| /* libs/pixelflinger/trap.cpp | 
 | ** | 
 | ** Copyright 2006, The Android Open Source Project | 
 | ** | 
 | ** Licensed under the Apache License, Version 2.0 (the "License"); | 
 | ** you may not use this file except in compliance with the License. | 
 | ** You may obtain a copy of the License at | 
 | ** | 
 | **     http://www.apache.org/licenses/LICENSE-2.0 | 
 | ** | 
 | ** Unless required by applicable law or agreed to in writing, software | 
 | ** distributed under the License is distributed on an "AS IS" BASIS, | 
 | ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 | ** See the License for the specific language governing permissions and | 
 | ** limitations under the License. | 
 | */ | 
 |  | 
 | #include <assert.h> | 
 | #include <stdio.h> | 
 | #include <stdlib.h> | 
 |  | 
 | #include <android/log.h> | 
 | #include <cutils/memory.h> | 
 |  | 
 | #include "trap.h" | 
 | #include "picker.h" | 
 |  | 
 | namespace android { | 
 |  | 
 | // ---------------------------------------------------------------------------- | 
 |  | 
 | // enable to see triangles edges | 
 | #define DEBUG_TRANGLES  0 | 
 |  | 
 | // ---------------------------------------------------------------------------- | 
 |  | 
 | static void pointx_validate(void *con, const GGLcoord* c, GGLcoord r); | 
 | static void pointx(void *con, const GGLcoord* c, GGLcoord r); | 
 | static void aa_pointx(void *con, const GGLcoord* c, GGLcoord r); | 
 | static void aa_nice_pointx(void *con, const GGLcoord* c, GGLcoord r); | 
 |  | 
 | static void linex_validate(void *con, const GGLcoord* v0, const GGLcoord* v1, GGLcoord w); | 
 | static void linex(void *con, const GGLcoord* v0, const GGLcoord* v1, GGLcoord w); | 
 | static void aa_linex(void *con, const GGLcoord* v0, const GGLcoord* v1, GGLcoord w); | 
 |  | 
 | static void recti_validate(void* c, GGLint l, GGLint t, GGLint r, GGLint b);  | 
 | static void recti(void* c, GGLint l, GGLint t, GGLint r, GGLint b);  | 
 |  | 
 | static void trianglex_validate(void*, | 
 |         const GGLcoord*, const GGLcoord*, const GGLcoord*); | 
 | static void trianglex_small(void*, | 
 |         const GGLcoord*, const GGLcoord*, const GGLcoord*); | 
 | static void trianglex_big(void*, | 
 |         const GGLcoord*, const GGLcoord*, const GGLcoord*); | 
 | static void aa_trianglex(void*, | 
 |         const GGLcoord*, const GGLcoord*, const GGLcoord*); | 
 | static void trianglex_debug(void* con, | 
 |         const GGLcoord*, const GGLcoord*, const GGLcoord*); | 
 |  | 
 | static void aapolyx(void* con, | 
 |         const GGLcoord* pts, int count); | 
 |  | 
 | static inline int min(int a, int b) CONST; | 
 | static inline int max(int a, int b) CONST; | 
 | static inline int min(int a, int b, int c) CONST; | 
 | static inline int max(int a, int b, int c) CONST; | 
 |  | 
 | // ---------------------------------------------------------------------------- | 
 | #if 0 | 
 | #pragma mark - | 
 | #pragma mark Tools | 
 | #endif | 
 |  | 
 | inline int min(int a, int b) { | 
 |     return a<b ? a : b; | 
 | } | 
 | inline int max(int a, int b) { | 
 |     return a<b ? b : a; | 
 | } | 
 | inline int min(int a, int b, int c) { | 
 |     return min(a,min(b,c)); | 
 | } | 
 | inline int max(int a, int b, int c) { | 
 |     return max(a,max(b,c)); | 
 | } | 
 |  | 
 | template <typename T> | 
 | static inline void swap(T& a, T& b) { | 
 |     T t(a); | 
 |     a = b; | 
 |     b = t; | 
 | } | 
 |  | 
 | static void | 
 | triangle_dump_points( const GGLcoord*  v0, | 
 |                       const GGLcoord*  v1, | 
 |                       const GGLcoord*  v2 ) | 
 | { | 
 |     float tri = 1.0f / TRI_ONE; | 
 |     ALOGD("  P0=(%.3f, %.3f)  [%08x, %08x]\n" | 
 |           "  P1=(%.3f, %.3f)  [%08x, %08x]\n" | 
 |           "  P2=(%.3f, %.3f)  [%08x, %08x]\n", | 
 |           v0[0]*tri, v0[1]*tri, v0[0], v0[1], | 
 |           v1[0]*tri, v1[1]*tri, v1[0], v1[1], | 
 |           v2[0]*tri, v2[1]*tri, v2[0], v2[1] ); | 
 | } | 
 |  | 
 | // ---------------------------------------------------------------------------- | 
 | #if 0 | 
 | #pragma mark - | 
 | #pragma mark Misc | 
 | #endif | 
 |  | 
 | void ggl_init_trap(context_t* c) | 
 | { | 
 |     ggl_state_changed(c, GGL_PIXEL_PIPELINE_STATE|GGL_TMU_STATE|GGL_CB_STATE); | 
 | } | 
 |  | 
 | void ggl_state_changed(context_t* c, int flags) | 
 | { | 
 |     if (ggl_likely(!c->dirty)) { | 
 |         c->procs.pointx     = pointx_validate; | 
 |         c->procs.linex      = linex_validate; | 
 |         c->procs.recti      = recti_validate; | 
 |         c->procs.trianglex  = trianglex_validate; | 
 |     } | 
 |     c->dirty |= uint32_t(flags); | 
 | } | 
 |  | 
 | // ---------------------------------------------------------------------------- | 
 | #if 0 | 
 | #pragma mark - | 
 | #pragma mark Point | 
 | #endif | 
 |  | 
 | void pointx_validate(void *con, const GGLcoord* v, GGLcoord rad) | 
 | { | 
 |     GGL_CONTEXT(c, con); | 
 |     ggl_pick(c); | 
 |     if (c->state.needs.p & GGL_NEED_MASK(P_AA)) { | 
 |         if (c->state.enables & GGL_ENABLE_POINT_AA_NICE) { | 
 |             c->procs.pointx = aa_nice_pointx; | 
 |         } else { | 
 |             c->procs.pointx = aa_pointx; | 
 |         } | 
 |     } else { | 
 |         c->procs.pointx = pointx; | 
 |     } | 
 |     c->procs.pointx(con, v, rad); | 
 | } | 
 |  | 
 | void pointx(void *con, const GGLcoord* v, GGLcoord rad) | 
