|  | /* | 
|  | * Copyright (C) 2005 The Android Open Source Project | 
|  | * | 
|  | * Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | * you may not use this file except in compliance with the License. | 
|  | * You may obtain a copy of the License at | 
|  | * | 
|  | *      http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | * Unless required by applicable law or agreed to in writing, software | 
|  | * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | * See the License for the specific language governing permissions and | 
|  | * limitations under the License. | 
|  | */ | 
|  |  | 
|  | #define LOG_TAG "Vector" | 
|  |  | 
|  | #include <utils/VectorImpl.h> | 
|  |  | 
|  | #include <stdio.h> | 
|  | #include <stdlib.h> | 
|  | #include <string.h> | 
|  |  | 
|  | #include <log/log.h> | 
|  |  | 
|  | #include <safe_iop.h> | 
|  |  | 
|  | #include "SharedBuffer.h" | 
|  |  | 
|  | /*****************************************************************************/ | 
|  |  | 
|  |  | 
|  | namespace android { | 
|  |  | 
|  | // ---------------------------------------------------------------------------- | 
|  |  | 
|  | const size_t kMinVectorCapacity = 4; | 
|  |  | 
|  | static inline size_t max(size_t a, size_t b) { | 
|  | return a>b ? a : b; | 
|  | } | 
|  |  | 
|  | // ---------------------------------------------------------------------------- | 
|  |  | 
|  | VectorImpl::VectorImpl(size_t itemSize, uint32_t flags) | 
|  | : mStorage(nullptr), mCount(0), mFlags(flags), mItemSize(itemSize) | 
|  | { | 
|  | } | 
|  |  | 
|  | VectorImpl::VectorImpl(const VectorImpl& rhs) | 
|  | :   mStorage(rhs.mStorage), mCount(rhs.mCount), | 
|  | mFlags(rhs.mFlags), mItemSize(rhs.mItemSize) | 
|  | { | 
|  | if (mStorage) { | 
|  | SharedBuffer::bufferFromData(mStorage)->acquire(); | 
|  | } | 
|  | } | 
|  |  | 
|  | VectorImpl::~VectorImpl() | 
|  | { | 
|  | ALOGW_IF(mCount, | 
|  | "[%p] subclasses of VectorImpl must call finish_vector()" | 
|  | " in their destructor. Leaking %d bytes.", | 
|  | this, (int)(mCount*mItemSize)); | 
|  | // We can't call _do_destroy() here because the vtable is already gone. | 
|  | } | 
|  |  | 
|  | VectorImpl& VectorImpl::operator = (const VectorImpl& rhs) | 
|  | { | 
|  | LOG_ALWAYS_FATAL_IF(mItemSize != rhs.mItemSize, | 
|  | "Vector<> have different types (this=%p, rhs=%p)", this, &rhs); | 
|  | if (this != &rhs) { | 
|  | release_storage(); | 
|  | if (rhs.mCount) { | 
|  | mStorage = rhs.mStorage; | 
|  | mCount = rhs.mCount; | 
|  | SharedBuffer::bufferFromData(mStorage)->acquire(); | 
|  | } else { | 
|  | mStorage = nullptr; | 
|  | mCount = 0; | 
|  | } | 
|  | } | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | void* VectorImpl::editArrayImpl() | 
|  | { | 
|  | if (mStorage) { | 
|  | const SharedBuffer* sb = SharedBuffer::bufferFromData(mStorage); | 
|  | SharedBuffer* editable = sb->attemptEdit(); | 
|  | if (editable == nullptr) { | 
|  | // If we're here, we're not the only owner of the buffer. | 
|  | // We must make a copy of it. | 
|  | editable = SharedBuffer::alloc(sb->size()); | 
