  | 1137 | memset(nz, 0, sizeof(felem)); | 
|  | 1138 | n_is_infinity_mask = -1; | 
|  | 1139 |  | 
|  | 1140 | /* We add in a window of four bits each iteration and do this 64 times. */ | 
|  | 1141 | for (i = 0; i < 256; i += 4) { | 
|  | 1142 | if (i) { | 
|  | 1143 | point_double(nx, ny, nz, nx, ny, nz); | 
|  | 1144 | point_double(nx, ny, nz, nx, ny, nz); | 
|  | 1145 | point_double(nx, ny, nz, nx, ny, nz); | 
|  | 1146 | point_double(nx, ny, nz, nx, ny, nz); | 
|  | 1147 | } | 
|  | 1148 |  | 
|  | 1149 | index = (p256_get_bit(scalar, 255 - i - 0) << 3) | | 
|  | 1150 | (p256_get_bit(scalar, 255 - i - 1) << 2) | | 
|  | 1151 | (p256_get_bit(scalar, 255 - i - 2) << 1) | | 
|  | 1152 | p256_get_bit(scalar, 255 - i - 3); | 
|  | 1153 |  | 
|  | 1154 | /* See the comments in scalar_base_mult about handling infinities. */ | 
|  | 1155 | select_jacobian_point(px, py, pz, precomp[0][0], index); | 
|  | 1156 | point_add(tx, ty, tz, nx, ny, nz, px, py, pz); | 
|  | 1157 | copy_conditional(nx, px, n_is_infinity_mask); | 
|  | 1158 | copy_conditional(ny, py, n_is_infinity_mask); | 
|  | 1159 | copy_conditional(nz, pz, n_is_infinity_mask); | 
|  | 1160 |  | 
|  | 1161 | p_is_noninfinite_mask = NON_ZERO_TO_ALL_ONES(index); | 
|  | 1162 | mask = p_is_noninfinite_mask & ~n_is_infinity_mask; | 
|  | 1163 |  | 
|  | 1164 | copy_conditional(nx, tx, mask); | 
|  | 1165 | copy_conditional(ny, ty, mask); | 
|  | 1166 | copy_conditional(nz, tz, mask); | 
|  | 1167 | n_is_infinity_mask &= ~p_is_noninfinite_mask; | 
|  | 1168 | } | 
|  | 1169 | } | 
|  | 1170 |  | 
|  | 1171 | #define kRDigits {2, 0, 0, 0xfffffffe, 0xffffffff, 0xffffffff, 0xfffffffd, 1} // 2^257 mod p256.p | 
|  | 1172 |  | 
|  | 1173 | #define kRInvDigits {0x80000000, 1, 0xffffffff, 0, 0x80000001, 0xfffffffe, 1, 0x7fffffff}  // 1 / 2^257 mod p256.p | 
|  | 1174 |  | 
|  | 1175 | static const p256_int kR = { kRDigits }; | 
|  | 1176 | static const p256_int kRInv = { kRInvDigits }; | 
|  | 1177 |  | 
|  | 1178 | /* to_montgomery sets out = R*in. */ | 
|  | 1179 | static void to_montgomery(felem out, const p256_int* in) { | 
|  | 1180 | p256_int in_shifted; | 
|  | 1181 | int i; | 
|  | 1182 |  | 
|  | 1183 | p256_init(&in_shifted); | 
|  | 1184 | p256_modmul(&SECP256r1_p, in, 0, &kR, &in_shifted); | 
|  | 1185 |  | 
|  | 1186 | for (i = 0; i < NLIMBS; i++) { | 
|  | 1187 | if ((i & 1) == 0) { | 
|  | 1188 | out[i] = P256_DIGIT(&in_shifted, 0) & kBottom29Bits; | 
|  | 1189 | p256_shr(&in_shifted, 29, &in_shifted); | 
|  | 1190 | } else { | 
|  | 1191 | out[i] = P256_DIGIT(&in_shifted, 0) & kBottom28Bits; | 
|  | 1192 | p256_shr(&in_shifted, 28, &in_shifted); | 
|  | 1193 | } | 
|  | 1194 | } | 
|  | 1195 |  | 
|  | 1196 | p256_clear(&in_shifted); | 
|  | 1197 | } | 
|  | 1198 |  | 
|  | 1199 | /* from_montgomery sets out=in/R. */ | 
|  | 1200 | static void from_montgomery(p256_int* out, const felem in) { | 
|  | 1201 | p256_int result, tmp; | 
|  | 1202 | int i, top; | 
|  | 1203 |  | 
|  | 1204 | p256_init(&result); | 
|  | 1205 | p256_init(&tmp); | 
|  | 1206 |  | 
