|  | /* | 
|  | * Copyright (C) 2015 The Android Open Source Project | 
|  | * | 
|  | * Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | * you may not use this file except in compliance with the License. | 
|  | * You may obtain a copy of the License at | 
|  | * | 
|  | *      http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | * Unless required by applicable law or agreed to in writing, software | 
|  | * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | * See the License for the specific language governing permissions and | 
|  | * limitations under the License. | 
|  | */ | 
|  |  | 
|  | #define TRACE_TAG SYSDEPS | 
|  |  | 
|  | #include "sysdeps.h" | 
|  |  | 
|  | #include <winsock2.h> /* winsock.h *must* be included before windows.h. */ | 
|  | #include <windows.h> | 
|  |  | 
|  | #include <errno.h> | 
|  | #include <stdio.h> | 
|  | #include <stdlib.h> | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <memory> | 
|  | #include <mutex> | 
|  | #include <string> | 
|  | #include <unordered_map> | 
|  | #include <vector> | 
|  |  | 
|  | #include <cutils/sockets.h> | 
|  |  | 
|  | #include <android-base/errors.h> | 
|  | #include <android-base/logging.h> | 
|  | #include <android-base/stringprintf.h> | 
|  | #include <android-base/strings.h> | 
|  | #include <android-base/utf8.h> | 
|  |  | 
|  | #include "adb.h" | 
|  | #include "adb_utils.h" | 
|  |  | 
|  | extern void fatal(const char *fmt, ...); | 
|  |  | 
|  | /* forward declarations */ | 
|  |  | 
|  | typedef const struct FHClassRec_* FHClass; | 
|  | typedef struct FHRec_* FH; | 
|  | typedef struct EventHookRec_* EventHook; | 
|  |  | 
|  | typedef struct FHClassRec_ { | 
|  | void (*_fh_init)(FH); | 
|  | int (*_fh_close)(FH); | 
|  | int (*_fh_lseek)(FH, int, int); | 
|  | int (*_fh_read)(FH, void*, int); | 
|  | int (*_fh_write)(FH, const void*, int); | 
|  | } FHClassRec; | 
|  |  | 
|  | static void _fh_file_init(FH); | 
|  | static int _fh_file_close(FH); | 
|  | static int _fh_file_lseek(FH, int, int); | 
|  | static int _fh_file_read(FH, void*, int); | 
|  | static int _fh_file_write(FH, const void*, int); | 
|  |  | 
|  | static const FHClassRec _fh_file_class = { | 
|  | _fh_file_init, | 
|  | _fh_file_close, | 
|  | _fh_file_lseek, | 
|  | _fh_file_read, | 
|  | _fh_file_write, | 
|  | }; | 
|  |  | 
|  | static void _fh_socket_init(FH); | 
|  | static int _fh_socket_close(FH); | 
|  | static int _fh_socket_lseek(FH, int, int); | 
|  | static int _fh_socket_read(FH, void*, int); | 
|  | static int _fh_socket_write(FH, const void*, int); | 
|  |  | 
|  | static const FHClassRec _fh_socket_class = { | 
|  | _fh_socket_init, | 
|  | _fh_socket_close, | 
|  | _fh_socket_lseek, | 
|  | _fh_socket_read, | 
|  | _fh_socket_write, | 
|  | }; | 
|  |  | 
|  | #define assert(cond)                                                                       \ | 
|  | do {                                                                                   \ | 
|  | if (!(cond)) fatal("assertion failed '%s' on %s:%d\n", #cond, __FILE__, __LINE__); \ | 
|  | } while (0) | 
|  |  | 
|  | void handle_deleter::operator()(HANDLE h) { | 
|  | // CreateFile() is documented to return INVALID_HANDLE_FILE on error, | 
|  | // implying that NULL is a valid handle, but this is probably impossible. | 
|  | // Other APIs like CreateEvent() are documented to return NULL on error, | 
|  | // implying that INVALID_HANDLE_VALUE is a valid handle, but this is also | 