 | { | 
 |     GGL_CONTEXT(c, con); | 
 |     GGLcoord halfSize = TRI_ROUND(rad) >> 1; | 
 |     if (halfSize == 0) | 
 |         halfSize = TRI_HALF; | 
 |     GGLcoord xc = v[0];  | 
 |     GGLcoord yc = v[1]; | 
 |     if (halfSize & TRI_HALF) { // size odd | 
 |         xc = TRI_FLOOR(xc) + TRI_HALF; | 
 |         yc = TRI_FLOOR(yc) + TRI_HALF; | 
 |     } else { // size even | 
 |         xc = TRI_ROUND(xc); | 
 |         yc = TRI_ROUND(yc); | 
 |     } | 
 |     GGLint l = (xc - halfSize) >> TRI_FRACTION_BITS; | 
 |     GGLint t = (yc - halfSize) >> TRI_FRACTION_BITS; | 
 |     GGLint r = (xc + halfSize) >> TRI_FRACTION_BITS; | 
 |     GGLint b = (yc + halfSize) >> TRI_FRACTION_BITS; | 
 |     recti(c, l, t, r, b); | 
 | } | 
 |  | 
 | // This way of computing the coverage factor, is more accurate and gives | 
 | // better results for small circles, but it is also a lot slower. | 
 | // Here we use super-sampling. | 
 | static int32_t coverageNice(GGLcoord x, GGLcoord y,  | 
 |         GGLcoord rmin, GGLcoord rmax, GGLcoord rr) | 
 | { | 
 |     const GGLcoord d2 = x*x + y*y; | 
 |     if (d2 >= rmax) return 0; | 
 |     if (d2 < rmin)  return 0x7FFF; | 
 |  | 
 |     const int kSamples              =  4; | 
 |     const int kInc                  =  4;    // 1/4 = 0.25 | 
 |     const int kCoverageUnit         =  1;    // 1/(4^2) = 0.0625 | 
 |     const GGLcoord kCoordOffset     = -6;    // -0.375 | 
 |  | 
 |     int hits = 0; | 
 |     int x_sample = x + kCoordOffset; | 
 |     for (int i=0 ; i<kSamples ; i++, x_sample += kInc) { | 
 |         const int xval = rr - (x_sample * x_sample); | 
 |         int y_sample = y + kCoordOffset; | 
 |         for (int j=0 ; j<kSamples ; j++, y_sample += kInc) { | 
 |             if (xval - (y_sample * y_sample) > 0) | 
 |                 hits += kCoverageUnit; | 
 |         } | 
 |     } | 
 |     return min(0x7FFF, hits << (15 - kSamples)); | 
 | } | 
 |  | 
 |  | 
 | void aa_nice_pointx(void *con, const GGLcoord* v, GGLcoord size) | 
 | { | 
 |     GGL_CONTEXT(c, con); | 
 |  | 
 |     GGLcoord rad = ((size + 1)>>1); | 
 |     GGLint l = (v[0] - rad) >> TRI_FRACTION_BITS; | 
 |     GGLint t = (v[1] - rad) >> TRI_FRACTION_BITS; | 
 |     GGLint r = (v[0] + rad + (TRI_ONE-1)) >> TRI_FRACTION_BITS; | 
 |     GGLint b = (v[1] + rad + (TRI_ONE-1)) >> TRI_FRACTION_BITS; | 
 |     GGLcoord xstart = TRI_FROM_INT(l) - v[0] + TRI_HALF;  | 
 |     GGLcoord ystart = TRI_FROM_INT(t) - v[1] + TRI_HALF;  | 
 |  | 
 |     // scissor... | 
 |     if (l < GGLint(c->state.scissor.left)) { | 
 |         xstart += TRI_FROM_INT(c->state.scissor.left-l); | 
 |         l = GGLint(c->state.scissor.left); | 
 |     } | 
 |     if (t < GGLint(c->state.scissor.top)) { | 
 |         ystart += TRI_FROM_INT(c->state.scissor.top-t); | 
 |         t = GGLint(c->state.scissor.top); | 
 |     } | 
 |     if (r > GGLint(c->state.scissor.right)) { | 
 |         r = GGLint(c->state.scissor.right); | 
 |     } | 
 |     if (b > GGLint(c->state.scissor.bottom)) { | 
 |         b = GGLint(c->state.scissor.bottom); | 
 |     } | 
 |  | 
 |     int xc = r - l; | 
 |     int yc = b - t; | 
 |     if (xc>0 && yc>0) { | 
 |         int16_t* covPtr = c->state.buffers.coverage; | 
 |         const int32_t sqr2Over2 = 0xC; // rounded up | 
 |         GGLcoord rr = rad*rad; | 
 |         GGLcoord rmin = (rad - sqr2Over2)*(rad - sqr2Over2); | 
 |         GGLcoord rmax = (rad + sqr2Over2)*(rad + sqr2Over2); | 
 |         GGLcoord y = ystart; | 
 |         c->iterators.xl = l; | 
 |         c->iterators.xr = r; | 
 |         c->init_y(c, t); | 
 |         do { | 
 |             // compute coverage factors for each pixel | 
 |             GGLcoord x = xstart; | 
 |             for (int i=l ; i<r ; i++) { | 
 |                 covPtr[i] = coverageNice(x, y, rmin, rmax, rr); | 
 |                 x += TRI_ONE; | 
 |             } | 
 |             y += TRI_ONE; | 
 |             c->scanline(c); | 
 |             c->step_y(c); | 
 |         } while (--yc); | 
 |     } | 
 | } | 
 |  | 
 | // This is a cheap way of computing the coverage factor for a circle. | 
 | // We just lerp between the circles of radii r-sqrt(2)/2 and r+sqrt(2)/2 | 
 | static inline int32_t coverageFast(GGLcoord x, GGLcoord y, | 
 |         GGLcoord rmin, GGLcoord rmax, GGLcoord scale) | 
 | { | 
 |     const GGLcoord d2 = x*x + y*y; | 
 |     if (d2 >= rmax) return 0; | 
 |     if (d2 < rmin)  return 0x7FFF; | 
 |     return 0x7FFF - (d2-rmin)*scale; | 
 | } | 
 |  | 
 | void aa_pointx(void *con, const GGLcoord* v, GGLcoord size) | 
 | { | 
 |     GGL_CONTEXT(c, con); | 
 |  | 
 |     GGLcoord rad = ((size + 1)>>1); | 
 |     GGLint l = (v[0] - rad) >> TRI_FRACTION_BITS; | 
 |     GGLint t = (v[1] - rad) >> TRI_FRACTION_BITS; | 
 |     GGLint r = (v[0] + rad + (TRI_ONE-1)) >> TRI_FRACTION_BITS; | 
 |     GGLint b = (v[1] + rad + (TRI_ONE-1)) >> TRI_FRACTION_BITS; | 
 |     GGLcoord xstart = TRI_FROM_INT(l) - v[0] + TRI_HALF;  | 
 |     GGLcoord ystart = TRI_FROM_INT(t) - v[1] + TRI_HALF;  | 
 |  | 
 |     // scissor... | 
 |     if (l < GGLint(c->state.scissor.left)) { | 
 |         xstart += TRI_FROM_INT(c->state.scissor.left-l); | 
 |         l = GGLint(c->state.scissor.left); | 
 |     } | 
 |     if (t < GGLint(c->state.scissor.top)) { | 
 |         ystart += TRI_FROM_INT(c->state.scissor.top-t); | 
 |         t = GGLint(c->state.scissor.top); | 