|  | // Fail instead of returning a pointer to storage that's not | 
|  | // editable. Otherwise we'd be editing the contents of a buffer | 
|  | // for which we're not the only owner, which is undefined behaviour. | 
|  | LOG_ALWAYS_FATAL_IF(editable == nullptr); | 
|  | _do_copy(editable->data(), mStorage, mCount); | 
|  | release_storage(); | 
|  | mStorage = editable->data(); | 
|  | } | 
|  | } | 
|  | return mStorage; | 
|  | } | 
|  |  | 
|  | size_t VectorImpl::capacity() const | 
|  | { | 
|  | if (mStorage) { | 
|  | return SharedBuffer::bufferFromData(mStorage)->size() / mItemSize; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ssize_t VectorImpl::insertVectorAt(const VectorImpl& vector, size_t index) | 
|  | { | 
|  | return insertArrayAt(vector.arrayImpl(), index, vector.size()); | 
|  | } | 
|  |  | 
|  | ssize_t VectorImpl::appendVector(const VectorImpl& vector) | 
|  | { | 
|  | return insertVectorAt(vector, size()); | 
|  | } | 
|  |  | 
|  | ssize_t VectorImpl::insertArrayAt(const void* array, size_t index, size_t length) | 
|  | { | 
|  | if (index > size()) | 
|  | return BAD_INDEX; | 
|  | void* where = _grow(index, length); | 
|  | if (where) { | 
|  | _do_copy(where, array, length); | 
|  | } | 
|  | return where ? index : (ssize_t)NO_MEMORY; | 
|  | } | 
|  |  | 
|  | ssize_t VectorImpl::appendArray(const void* array, size_t length) | 
|  | { | 
|  | return insertArrayAt(array, size(), length); | 
|  | } | 
|  |  | 
|  | ssize_t VectorImpl::insertAt(size_t index, size_t numItems) | 
|  | { | 
|  | return insertAt(nullptr, index, numItems); | 
|  | } | 
|  |  | 
|  | ssize_t VectorImpl::insertAt(const void* item, size_t index, size_t numItems) | 
|  | { | 
|  | if (index > size()) | 
|  | return BAD_INDEX; | 
|  | void* where = _grow(index, numItems); | 
|  | if (where) { | 
|  | if (item) { | 
|  | _do_splat(where, item, numItems); | 
|  | } else { | 
|  | _do_construct(where, numItems); | 
|  | } | 
|  | } | 
|  | return where ? index : (ssize_t)NO_MEMORY; | 
|  | } | 
|  |  | 
|  | static int sortProxy(const void* lhs, const void* rhs, void* func) | 
|  | { | 
|  | return (*(VectorImpl::compar_t)func)(lhs, rhs); | 
|  | } | 
|  |  | 
|  | status_t VectorImpl::sort(VectorImpl::compar_t cmp) | 
|  | { | 
|  | return sort(sortProxy, (void*)cmp); | 
|  | } | 
|  |  | 
|  | status_t VectorImpl::sort(VectorImpl::compar_r_t cmp, void* state) | 
|  | { | 
|  | // the sort must be stable. we're using insertion sort which | 
|  | // is well suited for small and already sorted arrays | 
|  | // for big arrays, it could be better to use mergesort | 
|  | const ssize_t count = size(); | 
|  | if (count > 1) { | 
|  | void* array = const_cast<void*>(arrayImpl()); | 
|  | void* temp = nullptr; | 
|  | ssize_t i = 1; | 
|  | while (i < count) { | 
|  | void* item = reinterpret_cast<char*>(array) + mItemSize*(i); | 
|  | void* curr = reinterpret_cast<char*>(array) + mItemSize*(i-1); | 
|  | if (cmp(curr, item, state) > 0) { | 
|  |  | 
|  | if (!temp) { | 
|  | // we're going to have to modify the array... | 
|  | array = editArrayImpl(); | 
|  | if (!array) return NO_MEMORY; | 