|  | // probably impossible. Thus, consider both NULL and INVALID_HANDLE_VALUE | 
|  | // as invalid handles. std::unique_ptr won't call a deleter with NULL, so we | 
|  | // only need to check for INVALID_HANDLE_VALUE. | 
|  | if (h != INVALID_HANDLE_VALUE) { | 
|  | if (!CloseHandle(h)) { | 
|  | D("CloseHandle(%p) failed: %s", h, | 
|  | android::base::SystemErrorCodeToString(GetLastError()).c_str()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /**************************************************************************/ | 
|  | /**************************************************************************/ | 
|  | /*****                                                                *****/ | 
|  | /*****    common file descriptor handling                             *****/ | 
|  | /*****                                                                *****/ | 
|  | /**************************************************************************/ | 
|  | /**************************************************************************/ | 
|  |  | 
|  | typedef struct FHRec_ | 
|  | { | 
|  | FHClass    clazz; | 
|  | int        used; | 
|  | int        eof; | 
|  | union { | 
|  | HANDLE      handle; | 
|  | SOCKET      socket; | 
|  | } u; | 
|  |  | 
|  | char  name[32]; | 
|  | } FHRec; | 
|  |  | 
|  | #define  fh_handle  u.handle | 
|  | #define  fh_socket  u.socket | 
|  |  | 
|  | #define  WIN32_FH_BASE    2048 | 
|  | #define  WIN32_MAX_FHS    2048 | 
|  |  | 
|  | static  std::mutex&  _win32_lock = *new std::mutex(); | 
|  | static  FHRec        _win32_fhs[ WIN32_MAX_FHS ]; | 
|  | static  int          _win32_fh_next;  // where to start search for free FHRec | 
|  |  | 
|  | static FH | 
|  | _fh_from_int( int   fd, const char*   func ) | 
|  | { | 
|  | FH  f; | 
|  |  | 
|  | fd -= WIN32_FH_BASE; | 
|  |  | 
|  | if (fd < 0 || fd >= WIN32_MAX_FHS) { | 
|  | D( "_fh_from_int: invalid fd %d passed to %s", fd + WIN32_FH_BASE, | 
|  | func ); | 
|  | errno = EBADF; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | f = &_win32_fhs[fd]; | 
|  |  | 
|  | if (f->used == 0) { | 
|  | D( "_fh_from_int: invalid fd %d passed to %s", fd + WIN32_FH_BASE, | 
|  | func ); | 
|  | errno = EBADF; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return f; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int | 
|  | _fh_to_int( FH  f ) | 
|  | { | 
|  | if (f && f->used && f >= _win32_fhs && f < _win32_fhs + WIN32_MAX_FHS) | 
|  | return (int)(f - _win32_fhs) + WIN32_FH_BASE; | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static FH | 
|  | _fh_alloc( FHClass  clazz ) | 
|  | { | 
|  | FH   f = NULL; | 
|  |  | 
|  | std::lock_guard<std::mutex> lock(_win32_lock); | 
|  |  | 
|  | for (int i = _win32_fh_next; i < WIN32_MAX_FHS; ++i) { | 
|  | if (_win32_fhs[i].clazz == NULL) { | 
|  | f = &_win32_fhs[i]; | 
|  | _win32_fh_next = i + 1; | 
|  | f->clazz = clazz; | 
|  | f->used = 1; | 
|  | f->eof = 0; | 
|  | f->name[0] = '\0'; | 
|  | clazz->_fh_init(f); | 
|  | return f; | 
|  | } | 
|  | } | 
|  |  | 
|  | D("_fh_alloc: no more free file descriptors"); | 
|  | errno = EMFILE;  // Too many open files | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int | 
|  | _fh_close( FH   f ) | 
|  | { | 
|  | // Use lock so that closing only happens once and so that _fh_alloc can't | 
|  | // allocate a FH that we're in the middle of closing. | 
|  | std::lock_guard<std::mutex> lock(_win32_lock); | 
|  |  | 