 |     } | 
 |     if (r > GGLint(c->state.scissor.right)) { | 
 |         r = GGLint(c->state.scissor.right); | 
 |     } | 
 |     if (b > GGLint(c->state.scissor.bottom)) { | 
 |         b = GGLint(c->state.scissor.bottom); | 
 |     } | 
 |  | 
 |     int xc = r - l; | 
 |     int yc = b - t; | 
 |     if (xc>0 && yc>0) { | 
 |         int16_t* covPtr = c->state.buffers.coverage; | 
 |         rad <<= 4; | 
 |         const int32_t sqr2Over2 = 0xB5;    // fixed-point 24.8 | 
 |         GGLcoord rmin = rad - sqr2Over2; | 
 |         GGLcoord rmax = rad + sqr2Over2; | 
 |         GGLcoord scale; | 
 |         rmin *= rmin; | 
 |         rmax *= rmax; | 
 |         scale = 0x800000 / (rmax - rmin); | 
 |         rmin >>= 8; | 
 |         rmax >>= 8; | 
 |  | 
 |         GGLcoord y = ystart; | 
 |         c->iterators.xl = l; | 
 |         c->iterators.xr = r; | 
 |         c->init_y(c, t); | 
 |  | 
 |         do { | 
 |             // compute coverage factors for each pixel | 
 |             GGLcoord x = xstart; | 
 |             for (int i=l ; i<r ; i++) { | 
 |                 covPtr[i] = coverageFast(x, y, rmin, rmax, scale); | 
 |                 x += TRI_ONE; | 
 |             } | 
 |             y += TRI_ONE; | 
 |             c->scanline(c); | 
 |             c->step_y(c); | 
 |         } while (--yc); | 
 |     } | 
 | } | 
 |  | 
 | // ---------------------------------------------------------------------------- | 
 | #if 0 | 
 | #pragma mark - | 
 | #pragma mark Line | 
 | #endif | 
 |  | 
 | void linex_validate(void *con, const GGLcoord* v0, const GGLcoord* v1, GGLcoord w) | 
 | { | 
 |     GGL_CONTEXT(c, con); | 
 |     ggl_pick(c); | 
 |     if (c->state.needs.p & GGL_NEED_MASK(P_AA)) { | 
 |         c->procs.linex = aa_linex; | 
 |     } else { | 
 |         c->procs.linex = linex; | 
 |     } | 
 |     c->procs.linex(con, v0, v1, w); | 
 | } | 
 |  | 
 | static void linex(void *con, const GGLcoord* v0, const GGLcoord* v1, GGLcoord width) | 
 | { | 
 |     GGL_CONTEXT(c, con); | 
 |     GGLcoord v[4][2]; | 
 |     v[0][0] = v0[0];    v[0][1] = v0[1]; | 
 |     v[1][0] = v1[0];    v[1][1] = v1[1]; | 
 |     v0 = v[0]; | 
 |     v1 = v[1]; | 
 |     const GGLcoord dx = abs(v0[0] - v1[0]); | 
 |     const GGLcoord dy = abs(v0[1] - v1[1]); | 
 |     GGLcoord nx, ny; | 
 |     nx = ny = 0; | 
 |  | 
 |     GGLcoord halfWidth = TRI_ROUND(width) >> 1; | 
 |     if (halfWidth == 0) | 
 |         halfWidth = TRI_HALF; | 
 |  | 
 |     ((dx > dy) ? ny : nx) = halfWidth; | 
 |     v[2][0] = v1[0];    v[2][1] = v1[1]; | 
 |     v[3][0] = v0[0];    v[3][1] = v0[1]; | 
 |     v[0][0] += nx;      v[0][1] += ny; | 
 |     v[1][0] += nx;      v[1][1] += ny; | 
 |     v[2][0] -= nx;      v[2][1] -= ny; | 
 |     v[3][0] -= nx;      v[3][1] -= ny; | 
 |     trianglex_big(con, v[0], v[1], v[2]); | 
 |     trianglex_big(con, v[0], v[2], v[3]); | 
 | } | 
 |  | 
 | static void aa_linex(void *con, const GGLcoord* v0, const GGLcoord* v1, GGLcoord width) | 
 | { | 
 |     GGL_CONTEXT(c, con); | 
 |     GGLcoord v[4][2]; | 
 |     v[0][0] = v0[0];    v[0][1] = v0[1]; | 
 |     v[1][0] = v1[0];    v[1][1] = v1[1]; | 
 |     v0 = v[0]; | 
 |     v1 = v[1]; | 
 |      | 
 |     const GGLcoord dx = v0[0] - v1[0]; | 
 |     const GGLcoord dy = v0[1] - v1[1]; | 
 |     GGLcoord nx = -dy; | 
 |     GGLcoord ny =  dx; | 
 |  | 
 |     // generally, this will be well below 1.0 | 
 |     const GGLfixed norm = gglMulx(width, gglSqrtRecipx(nx*nx+ny*ny), 4); | 
 |     nx = gglMulx(nx, norm, 21); | 
 |     ny = gglMulx(ny, norm, 21); | 
 |      | 
 |     v[2][0] = v1[0];    v[2][1] = v1[1]; | 
 |     v[3][0] = v0[0];    v[3][1] = v0[1]; | 
 |     v[0][0] += nx;      v[0][1] += ny; | 
 |     v[1][0] += nx;      v[1][1] += ny; | 
 |     v[2][0] -= nx;      v[2][1] -= ny; | 
 |     v[3][0] -= nx;      v[3][1] -= ny; | 
 |     aapolyx(con, v[0], 4);         | 
 | } | 
 |  | 
 |  | 
 | // ---------------------------------------------------------------------------- | 
 | #if 0 | 
 | #pragma mark - | 
 | #pragma mark Rect | 
 | #endif | 
 |  | 
 | void recti_validate(void *con, GGLint l, GGLint t, GGLint r, GGLint b) | 
 | { | 
 |     GGL_CONTEXT(c, con); | 
 |     ggl_pick(c); | 
 |     c->procs.recti = recti; | 
 |     c->procs.recti(con, l, t, r, b); | 
 | } | 
 |  | 
 | void recti(void* con, GGLint l, GGLint t, GGLint r, GGLint b) | 
 | { | 
 |     GGL_CONTEXT(c, con); | 
 |  | 
 |     // scissor... | 
 |     if (l < GGLint(c->state.scissor.left)) | 
 |         l = GGLint(c->state.scissor.left); | 
 |     if (t < GGLint(c->state.scissor.top)) | 
 |         t = GGLint(c->state.scissor.top); | 
 |     if (r > GGLint(c->state.scissor.right)) | 
 |         r = GGLint(c->state.scissor.right); | 
 |     if (b > GGLint(c->state.scissor.bottom)) | 
 |         b = GGLint(c->state.scissor.bottom); | 
 |  | 
 |     int xc = r - l; | 
 |     int yc = b - t; | 
 |     if (xc>0 && yc>0) { | 
 |         c->iterators.xl = l; | 
 |         c->iterators.xr = r; | 
 |         c->init_y(c, t); | 
 |         c->rect(c, yc); | 
 |     } | 
 | } | 
 |  | 
 | // ---------------------------------------------------------------------------- | 
 | #if 0 | 
 | #pragma mark - | 
 | #pragma mark Triangle / Debugging | 
 | #endif | 
 |  | 
 | static void scanline_set(context_t* c) | 
 | { | 
 |     int32_t x = c->iterators.xl; | 
 |     size_t ct = c->iterators.xr - x; | 