|  | temp = malloc(mItemSize); | 
|  | if (!temp) return NO_MEMORY; | 
|  | item = reinterpret_cast<char*>(array) + mItemSize*(i); | 
|  | curr = reinterpret_cast<char*>(array) + mItemSize*(i-1); | 
|  | } else { | 
|  | _do_destroy(temp, 1); | 
|  | } | 
|  |  | 
|  | _do_copy(temp, item, 1); | 
|  |  | 
|  | ssize_t j = i-1; | 
|  | void* next = reinterpret_cast<char*>(array) + mItemSize*(i); | 
|  | do { | 
|  | _do_destroy(next, 1); | 
|  | _do_copy(next, curr, 1); | 
|  | next = curr; | 
|  | --j; | 
|  | curr = nullptr; | 
|  | if (j >= 0) { | 
|  | curr = reinterpret_cast<char*>(array) + mItemSize*(j); | 
|  | } | 
|  | } while (j>=0 && (cmp(curr, temp, state) > 0)); | 
|  |  | 
|  | _do_destroy(next, 1); | 
|  | _do_copy(next, temp, 1); | 
|  | } | 
|  | i++; | 
|  | } | 
|  |  | 
|  | if (temp) { | 
|  | _do_destroy(temp, 1); | 
|  | free(temp); | 
|  | } | 
|  | } | 
|  | return NO_ERROR; | 
|  | } | 
|  |  | 
|  | void VectorImpl::pop() | 
|  | { | 
|  | if (size()) | 
|  | removeItemsAt(size()-1, 1); | 
|  | } | 
|  |  | 
|  | void VectorImpl::push() | 
|  | { | 
|  | push(nullptr); | 
|  | } | 
|  |  | 
|  | void VectorImpl::push(const void* item) | 
|  | { | 
|  | insertAt(item, size()); | 
|  | } | 
|  |  | 
|  | ssize_t VectorImpl::add() | 
|  | { | 
|  | return add(nullptr); | 
|  | } | 
|  |  | 
|  | ssize_t VectorImpl::add(const void* item) | 
|  | { | 
|  | return insertAt(item, size()); | 
|  | } | 
|  |  | 
|  | ssize_t VectorImpl::replaceAt(size_t index) | 
|  | { | 
|  | return replaceAt(nullptr, index); | 
|  | } | 
|  |  | 
|  | ssize_t VectorImpl::replaceAt(const void* prototype, size_t index) | 
|  | { | 
|  | ALOG_ASSERT(index<size(), | 
|  | "[%p] replace: index=%d, size=%d", this, (int)index, (int)size()); | 
|  |  | 
|  | if (index >= size()) { | 
|  | return BAD_INDEX; | 
|  | } | 
|  |  | 
|  | void* item = editItemLocation(index); | 
|  | if (item != prototype) { | 
|  | if (item == nullptr) | 
|  | return NO_MEMORY; | 
|  | _do_destroy(item, 1); | 
|  | if (prototype == nullptr) { | 
|  | _do_construct(item, 1); | 
|  | } else { | 
|  | _do_copy(item, prototype, 1); | 
|  | } | 
|  | } | 
|  | return ssize_t(index); | 
|  | } | 
|  |  | 
|  | ssize_t VectorImpl::removeItemsAt(size_t index, size_t count) | 
|  | { | 
|  | ALOG_ASSERT((index+count)<=size(), | 
|  | "[%p] remove: index=%d, count=%d, size=%d", | 
|  | this, (int)index, (int)count, (int)size()); | 
|  |  | 
|  | if ((index+count) > size()) | 
|  | return BAD_VALUE; | 
|  | _shrink(index, count); | 
|  | return index; | 
|  | } | 
|  |  | 
|  | void VectorImpl::finish_vector() | 
|  | { | 
|  | release_storage(); | 
|  | mStorage = nullptr; | 
|  | mCount = 0; | 
|  | } | 
|  |  | 
|  | void VectorImpl::clear() | 
|  | { | 
|  | _shrink(0, mCount); | 
|  | } | 
|  |  | 
|  | void* VectorImpl::editItemLocation(size_t index) | 
|  | { | 
|  | ALOG_ASSERT(index<capacity(), | 
|  | "[%p] editItemLocation: index=%d, capacity=%d, count=%d", | 
|  | this, (int)index, (int)capacity(), (int)mCount); | 
|  |  | 
|  | if (index < capacity()) { | 
|  | void* buffer = editArrayImpl(); | 