|  | int offset = f - _win32_fhs; | 
|  | if (_win32_fh_next > offset) { | 
|  | _win32_fh_next = offset; | 
|  | } | 
|  |  | 
|  | if (f->used) { | 
|  | f->clazz->_fh_close( f ); | 
|  | f->name[0] = '\0'; | 
|  | f->eof     = 0; | 
|  | f->used    = 0; | 
|  | f->clazz   = NULL; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Deleter for unique_fh. | 
|  | class fh_deleter { | 
|  | public: | 
|  | void operator()(struct FHRec_* fh) { | 
|  | // We're called from a destructor and destructors should not overwrite | 
|  | // errno because callers may do: | 
|  | //   errno = EBLAH; | 
|  | //   return -1; // calls destructor, which should not overwrite errno | 
|  | const int saved_errno = errno; | 
|  | _fh_close(fh); | 
|  | errno = saved_errno; | 
|  | } | 
|  | }; | 
|  |  | 
|  | // Like std::unique_ptr, but calls _fh_close() instead of operator delete(). | 
|  | typedef std::unique_ptr<struct FHRec_, fh_deleter> unique_fh; | 
|  |  | 
|  | /**************************************************************************/ | 
|  | /**************************************************************************/ | 
|  | /*****                                                                *****/ | 
|  | /*****    file-based descriptor handling                              *****/ | 
|  | /*****                                                                *****/ | 
|  | /**************************************************************************/ | 
|  | /**************************************************************************/ | 
|  |  | 
|  | static void _fh_file_init( FH  f ) { | 
|  | f->fh_handle = INVALID_HANDLE_VALUE; | 
|  | } | 
|  |  | 
|  | static int _fh_file_close( FH  f ) { | 
|  | CloseHandle( f->fh_handle ); | 
|  | f->fh_handle = INVALID_HANDLE_VALUE; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int _fh_file_read( FH  f,  void*  buf, int   len ) { | 
|  | DWORD  read_bytes; | 
|  |  | 
|  | if ( !ReadFile( f->fh_handle, buf, (DWORD)len, &read_bytes, NULL ) ) { | 
|  | D( "adb_read: could not read %d bytes from %s", len, f->name ); | 
|  | errno = EIO; | 
|  | return -1; | 
|  | } else if (read_bytes < (DWORD)len) { | 
|  | f->eof = 1; | 
|  | } | 
|  | return (int)read_bytes; | 
|  | } | 
|  |  | 
|  | static int _fh_file_write( FH  f,  const void*  buf, int   len ) { | 
|  | DWORD  wrote_bytes; | 
|  |  | 
|  | if ( !WriteFile( f->fh_handle, buf, (DWORD)len, &wrote_bytes, NULL ) ) { | 
|  | D( "adb_file_write: could not write %d bytes from %s", len, f->name ); | 
|  | errno = EIO; | 
|  | return -1; | 
|  | } else if (wrote_bytes < (DWORD)len) { | 
|  | f->eof = 1; | 
|  | } | 
|  | return  (int)wrote_bytes; | 
|  | } | 
|  |  | 
|  | static int _fh_file_lseek( FH  f, int  pos, int  origin ) { | 
|  | DWORD  method; | 
|  | DWORD  result; | 
|  |  | 
|  | switch (origin) | 
|  | { | 
|  | case SEEK_SET:  method = FILE_BEGIN; break; | 
|  | case SEEK_CUR:  method = FILE_CURRENT; break; | 
|  | case SEEK_END:  method = FILE_END; break; | 
|  | default: | 
|  | errno = EINVAL; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | result = SetFilePointer( f->fh_handle, pos, NULL, method ); | 
|  | if (result == INVALID_SET_FILE_POINTER) { | 
|  | errno = EIO; | 
|  | return -1; | 
|  | } else { | 
|  | f->eof = 0; | 
|  | } | 
|  | return (int)result; | 
|  | } | 
|  |  | 
|  |  | 
|  | /**************************************************************************/ | 