 |     int32_t y = c->iterators.y; | 
 |     surface_t* cb = &(c->state.buffers.color); | 
 |     const GGLFormat* fp = &(c->formats[cb->format]); | 
 |     uint8_t* dst = reinterpret_cast<uint8_t*>(cb->data) + | 
 |                             (x + (cb->stride * y)) * fp->size; | 
 |     const size_t size = ct * fp->size; | 
 |     memset(dst, 0xFF, size); | 
 | } | 
 |  | 
 | static void trianglex_debug(void* con, | 
 |         const GGLcoord* v0, const GGLcoord* v1, const GGLcoord* v2) | 
 | { | 
 |     GGL_CONTEXT(c, con); | 
 |     if (c->state.needs.p & GGL_NEED_MASK(P_AA)) { | 
 |         aa_trianglex(con,v0,v1,v2); | 
 |     } else { | 
 |         trianglex_big(con,v0,v1,v2); | 
 |     } | 
 | 	void (*save_scanline)(context_t*)  = c->scanline; | 
 |     c->scanline = scanline_set; | 
 |     linex(con, v0, v1, TRI_ONE); | 
 |     linex(con, v1, v2, TRI_ONE); | 
 |     linex(con, v2, v0, TRI_ONE); | 
 |     c->scanline = save_scanline; | 
 | } | 
 |  | 
 | static void trianglex_xor(void* con, | 
 |         const GGLcoord* v0, const GGLcoord* v1, const GGLcoord* v2) | 
 | { | 
 |     trianglex_big(con,v0,v1,v2); | 
 |     trianglex_small(con,v0,v1,v2); | 
 | } | 
 |  | 
 | // ---------------------------------------------------------------------------- | 
 | #if 0 | 
 | #pragma mark - | 
 | #pragma mark Triangle | 
 | #endif | 
 |  | 
 | void trianglex_validate(void *con, | 
 |         const GGLcoord* v0, const GGLcoord* v1, const GGLcoord* v2) | 
 | { | 
 |     GGL_CONTEXT(c, con); | 
 |     ggl_pick(c); | 
 |     if (c->state.needs.p & GGL_NEED_MASK(P_AA)) { | 
 |         c->procs.trianglex = DEBUG_TRANGLES ? trianglex_debug : aa_trianglex; | 
 |     } else { | 
 |         c->procs.trianglex = DEBUG_TRANGLES ? trianglex_debug : trianglex_big; | 
 |     } | 
 |     c->procs.trianglex(con, v0, v1, v2); | 
 | } | 
 |  | 
 | // ---------------------------------------------------------------------------- | 
 |  | 
 | void trianglex_small(void* con, | 
 |         const GGLcoord* v0, const GGLcoord* v1, const GGLcoord* v2) | 
 | { | 
 |     GGL_CONTEXT(c, con); | 
 |  | 
 |     // vertices are in 28.4 fixed point, which allows | 
 |     // us to use 32 bits multiplies below. | 
 |     int32_t x0 = v0[0]; | 
 |     int32_t y0 = v0[1]; | 
 |     int32_t x1 = v1[0]; | 
 |     int32_t y1 = v1[1]; | 
 |     int32_t x2 = v2[0]; | 
 |     int32_t y2 = v2[1]; | 
 |  | 
 |     int32_t dx01 = x0 - x1; | 
 |     int32_t dy20 = y2 - y0; | 
 |     int32_t dy01 = y0 - y1; | 
 |     int32_t dx20 = x2 - x0; | 
 |  | 
 |     // The code below works only with CCW triangles | 
 |     // so if we get a CW triangle, we need to swap two of its vertices | 
 |     if (dx01*dy20 < dy01*dx20) { | 
 |         swap(x0, x1); | 
 |         swap(y0, y1); | 
 |         dx01 = x0 - x1; | 
 |         dy01 = y0 - y1; | 
 |         dx20 = x2 - x0; | 
 |         dy20 = y2 - y0; | 
 |     } | 
 |     int32_t dx12 = x1 - x2; | 
 |     int32_t dy12 = y1 - y2; | 
 |  | 
 |     // bounding box & scissor | 
 |     const int32_t bminx = TRI_FLOOR(min(x0, x1, x2)) >> TRI_FRACTION_BITS; | 
 |     const int32_t bminy = TRI_FLOOR(min(y0, y1, y2)) >> TRI_FRACTION_BITS; | 
 |     const int32_t bmaxx = TRI_CEIL( max(x0, x1, x2)) >> TRI_FRACTION_BITS; | 
 |     const int32_t bmaxy = TRI_CEIL( max(y0, y1, y2)) >> TRI_FRACTION_BITS; | 
 |     const int32_t minx = max(bminx, c->state.scissor.left); | 
 |     const int32_t miny = max(bminy, c->state.scissor.top); | 
 |     const int32_t maxx = min(bmaxx, c->state.scissor.right); | 
 |     const int32_t maxy = min(bmaxy, c->state.scissor.bottom); | 
 |     if ((minx >= maxx) || (miny >= maxy)) | 
 |         return; // too small or clipped out... | 
 |  | 
 |     // step equations to the bounding box and snap to pixel center | 
 |     const int32_t my = (miny << TRI_FRACTION_BITS) + TRI_HALF; | 
 |     const int32_t mx = (minx << TRI_FRACTION_BITS) + TRI_HALF; | 
 |     int32_t ey0 = dy01 * (x0 - mx) - dx01 * (y0 - my); | 
 |     int32_t ey1 = dy12 * (x1 - mx) - dx12 * (y1 - my); | 
 |     int32_t ey2 = dy20 * (x2 - mx) - dx20 * (y2 - my); | 
 |  | 
 |     // right-exclusive fill rule, to avoid rare cases | 
 |     // of over drawing | 
 |     if (dy01<0 || (dy01 == 0 && dx01>0)) ey0++; | 
 |     if (dy12<0 || (dy12 == 0 && dx12>0)) ey1++; | 
 |     if (dy20<0 || (dy20 == 0 && dx20>0)) ey2++; | 
 |      | 
 |     c->init_y(c, miny); | 
 |     for (int32_t y = miny; y < maxy; y++) { | 
 |         int32_t ex0 = ey0; | 
 |         int32_t ex1 = ey1; | 
 |         int32_t ex2 = ey2;     | 
 |         int32_t xl, xr; | 
 |         for (xl=minx ; xl<maxx ; xl++) { | 
 |             if (ex0>0 && ex1>0 && ex2>0) | 
 |                 break; // all strictly positive | 
 |             ex0 -= dy01 << TRI_FRACTION_BITS; | 
 |             ex1 -= dy12 << TRI_FRACTION_BITS; | 
 |             ex2 -= dy20 << TRI_FRACTION_BITS; | 
 |         } | 
 |         xr = xl; | 
 |         for ( ; xr<maxx ; xr++) { | 
 |             if (!(ex0>0 && ex1>0 && ex2>0)) | 
 |                 break; // not all strictly positive | 
 |             ex0 -= dy01 << TRI_FRACTION_BITS; | 
 |             ex1 -= dy12 << TRI_FRACTION_BITS; | 
 |             ex2 -= dy20 << TRI_FRACTION_BITS; | 
 |         } | 
 |  | 
 |         if (xl < xr) { | 
 |             c->iterators.xl = xl; | 
 |             c->iterators.xr = xr; | 
 |             c->scanline(c); | 