|  | if (buffer) { | 
|  | return reinterpret_cast<char*>(buffer) + index*mItemSize; | 
|  | } | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | const void* VectorImpl::itemLocation(size_t index) const | 
|  | { | 
|  | ALOG_ASSERT(index<capacity(), | 
|  | "[%p] itemLocation: index=%d, capacity=%d, count=%d", | 
|  | this, (int)index, (int)capacity(), (int)mCount); | 
|  |  | 
|  | if (index < capacity()) { | 
|  | const  void* buffer = arrayImpl(); | 
|  | if (buffer) { | 
|  | return reinterpret_cast<const char*>(buffer) + index*mItemSize; | 
|  | } | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | ssize_t VectorImpl::setCapacity(size_t new_capacity) | 
|  | { | 
|  | // The capacity must always be greater than or equal to the size | 
|  | // of this vector. | 
|  | if (new_capacity <= size()) { | 
|  | return capacity(); | 
|  | } | 
|  |  | 
|  | size_t new_allocation_size = 0; | 
|  | LOG_ALWAYS_FATAL_IF(!safe_mul(&new_allocation_size, new_capacity, mItemSize)); | 
|  | SharedBuffer* sb = SharedBuffer::alloc(new_allocation_size); | 
|  | if (sb) { | 
|  | void* array = sb->data(); | 
|  | _do_copy(array, mStorage, size()); | 
|  | release_storage(); | 
|  | mStorage = const_cast<void*>(array); | 
|  | } else { | 
|  | return NO_MEMORY; | 
|  | } | 
|  | return new_capacity; | 
|  | } | 
|  |  | 
|  | ssize_t VectorImpl::resize(size_t size) { | 
|  | ssize_t result = NO_ERROR; | 
|  | if (size > mCount) { | 
|  | result = insertAt(mCount, size - mCount); | 
|  | } else if (size < mCount) { | 
|  | result = removeItemsAt(size, mCount - size); | 
|  | } | 
|  | return result < 0 ? result : size; | 
|  | } | 
|  |  | 
|  | void VectorImpl::release_storage() | 
|  | { | 
|  | if (mStorage) { | 
|  | const SharedBuffer* sb = SharedBuffer::bufferFromData(mStorage); | 
|  | if (sb->release(SharedBuffer::eKeepStorage) == 1) { | 
|  | _do_destroy(mStorage, mCount); | 
|  | SharedBuffer::dealloc(sb); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void* VectorImpl::_grow(size_t where, size_t amount) | 
|  | { | 
|  | //    ALOGV("_grow(this=%p, where=%d, amount=%d) count=%d, capacity=%d", | 
|  | //        this, (int)where, (int)amount, (int)mCount, (int)capacity()); | 
|  |  | 
|  | ALOG_ASSERT(where <= mCount, | 
|  | "[%p] _grow: where=%d, amount=%d, count=%d", | 
|  | this, (int)where, (int)amount, (int)mCount); // caller already checked | 
|  |  | 
|  | size_t new_size; | 
|  | LOG_ALWAYS_FATAL_IF(!safe_add(&new_size, mCount, amount), "new_size overflow"); | 
|  |  | 
|  | if (capacity() < new_size) { | 
|  | // NOTE: This implementation used to resize vectors as per ((3*x + 1) / 2) | 
|  | // (sigh..). Also note, the " + 1" was necessary to handle the special case | 
|  | // where x == 1, where the resized_capacity will be equal to the old | 
|  | // capacity without the +1. The old calculation wouldn't work properly | 
|  | // if x was zero. | 
|  | // | 
|  | // This approximates the old calculation, using (x + (x/2) + 1) instead. | 
|  | size_t new_capacity = 0; | 
|  | LOG_ALWAYS_FATAL_IF(!safe_add(&new_capacity, new_size, (new_size / 2)), | 