|  | 1207 | p256_add_d(&tmp, in[NLIMBS - 1], &result); | 
|  | 1208 | for (i = NLIMBS - 2; i >= 0; i--) { | 
|  | 1209 | if ((i & 1) == 0) { | 
|  | 1210 | top = p256_shl(&result, 29, &tmp); | 
|  | 1211 | } else { | 
|  | 1212 | top = p256_shl(&result, 28, &tmp); | 
|  | 1213 | } | 
|  | 1214 | top |= p256_add_d(&tmp, in[i], &result); | 
|  | 1215 | } | 
|  | 1216 |  | 
|  | 1217 | p256_modmul(&SECP256r1_p, &kRInv, top, &result, out); | 
|  | 1218 |  | 
|  | 1219 | p256_clear(&result); | 
|  | 1220 | p256_clear(&tmp); | 
|  | 1221 | } | 
|  | 1222 |  | 
|  | 1223 | /* p256_base_point_mul sets {out_x,out_y} = nG, where n is < the | 
|  | 1224 | * order of the group. */ | 
|  | 1225 | void p256_base_point_mul(const p256_int* n, p256_int* out_x, p256_int* out_y) { | 
|  | 1226 | felem x, y, z; | 
|  | 1227 |  | 
|  | 1228 | scalar_base_mult(x, y, z, n); | 
|  | 1229 |  | 
|  | 1230 | { | 
|  | 1231 | felem x_affine, y_affine; | 
|  | 1232 |  | 
|  | 1233 | point_to_affine(x_affine, y_affine, x, y, z); | 
|  | 1234 | from_montgomery(out_x, x_affine); | 
|  | 1235 | from_montgomery(out_y, y_affine); | 
|  | 1236 | } | 
|  | 1237 | } | 
|  | 1238 |  | 
|  | 1239 | /* p256_points_mul_vartime sets {out_x,out_y} = n1*G + n2*{in_x,in_y}, where | 
|  | 1240 | * n1 and n2 are < the order of the group. | 
|  | 1241 | * | 
|  | 1242 | * As indicated by the name, this function operates in variable time. This | 
|  | 1243 | * is safe because it's used for signature validation which doesn't deal | 
|  | 1244 | * with secrets. */ | 
|  | 1245 | void p256_points_mul_vartime( | 
|  | 1246 | const p256_int* n1, const p256_int* n2, const p256_int* in_x, | 
|  | 1247 | const p256_int* in_y, p256_int* out_x, p256_int* out_y) { | 
|  | 1248 | felem x1, y1, z1, x2, y2, z2, px, py; | 
|  | 1249 |  | 
|  | 1250 | /* If both scalars are zero, then the result is the point at infinity. */ | 
|  | 1251 | if (p256_is_zero(n1) != 0 && p256_is_zero(n2) != 0) { | 
|  | 1252 | p256_clear(out_x); | 
|  | 1253 | p256_clear(out_y); | 
|  | 1254 | return; | 
|  | 1255 | } | 
|  | 1256 |  | 
|  | 1257 | to_montgomery(px, in_x); | 
|  | 1258 | to_montgomery(py, in_y); | 
|  | 1259 | scalar_base_mult(x1, y1, z1, n1); | 
|  | 1260 | scalar_mult(x2, y2, z2, px, py, n2); | 
|  | 1261 |  | 
|  | 1262 | if (p256_is_zero(n2) != 0) { | 
|  | 1263 | /* If n2 == 0, then {x2,y2,z2} is zero and the result is just | 
|  | 1264 | * {x1,y1,z1}. */ | 
|  | 1265 | } else if (p256_is_zero(n1) != 0) { | 
|  | 1266 | /* If n1 == 0, then {x1,y1,z1} is zero and the result is just | 
|  | 1267 | * {x2,y2,z2}. */ | 
|  | 1268 | memcpy(x1, x2, sizeof(x2)); | 
|  | 1269 | memcpy(y1, y2, sizeof(y2)); | 
|  | 1270 | memcpy(z1, z2, sizeof(z2)); | 
|  | 1271 | } else { | 
|  | 1272 | /* This function handles the case where {x1,y1,z1} == {x2,y2,z2}. */ | 
|  | 1273 | point_add_or_double_vartime(x1, y1, z1, x1, y1, z1, x2, y2, z2); | 
|  | 1274 | } | 
|  | 1275 |  | 
|  | 1276 | point_to_affine(px, py, x1, y1, z1); | 
|  | 1277 | from_montgomery(out_x, px); | 
|  | 1278 | from_montgomery(out_y, py); | 
|  | 1279 | } |