 |         } | 
 |         c->step_y(c); | 
 |  | 
 |         ey0 += dx01 << TRI_FRACTION_BITS; | 
 |         ey1 += dx12 << TRI_FRACTION_BITS; | 
 |         ey2 += dx20 << TRI_FRACTION_BITS; | 
 |     } | 
 | } | 
 |  | 
 | // ---------------------------------------------------------------------------- | 
 | #if 0 | 
 | #pragma mark - | 
 | #endif | 
 |  | 
 | // the following routine fills a triangle via edge stepping, which | 
 | // unfortunately requires divisions in the setup phase to get right, | 
 | // it should probably only be used for relatively large trianges | 
 |  | 
 |  | 
 | // x = y*DX/DY    (ou DX and DY are constants, DY > 0, et y >= 0) | 
 | //  | 
 | // for an equation of the type: | 
 | //      x' = y*K/2^p     (with K and p constants "carefully chosen") | 
 | //  | 
 | // We can now do a DDA without precision loss. We define 'e' by: | 
 | //      x' - x = y*(DX/DY - K/2^p) = y*e | 
 | //  | 
 | // If we choose K = round(DX*2^p/DY) then, | 
 | //      abs(e) <= 1/2^(p+1) by construction | 
 | //  | 
 | // therefore abs(x'-x) = y*abs(e) <= y/2^(p+1) <= DY/2^(p+1) <= DMAX/2^(p+1) | 
 | //  | 
 | // which means that if DMAX <= 2^p, therefore abs(x-x') <= 1/2, including | 
 | // at the last line. In fact, it's even a strict inequality except in one | 
 | // extrem case (DY == DMAX et e = +/- 1/2) | 
 | //  | 
 | // Applying that to our coordinates, we need 2^p >= 4096*16 = 65536 | 
 | // so p = 16 is enough, we're so lucky! | 
 |  | 
 | const int TRI_ITERATORS_BITS = 16; | 
 |  | 
 | struct Edge | 
 | { | 
 |   int32_t  x;      // edge position in 16.16 coordinates | 
 |   int32_t  x_incr; // on each step, increment x by that amount | 
 |   int32_t  y_top;  // starting scanline, 16.4 format | 
 |   int32_t  y_bot; | 
 | }; | 
 |  | 
 | static void | 
 | edge_dump( Edge*  edge ) | 
 | { | 
 |   ALOGI( "  top=%d (%.3f)  bot=%d (%.3f)  x=%d (%.3f)  ix=%d (%.3f)", | 
 |         edge->y_top, edge->y_top/float(TRI_ONE), | 
 | 		edge->y_bot, edge->y_bot/float(TRI_ONE), | 
 | 		edge->x, edge->x/float(FIXED_ONE), | 
 | 		edge->x_incr, edge->x_incr/float(FIXED_ONE) ); | 
 | } | 
 |  | 
 | static void | 
 | triangle_dump_edges( Edge*  edges, | 
 |                      int            count ) | 
 | {  | 
 |     ALOGI( "%d edge%s:\n", count, count == 1 ? "" : "s" ); | 
 | 	for ( ; count > 0; count--, edges++ ) | 
 | 	  edge_dump( edges ); | 
 | } | 
 |  | 
 | // the following function sets up an edge, it assumes | 
 | // that ymin and ymax are in already in the 'reduced' | 
 | // format | 
 | static __attribute__((noinline)) | 
 | void edge_setup( | 
 |         Edge*           edges, | 
 |         int*            pcount, | 
 |         const GGLcoord* p1, | 
 |         const GGLcoord* p2, | 
 |         int32_t         ymin, | 
 |         int32_t         ymax ) | 
 | { | 
 | 	const GGLfixed*  top = p1; | 
 | 	const GGLfixed*  bot = p2; | 
 | 	Edge*    edge = edges + *pcount; | 
 |  | 
 | 	if (top[1] > bot[1]) { | 
 |         swap(top, bot); | 
 | 	} | 
 |  | 
 | 	int  y1 = top[1] | 1; | 
 | 	int  y2 = bot[1] | 1; | 
 | 	int  dy = y2 - y1; | 
 |  | 
 | 	if ( dy == 0 || y1 > ymax || y2 < ymin ) | 
 | 		return; | 
 |  | 
 | 	if ( y1 > ymin ) | 
 | 		ymin = TRI_SNAP_NEXT_HALF(y1); | 
 | 	 | 
 | 	if ( y2 < ymax ) | 
 | 		ymax = TRI_SNAP_PREV_HALF(y2); | 
 |  | 
 | 	if ( ymin > ymax )  // when the edge doesn't cross any scanline | 
 | 	  return; | 
 |  | 
 | 	const int x1 = top[0]; | 
 | 	const int dx = bot[0] - x1; | 
 |     const int shift = TRI_ITERATORS_BITS - TRI_FRACTION_BITS; | 
 |  | 
 | 	// setup edge fields | 
 |     // We add 0.5 to edge->x here because it simplifies the rounding | 
 |     // in triangle_sweep_edges() -- this doesn't change the ordering of 'x' | 
 | 	edge->x      = (x1 << shift) + (1LU << (TRI_ITERATORS_BITS-1)); | 
 | 	edge->x_incr = 0; | 
 | 	edge->y_top  = ymin; | 
 | 	edge->y_bot  = ymax; | 
 |  | 
 | 	if (ggl_likely(ymin <= ymax && dx)) { | 
 |         edge->x_incr = gglDivQ16(dx, dy); | 
 |     } | 
 |     if (ggl_likely(y1 < ymin)) { | 
 |         int32_t xadjust = (edge->x_incr * (ymin-y1)) >> TRI_FRACTION_BITS; | 
 |         edge->x += xadjust; | 
 |     } | 
 |    | 
 | 	++*pcount; | 
 | } | 
 |  | 
 |  | 
 | static void | 
 | triangle_sweep_edges( Edge*  left, | 
 |                       Edge*  right, | 
 | 					  int            ytop, | 
 | 					  int            ybot, | 
 | 					  context_t*     c ) | 
 | { | 
 |     int count = ((ybot - ytop)>>TRI_FRACTION_BITS) + 1; | 
 |     if (count<=0) return; | 
 |  | 
 |     // sort the edges horizontally | 
 |     if ((left->x > right->x) ||  | 
 |         ((left->x == right->x) && (left->x_incr > right->x_incr))) { | 
 |         swap(left, right); | 
 |     } | 
 |  | 
 |     int left_x = left->x; | 
 |     int right_x = right->x; | 
 |     const int left_xi = left->x_incr; | 
 |     const int right_xi  = right->x_incr; | 
 |     left->x  += left_xi * count; | 
 |     right->x += right_xi * count; | 
 |  | 
 | 	const int xmin = c->state.scissor.left; | 
 | 	const int xmax = c->state.scissor.right; | 
 |     do { | 
 |         // horizontal scissoring | 
 |         const int32_t xl = max(left_x  >> TRI_ITERATORS_BITS, xmin); | 
 |         const int32_t xr = min(right_x >> TRI_ITERATORS_BITS, xmax); | 
 |         left_x  += left_xi; | 
 |         right_x += right_xi; | 
 |         // invoke the scanline rasterizer | 