|  | "new_capacity overflow"); | 
|  | LOG_ALWAYS_FATAL_IF(!safe_add(&new_capacity, new_capacity, static_cast<size_t>(1u)), | 
|  | "new_capacity overflow"); | 
|  | new_capacity = max(kMinVectorCapacity, new_capacity); | 
|  |  | 
|  | size_t new_alloc_size = 0; | 
|  | LOG_ALWAYS_FATAL_IF(!safe_mul(&new_alloc_size, new_capacity, mItemSize), | 
|  | "new_alloc_size overflow"); | 
|  |  | 
|  | //        ALOGV("grow vector %p, new_capacity=%d", this, (int)new_capacity); | 
|  | if ((mStorage) && | 
|  | (mCount==where) && | 
|  | (mFlags & HAS_TRIVIAL_COPY) && | 
|  | (mFlags & HAS_TRIVIAL_DTOR)) | 
|  | { | 
|  | const SharedBuffer* cur_sb = SharedBuffer::bufferFromData(mStorage); | 
|  | SharedBuffer* sb = cur_sb->editResize(new_alloc_size); | 
|  | if (sb) { | 
|  | mStorage = sb->data(); | 
|  | } else { | 
|  | return nullptr; | 
|  | } | 
|  | } else { | 
|  | SharedBuffer* sb = SharedBuffer::alloc(new_alloc_size); | 
|  | if (sb) { | 
|  | void* array = sb->data(); | 
|  | if (where != 0) { | 
|  | _do_copy(array, mStorage, where); | 
|  | } | 
|  | if (where != mCount) { | 
|  | const void* from = reinterpret_cast<const uint8_t *>(mStorage) + where*mItemSize; | 
|  | void* dest = reinterpret_cast<uint8_t *>(array) + (where+amount)*mItemSize; | 
|  | _do_copy(dest, from, mCount-where); | 
|  | } | 
|  | release_storage(); | 
|  | mStorage = const_cast<void*>(array); | 
|  | } else { | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | void* array = editArrayImpl(); | 
|  | if (where != mCount) { | 
|  | const void* from = reinterpret_cast<const uint8_t *>(array) + where*mItemSize; | 
|  | void* to = reinterpret_cast<uint8_t *>(array) + (where+amount)*mItemSize; | 
|  | _do_move_forward(to, from, mCount - where); | 
|  | } | 
|  | } | 
|  | mCount = new_size; | 
|  | void* free_space = const_cast<void*>(itemLocation(where)); | 
|  | return free_space; | 
|  | } | 
|  |  | 
|  | void VectorImpl::_shrink(size_t where, size_t amount) | 
|  | { | 
|  | if (!mStorage) | 
|  | return; | 
|  |  | 
|  | //    ALOGV("_shrink(this=%p, where=%d, amount=%d) count=%d, capacity=%d", | 
|  | //        this, (int)where, (int)amount, (int)mCount, (int)capacity()); | 
|  |  | 
|  | ALOG_ASSERT(where + amount <= mCount, | 
|  | "[%p] _shrink: where=%d, amount=%d, count=%d", | 
|  | this, (int)where, (int)amount, (int)mCount); // caller already checked | 
|  |  | 
|  | size_t new_size; | 
|  | LOG_ALWAYS_FATAL_IF(!safe_sub(&new_size, mCount, amount)); | 
|  |  | 
|  | if (new_size < (capacity() / 2)) { | 
|  | // NOTE: (new_size * 2) is safe because capacity didn't overflow and | 
|  | // new_size < (capacity / 2)). | 
|  | const size_t new_capacity = max(kMinVectorCapacity, new_size * 2); | 
|  |  | 
|  | // NOTE: (new_capacity * mItemSize), (where * mItemSize) and | 
|  | // ((where + amount) * mItemSize) beyond this point are safe because | 
|  | // we are always reducing the capacity of the underlying SharedBuffer. | 
|  | // In other words, (old_capacity * mItemSize) did not overflow, and | 
|  | // where < (where + amount) < new_capacity < old_capacity. | 
|  | if ((where == new_size) && | 