 |         if (ggl_likely(xl < xr)) { | 
 |             c->iterators.xl = xl; | 
 |             c->iterators.xr = xr; | 
 |             c->scanline(c); | 
 |         } | 
 | 		c->step_y(c); | 
 | 	} while (--count); | 
 | } | 
 |  | 
 |  | 
 | void trianglex_big(void* con, | 
 |         const GGLcoord* v0, const GGLcoord* v1, const GGLcoord* v2) | 
 | { | 
 |     GGL_CONTEXT(c, con); | 
 |  | 
 |     Edge edges[3]; | 
 | 	int num_edges = 0; | 
 | 	int32_t ymin = TRI_FROM_INT(c->state.scissor.top)    + TRI_HALF; | 
 | 	int32_t ymax = TRI_FROM_INT(c->state.scissor.bottom) - TRI_HALF; | 
 | 	     | 
 | 	edge_setup( edges, &num_edges, v0, v1, ymin, ymax ); | 
 | 	edge_setup( edges, &num_edges, v0, v2, ymin, ymax ); | 
 | 	edge_setup( edges, &num_edges, v1, v2, ymin, ymax ); | 
 |  | 
 |     if (ggl_unlikely(num_edges<2))  // for really tiny triangles that don't | 
 | 		return;                     // cross any scanline centers | 
 |  | 
 |     Edge* left  = &edges[0]; | 
 |     Edge* right = &edges[1]; | 
 |     Edge* other = &edges[2]; | 
 |     int32_t y_top = min(left->y_top, right->y_top); | 
 |     int32_t y_bot = max(left->y_bot, right->y_bot); | 
 |  | 
 | 	if (ggl_likely(num_edges==3)) { | 
 |         y_top = min(y_top, edges[2].y_top); | 
 |         y_bot = max(y_bot, edges[2].y_bot); | 
 | 		if (edges[0].y_top > y_top) { | 
 |             other = &edges[0]; | 
 |             left  = &edges[2]; | 
 | 		} else if (edges[1].y_top > y_top) { | 
 |             other = &edges[1]; | 
 |             right = &edges[2]; | 
 | 		} | 
 |     } | 
 |  | 
 |     c->init_y(c, y_top >> TRI_FRACTION_BITS); | 
 |  | 
 |     int32_t y_mid = min(left->y_bot, right->y_bot); | 
 |     triangle_sweep_edges( left, right, y_top, y_mid, c ); | 
 |  | 
 |     // second scanline sweep loop, if necessary | 
 |     y_mid += TRI_ONE; | 
 |     if (y_mid <= y_bot) { | 
 |         ((left->y_bot == y_bot) ? right : left) = other; | 
 |         if (other->y_top < y_mid) { | 
 |             other->x += other->x_incr; | 
 |         } | 
 |         triangle_sweep_edges( left, right, y_mid, y_bot, c ); | 
 |     } | 
 | } | 
 |  | 
 | void aa_trianglex(void* con, | 
 |         const GGLcoord* a, const GGLcoord* b, const GGLcoord* c) | 
 | { | 
 |     GGLcoord pts[6] = { a[0], a[1], b[0], b[1], c[0], c[1] }; | 
 |     aapolyx(con, pts, 3); | 
 | } | 
 |  | 
 | // ---------------------------------------------------------------------------- | 
 | #if 0 | 
 | #pragma mark - | 
 | #endif | 
 |  | 
 | struct AAEdge | 
 | { | 
 |     GGLfixed x;         // edge position in 12.16 coordinates | 
 |     GGLfixed x_incr;    // on each y step, increment x by that amount | 
 |     GGLfixed y_incr;    // on each x step, increment y by that amount | 
 |     int16_t y_top;      // starting scanline, 12.4 format | 
 |     int16_t y_bot;      // starting scanline, 12.4 format | 
 |     void dump(); | 
 | }; | 
 |  | 
 | void AAEdge::dump() | 
 | { | 
 |     float tri  = 1.0f / TRI_ONE; | 
 |     float iter = 1.0f / (1<<TRI_ITERATORS_BITS); | 
 |     float fix  = 1.0f / FIXED_ONE; | 
 |     ALOGD(   "x=%08x (%.3f), " | 
 |             "x_incr=%08x (%.3f), y_incr=%08x (%.3f), " | 
 |             "y_top=%08x (%.3f), y_bot=%08x (%.3f) ", | 
 |         x, x*fix, | 
 |         x_incr, x_incr*iter, | 
 |         y_incr, y_incr*iter, | 
 |         y_top, y_top*tri, | 
 |         y_bot, y_bot*tri ); | 
 | } | 
 |  | 
 | // the following function sets up an edge, it assumes | 
 | // that ymin and ymax are in already in the 'reduced' | 
 | // format | 
 | static __attribute__((noinline)) | 
 | void aa_edge_setup( | 
 |         AAEdge*         edges, | 
 |         int*            pcount, | 
 |         const GGLcoord* p1, | 
 |         const GGLcoord* p2, | 
 |         int32_t         ymin, | 
 |         int32_t         ymax ) | 
 | { | 
 |     const GGLfixed*  top = p1; | 
 |     const GGLfixed*  bot = p2; | 
 |     AAEdge* edge = edges + *pcount; | 
 |  | 
 |     if (top[1] > bot[1]) | 
 |         swap(top, bot); | 
 |  | 
 |     int  y1 = top[1]; | 
 |     int  y2 = bot[1]; | 
 |     int  dy = y2 - y1; | 
 |  | 
 |     if (dy==0 || y1>ymax || y2<ymin) | 
 |         return; | 
 |  | 
 |     if (y1 > ymin) | 
 |         ymin = y1; | 
 |      | 
 |     if (y2 < ymax) | 
 |         ymax = y2; | 
 |  | 
 |     const int x1 = top[0]; | 
 |     const int dx = bot[0] - x1; | 
 |     const int shift = FIXED_BITS - TRI_FRACTION_BITS; | 
 |  | 
 |     // setup edge fields | 
 |     edge->x      = x1 << shift; | 
 |     edge->x_incr = 0; | 
 |     edge->y_top  = ymin; | 
 |     edge->y_bot  = ymax; | 
 |     edge->y_incr = 0x7FFFFFFF; | 
 |  | 
 |     if (ggl_likely(ymin <= ymax && dx)) { | 
 |         edge->x_incr = gglDivQ16(dx, dy); | 
 |         if (dx != 0) { | 
 |             edge->y_incr = abs(gglDivQ16(dy, dx)); | 
 |         } | 
 |     } | 
 |     if (ggl_likely(y1 < ymin)) { | 
 |         int32_t xadjust = (edge->x_incr * (ymin-y1)) | 
 |                 >> (TRI_FRACTION_BITS + TRI_ITERATORS_BITS - FIXED_BITS); | 
 |         edge->x += xadjust; | 
 |     } | 
 |    | 
 |     ++*pcount; | 
 | } | 
 |  | 
 |  | 
 | typedef int (*compar_t)(const void*, const void*); | 
 | static int compare_edges(const AAEdge *e0, const AAEdge *e1) { | 
 |     if (e0->y_top > e1->y_top)      return 1; | 
 |     if (e0->y_top < e1->y_top)      return -1; | 
 |     if (e0->x > e1->x)              return 1; | 
 |     if (e0->x < e1->x)              return -1; | 
 |     if (e0->x_incr > e1->x_incr)    return 1; | 
 |     if (e0->x_incr < e1->x_incr)    return -1; | 
 |     return 0; // same edges, should never happen | 
 | } | 
 |  | 
 | static inline  | 
 | void SET_COVERAGE(int16_t*& p, int32_t value, ssize_t n) | 
 | { | 
 |     android_memset16((uint16_t*)p, value, n*2); | 
 |     p += n; | 
 | } | 
 |  | 
 | static inline  | 
 | void ADD_COVERAGE(int16_t*& p, int32_t value) | 
 | { | 
 |     value = *p + value; | 
 |     if (value >= 0x8000) | 
 |         value = 0x7FFF; | 
 |     *p++ = value; | 
 | } | 
 |  | 
 | static inline | 
 | void SUB_COVERAGE(int16_t*& p, int32_t value) | 
 | { | 
 |     value = *p - value; | 
 |     value &= ~(value>>31); | 
 |     *p++ = value; | 
 | } | 
 |  | 
 | void aapolyx(void* con, | 
 |         const GGLcoord* pts, int count) | 
 | { | 
 |     /* | 
 |      * NOTE: This routine assumes that the polygon has been clipped to the | 
 |      * viewport already, that is, no vertex lies outside of the framebuffer. | 
 |      * If this happens, the code below won't corrupt memory but the  | 
 |      * coverage values may not be correct. | 
 |      */ | 
 |      | 
 |     GGL_CONTEXT(c, con); | 
 |  | 
 |     // we do only quads for now (it's used for thick lines) | 
 |     if ((count>4) || (count<2)) return; | 
 |  | 
 |     // take scissor into account | 
 |     const int xmin = c->state.scissor.left; | 
 |     const int xmax = c->state.scissor.right; | 
 |     if (xmin >= xmax) return; | 
 |  | 
 |     // generate edges from the vertices | 
 |     int32_t ymin = TRI_FROM_INT(c->state.scissor.top); | 
 |     int32_t ymax = TRI_FROM_INT(c->state.scissor.bottom); | 
 |     if (ymin >= ymax) return; | 
 |  | 
 |     AAEdge edges[4]; | 
 |     int num_edges = 0; | 
 |     GGLcoord const * p = pts; | 
 |     for (int i=0 ; i<count-1 ; i++, p+=2) { | 
 |         aa_edge_setup(edges, &num_edges, p, p+2, ymin, ymax); | 
 |     } | 
 |     aa_edge_setup(edges, &num_edges, p, pts, ymin, ymax ); | 
 |     if (ggl_unlikely(num_edges<2)) | 
 |         return; | 
 |  | 
 |     // sort the edge list top to bottom, left to right. | 
 |     qsort(edges, num_edges, sizeof(AAEdge), (compar_t)compare_edges); | 
 |  | 
 |     int16_t* const covPtr = c->state.buffers.coverage; | 
 |     memset(covPtr+xmin, 0, (xmax-xmin)*sizeof(*covPtr)); | 
 |  | 
 |     // now, sweep all edges in order | 
 |     // start with the 2 first edges. We know that they share their top | 
 |     // vertex, by construction. | 
 |     int i = 2; | 
 |     AAEdge* left  = &edges[0]; | 
 |     AAEdge* right = &edges[1]; | 
 |     int32_t yt = left->y_top; | 
 |     GGLfixed l = left->x; | 
 |     GGLfixed r = right->x; | 
 |     int retire = 0; | 
 |     int16_t* coverage; | 
 |  | 
 |     // at this point we can initialize the rasterizer     | 
 |     c->init_y(c, yt>>TRI_FRACTION_BITS); | 
 |     c->iterators.xl = xmax; | 
 |     c->iterators.xr = xmin; | 
 |  | 
 |     do { | 
 |         int32_t y = min(min(left->y_bot, right->y_bot), TRI_FLOOR(yt + TRI_ONE)); | 
 |         const int32_t shift = TRI_FRACTION_BITS + TRI_ITERATORS_BITS - FIXED_BITS; | 
 |         const int cf_shift = (1 + TRI_FRACTION_BITS*2 + TRI_ITERATORS_BITS - 15); | 
 |  | 
 |         // compute xmin and xmax for the left edge | 
 |         GGLfixed l_min = gglMulAddx(left->x_incr, y - left->y_top, left->x, shift); | 
 |         GGLfixed l_max = l; | 
 |         l = l_min; | 
 |         if (l_min > l_max) | 
 |             swap(l_min, l_max); | 
 |  | 
 |         // compute xmin and xmax for the right edge | 
 |         GGLfixed r_min = gglMulAddx(right->x_incr, y - right->y_top, right->x, shift); | 
 |         GGLfixed r_max = r; | 
 |         r = r_min; | 
 |         if (r_min > r_max) | 
 |             swap(r_min, r_max); | 
 |  | 
 |         // make sure we're not touching coverage values outside of the | 
 |         // framebuffer | 
 |         l_min &= ~(l_min>>31); | 
 |         r_min &= ~(r_min>>31); | 
 |         l_max &= ~(l_max>>31); | 
 |         r_max &= ~(r_max>>31); | 
 |         if (gglFixedToIntFloor(l_min) >= xmax) l_min = gglIntToFixed(xmax)-1; | 
 |         if (gglFixedToIntFloor(r_min) >= xmax) r_min = gglIntToFixed(xmax)-1; | 
 |         if (gglFixedToIntCeil(l_max) >= xmax)  l_max = gglIntToFixed(xmax)-1; | 
 |         if (gglFixedToIntCeil(r_max) >= xmax)  r_max = gglIntToFixed(xmax)-1; | 
 |  | 
 |         // compute the integer versions of the above | 
 |         const GGLfixed l_min_i = gglFloorx(l_min); | 
 |         const GGLfixed l_max_i = gglCeilx (l_max); | 
 |         const GGLfixed r_min_i = gglFloorx(r_min); | 
 |         const GGLfixed r_max_i = gglCeilx (r_max); | 
 |  | 
 |         // clip horizontally using the scissor | 
 |         const int xml = max(xmin, gglFixedToIntFloor(l_min_i)); | 
 |         const int xmr = min(xmax, gglFixedToIntFloor(r_max_i)); | 
 |  | 
 |         // if we just stepped to a new scanline, render the previous one. | 
 |         // and clear the coverage buffer | 
 |         if (retire) { | 
 |             if (c->iterators.xl < c->iterators.xr) | 
 |                 c->scanline(c); | 
 |             c->step_y(c); | 
 |             memset(covPtr+xmin, 0, (xmax-xmin)*sizeof(*covPtr)); | 
 |             c->iterators.xl = xml; | 
 |             c->iterators.xr = xmr; | 
 |         } else { | 