|  | (mFlags & HAS_TRIVIAL_COPY) && | 
|  | (mFlags & HAS_TRIVIAL_DTOR)) | 
|  | { | 
|  | const SharedBuffer* cur_sb = SharedBuffer::bufferFromData(mStorage); | 
|  | SharedBuffer* sb = cur_sb->editResize(new_capacity * mItemSize); | 
|  | if (sb) { | 
|  | mStorage = sb->data(); | 
|  | } else { | 
|  | return; | 
|  | } | 
|  | } else { | 
|  | SharedBuffer* sb = SharedBuffer::alloc(new_capacity * mItemSize); | 
|  | if (sb) { | 
|  | void* array = sb->data(); | 
|  | if (where != 0) { | 
|  | _do_copy(array, mStorage, where); | 
|  | } | 
|  | if (where != new_size) { | 
|  | const void* from = reinterpret_cast<const uint8_t *>(mStorage) + (where+amount)*mItemSize; | 
|  | void* dest = reinterpret_cast<uint8_t *>(array) + where*mItemSize; | 
|  | _do_copy(dest, from, new_size - where); | 
|  | } | 
|  | release_storage(); | 
|  | mStorage = const_cast<void*>(array); | 
|  | } else{ | 
|  | return; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | void* array = editArrayImpl(); | 
|  | void* to = reinterpret_cast<uint8_t *>(array) + where*mItemSize; | 
|  | _do_destroy(to, amount); | 
|  | if (where != new_size) { | 
|  | const void* from = reinterpret_cast<uint8_t *>(array) + (where+amount)*mItemSize; | 
|  | _do_move_backward(to, from, new_size - where); | 
|  | } | 
|  | } | 
|  | mCount = new_size; | 
|  | } | 
|  |  | 
|  | size_t VectorImpl::itemSize() const { | 
|  | return mItemSize; | 
|  | } | 
|  |  | 
|  | void VectorImpl::_do_construct(void* storage, size_t num) const | 
|  | { | 
|  | if (!(mFlags & HAS_TRIVIAL_CTOR)) { | 
|  | do_construct(storage, num); | 
|  | } | 
|  | } | 
|  |  | 
|  | void VectorImpl::_do_destroy(void* storage, size_t num) const | 
|  | { | 
|  | if (!(mFlags & HAS_TRIVIAL_DTOR)) { | 
|  | do_destroy(storage, num); | 
|  | } | 
|  | } | 
|  |  | 
|  | void VectorImpl::_do_copy(void* dest, const void* from, size_t num) const | 
|  | { | 
|  | if (!(mFlags & HAS_TRIVIAL_COPY)) { | 
|  | do_copy(dest, from, num); | 
|  | } else { | 
|  | memcpy(dest, from, num*itemSize()); | 
|  | } | 
|  | } | 
|  |  | 
|  | void VectorImpl::_do_splat(void* dest, const void* item, size_t num) const { | 
|  | do_splat(dest, item, num); | 
|  | } | 
|  |  | 
|  | void VectorImpl::_do_move_forward(void* dest, const void* from, size_t num) const { | 
|  | do_move_forward(dest, from, num); | 
|  | } | 
|  |  | 
|  | void VectorImpl::_do_move_backward(void* dest, const void* from, size_t num) const { | 
|  | do_move_backward(dest, from, num); | 
|  | } | 
|  |  | 
|  | /*****************************************************************************/ | 
|  |  | 
|  | SortedVectorImpl::SortedVectorImpl(size_t itemSize, uint32_t flags) | 
|  | : VectorImpl(itemSize, flags) | 
|  | { | 
|  | } | 
|  |  | 
|  | SortedVectorImpl::SortedVectorImpl(const VectorImpl& rhs) | 
|  | : VectorImpl(rhs) | 
|  | { | 
|  | } | 
|  |  | 
|  | SortedVectorImpl::~SortedVectorImpl() | 
|  | { | 
|  | } | 
|  |  | 
|  | SortedVectorImpl& SortedVectorImpl::operator = (const SortedVectorImpl& rhs) | 
|  | { | 
|  | return static_cast<SortedVectorImpl&>( VectorImpl::operator = (static_cast<const VectorImpl&>(rhs)) ); | 