 |             // update the horizontal range of this scanline | 
 |             c->iterators.xl = min(c->iterators.xl, xml); | 
 |             c->iterators.xr = max(c->iterators.xr, xmr); | 
 |         } | 
 |  | 
 |         coverage = covPtr + gglFixedToIntFloor(l_min_i); | 
 |         if (l_min_i == gglFloorx(l_max)) { | 
 |              | 
 |             /* | 
 |              *  fully traverse this pixel vertically | 
 |              *       l_max | 
 |              *  +-----/--+  yt | 
 |              *  |    /   |   | 
 |              *  |   /    | | 
 |              *  |  /     | | 
 |              *  +-/------+  y | 
 |              *   l_min  (l_min_i + TRI_ONE) | 
 |              */ | 
 |                | 
 |             GGLfixed dx = l_max - l_min; | 
 |             int32_t dy = y - yt; | 
 |             int cf = gglMulx((dx >> 1) + (l_min_i + FIXED_ONE - l_max), dy, | 
 |                 FIXED_BITS + TRI_FRACTION_BITS - 15); | 
 |             ADD_COVERAGE(coverage, cf); | 
 |             // all pixels on the right have cf = 1.0 | 
 |         } else { | 
 |             /* | 
 |              *  spans several pixels in one scanline | 
 |              *            l_max | 
 |              *  +--------+--/-----+  yt | 
 |              *  |        |/       | | 
 |              *  |       /|        | | 
 |              *  |     /  |        | | 
 |              *  +---/----+--------+  y | 
 |              *   l_min (l_min_i + TRI_ONE) | 
 |              */ | 
 |  | 
 |             // handle the first pixel separately... | 
 |             const int32_t y_incr = left->y_incr; | 
 |             int32_t dx = TRI_FROM_FIXED(l_min_i - l_min) + TRI_ONE; | 
 |             int32_t cf = (dx * dx * y_incr) >> cf_shift; | 
 |             ADD_COVERAGE(coverage, cf); | 
 |  | 
 |             // following pixels get covered by y_incr, but we need | 
 |             // to fix-up the cf to account for previous partial pixel | 
 |             dx = TRI_FROM_FIXED(l_min - l_min_i); | 
 |             cf -= (dx * dx * y_incr) >> cf_shift; | 
 |             for (int x = l_min_i+FIXED_ONE ; x < l_max_i-FIXED_ONE ; x += FIXED_ONE) { | 
 |                 cf += y_incr >> (TRI_ITERATORS_BITS-15); | 
 |                 ADD_COVERAGE(coverage, cf); | 
 |             } | 
 |              | 
 |             // and the last pixel | 
 |             dx = TRI_FROM_FIXED(l_max - l_max_i) - TRI_ONE; | 
 |             cf += (dx * dx * y_incr) >> cf_shift; | 
 |             ADD_COVERAGE(coverage, cf); | 
 |         } | 
 |          | 
 |         // now, fill up all fully covered pixels | 
 |         coverage = covPtr + gglFixedToIntFloor(l_max_i); | 
 |         int cf = ((y - yt) << (15 - TRI_FRACTION_BITS)); | 
 |         if (ggl_likely(cf >= 0x8000)) { | 
 |             SET_COVERAGE(coverage, 0x7FFF, ((r_max - l_max_i)>>FIXED_BITS)+1); | 
 |         } else { | 
 |             for (int x=l_max_i ; x<r_max ; x+=FIXED_ONE) { | 
 |                 ADD_COVERAGE(coverage, cf); | 
 |             } | 
 |         } | 
 |          | 
 |         // subtract the coverage of the right edge | 
 |         coverage = covPtr + gglFixedToIntFloor(r_min_i);  | 
 |         if (r_min_i == gglFloorx(r_max)) { | 
 |             GGLfixed dx = r_max - r_min; | 
 |             int32_t dy = y - yt; | 
 |             int cf = gglMulx((dx >> 1) + (r_min_i + FIXED_ONE - r_max), dy, | 
 |                 FIXED_BITS + TRI_FRACTION_BITS - 15); | 
 |             SUB_COVERAGE(coverage, cf); | 
 |             // all pixels on the right have cf = 1.0 | 
 |         } else { | 
 |             // handle the first pixel separately... | 
 |             const int32_t y_incr = right->y_incr; | 
 |             int32_t dx = TRI_FROM_FIXED(r_min_i - r_min) + TRI_ONE; | 
 |             int32_t cf = (dx * dx * y_incr) >> cf_shift; | 
 |             SUB_COVERAGE(coverage, cf); | 
 |              | 
 |             // following pixels get covered by y_incr, but we need | 
 |             // to fix-up the cf to account for previous partial pixel | 
 |             dx = TRI_FROM_FIXED(r_min - r_min_i); | 
 |             cf -= (dx * dx * y_incr) >> cf_shift; | 
 |             for (int x = r_min_i+FIXED_ONE ; x < r_max_i-FIXED_ONE ; x += FIXED_ONE) { | 
 |                 cf += y_incr >> (TRI_ITERATORS_BITS-15); | 
 |                 SUB_COVERAGE(coverage, cf); | 
 |             } | 
 |              | 
 |             // and the last pixel | 
 |             dx = TRI_FROM_FIXED(r_max - r_max_i) - TRI_ONE; | 
 |             cf += (dx * dx * y_incr) >> cf_shift; | 
 |             SUB_COVERAGE(coverage, cf); | 
 |         } | 
 |  | 
 |         // did we reach the end of an edge? if so, get a new one. | 
 |         if (y == left->y_bot || y == right->y_bot) { | 
 |             // bail out if we're done | 
 |             if (i>=num_edges) | 
 |                 break; | 
 |             if (y == left->y_bot) | 
 |                 left = &edges[i++]; | 
 |             if (y == right->y_bot) | 
 |                 right = &edges[i++]; | 
 |         } | 
 |  | 
 |         // next scanline | 
 |         yt = y; | 
 |          | 
 |         // did we just finish a scanline?         | 
 |         retire = (y << (32-TRI_FRACTION_BITS)) == 0; | 
 |     } while (true); | 
 |  | 
 |     // render the last scanline | 
 |     if (c->iterators.xl < c->iterators.xr) | 
 |         c->scanline(c); | 
 | } | 
 |  | 
 | }; // namespace android |