|  | } | 
|  |  | 
|  | ssize_t SortedVectorImpl::indexOf(const void* item) const | 
|  | { | 
|  | return _indexOrderOf(item); | 
|  | } | 
|  |  | 
|  | size_t SortedVectorImpl::orderOf(const void* item) const | 
|  | { | 
|  | size_t o; | 
|  | _indexOrderOf(item, &o); | 
|  | return o; | 
|  | } | 
|  |  | 
|  | ssize_t SortedVectorImpl::_indexOrderOf(const void* item, size_t* order) const | 
|  | { | 
|  | if (order) *order = 0; | 
|  | if (isEmpty()) { | 
|  | return NAME_NOT_FOUND; | 
|  | } | 
|  | // binary search | 
|  | ssize_t err = NAME_NOT_FOUND; | 
|  | ssize_t l = 0; | 
|  | ssize_t h = size()-1; | 
|  | ssize_t mid; | 
|  | const void* a = arrayImpl(); | 
|  | const size_t s = itemSize(); | 
|  | while (l <= h) { | 
|  | mid = l + (h - l)/2; | 
|  | const void* const curr = reinterpret_cast<const char *>(a) + (mid*s); | 
|  | const int c = do_compare(curr, item); | 
|  | if (c == 0) { | 
|  | err = l = mid; | 
|  | break; | 
|  | } else if (c < 0) { | 
|  | l = mid + 1; | 
|  | } else { | 
|  | h = mid - 1; | 
|  | } | 
|  | } | 
|  | if (order) *order = l; | 
|  | return err; | 
|  | } | 
|  |  | 
|  | ssize_t SortedVectorImpl::add(const void* item) | 
|  | { | 
|  | size_t order; | 
|  | ssize_t index = _indexOrderOf(item, &order); | 
|  | if (index < 0) { | 
|  | index = VectorImpl::insertAt(item, order, 1); | 
|  | } else { | 
|  | index = VectorImpl::replaceAt(item, index); | 
|  | } | 
|  | return index; | 
|  | } | 
|  |  | 
|  | ssize_t SortedVectorImpl::merge(const VectorImpl& vector) | 
|  | { | 
|  | // naive merge... | 
|  | if (!vector.isEmpty()) { | 
|  | const void* buffer = vector.arrayImpl(); | 
|  | const size_t is = itemSize(); | 
|  | size_t s = vector.size(); | 
|  | for (size_t i=0 ; i<s ; i++) { | 
|  | ssize_t err = add( reinterpret_cast<const char*>(buffer) + i*is ); | 
|  | if (err<0) { | 
|  | return err; | 
|  | } | 
|  | } | 
|  | } | 
|  | return NO_ERROR; | 
|  | } | 
|  |  | 
|  | ssize_t SortedVectorImpl::merge(const SortedVectorImpl& vector) | 
|  | { | 
|  | // we've merging a sorted vector... nice! | 
|  | ssize_t err = NO_ERROR; | 
|  | if (!vector.isEmpty()) { | 
|  | // first take care of the case where the vectors are sorted together | 
|  | if (do_compare(vector.itemLocation(vector.size()-1), arrayImpl()) <= 0) { | 
|  | err = VectorImpl::insertVectorAt(static_cast<const VectorImpl&>(vector), 0); | 
|  | } else if (do_compare(vector.arrayImpl(), itemLocation(size()-1)) >= 0) { | 
|  | err = VectorImpl::appendVector(static_cast<const VectorImpl&>(vector)); | 
|  | } else { | 
|  | // this could be made a little better | 
|  | err = merge(static_cast<const VectorImpl&>(vector)); | 
|  | } | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | ssize_t SortedVectorImpl::remove(const void* item) | 
|  | { | 
|  | ssize_t i = indexOf(item); | 
|  | if (i>=0) { | 
|  | VectorImpl::removeItemsAt(i, 1); | 
|  | } | 
|  | return i; | 
|  | } | 
|  |  | 
|  | /*****************************************************************************/ | 
|  |  | 
|  | }; // namespace android | 
|  |  |