|  | /**************************************************************************/ | 
|  | /*****                                                                *****/ | 
|  | /*****    file-based descriptor handling                              *****/ | 
|  | /*****                                                                *****/ | 
|  | /**************************************************************************/ | 
|  | /**************************************************************************/ | 
|  |  | 
|  | int  adb_open(const char*  path, int  options) | 
|  | { | 
|  | FH  f; | 
|  |  | 
|  | DWORD  desiredAccess       = 0; | 
|  | DWORD  shareMode           = FILE_SHARE_READ | FILE_SHARE_WRITE; | 
|  |  | 
|  | switch (options) { | 
|  | case O_RDONLY: | 
|  | desiredAccess = GENERIC_READ; | 
|  | break; | 
|  | case O_WRONLY: | 
|  | desiredAccess = GENERIC_WRITE; | 
|  | break; | 
|  | case O_RDWR: | 
|  | desiredAccess = GENERIC_READ | GENERIC_WRITE; | 
|  | break; | 
|  | default: | 
|  | D("adb_open: invalid options (0x%0x)", options); | 
|  | errno = EINVAL; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | f = _fh_alloc( &_fh_file_class ); | 
|  | if ( !f ) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | std::wstring path_wide; | 
|  | if (!android::base::UTF8ToWide(path, &path_wide)) { | 
|  | return -1; | 
|  | } | 
|  | f->fh_handle = CreateFileW( path_wide.c_str(), desiredAccess, shareMode, | 
|  | NULL, OPEN_EXISTING, 0, NULL ); | 
|  |  | 
|  | if ( f->fh_handle == INVALID_HANDLE_VALUE ) { | 
|  | const DWORD err = GetLastError(); | 
|  | _fh_close(f); | 
|  | D( "adb_open: could not open '%s': ", path ); | 
|  | switch (err) { | 
|  | case ERROR_FILE_NOT_FOUND: | 
|  | D( "file not found" ); | 
|  | errno = ENOENT; | 
|  | return -1; | 
|  |  | 
|  | case ERROR_PATH_NOT_FOUND: | 
|  | D( "path not found" ); | 
|  | errno = ENOTDIR; | 
|  | return -1; | 
|  |  | 
|  | default: | 
|  | D("unknown error: %s", android::base::SystemErrorCodeToString(err).c_str()); | 
|  | errno = ENOENT; | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | snprintf( f->name, sizeof(f->name), "%d(%s)", _fh_to_int(f), path ); | 
|  | D( "adb_open: '%s' => fd %d", path, _fh_to_int(f) ); | 
|  | return _fh_to_int(f); | 
|  | } | 
|  |  | 
|  | /* ignore mode on Win32 */ | 
|  | int  adb_creat(const char*  path, int  mode) | 
|  | { | 
|  | FH  f; | 
|  |  | 
|  | f = _fh_alloc( &_fh_file_class ); | 
|  | if ( !f ) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | std::wstring path_wide; | 
|  | if (!android::base::UTF8ToWide(path, &path_wide)) { | 
|  | return -1; | 
|  | } | 
|  | f->fh_handle = CreateFileW( path_wide.c_str(), GENERIC_WRITE, | 
|  | FILE_SHARE_READ | FILE_SHARE_WRITE, | 
|  | NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, | 
|  | NULL ); | 
|  |  | 
|  | if ( f->fh_handle == INVALID_HANDLE_VALUE ) { | 
|  | const DWORD err = GetLastError(); | 
|  | _fh_close(f); | 
|  | D( "adb_creat: could not open '%s': ", path ); | 
|  | switch (err) { | 
|  | case ERROR_FILE_NOT_FOUND: | 
|  | D( "file not found" ); | 
|  | errno = ENOENT; | 
|  | return -1; | 
|  |  | 
|  | case ERROR_PATH_NOT_FOUND: | 
|  | D( "path not found" ); | 
|  | errno = ENOTDIR; | 
|  | return -1; | 
|  |  | 
|  | default: | 
|  | D("unknown error: %s", android::base::SystemErrorCodeToString(err).c_str()); | 
|  | errno = ENOENT; | 
|  | return -1; | 
|  | } | 
|  | } | 
|  | snprintf( f->name, sizeof(f->name), "%d(%s)", _fh_to_int(f), path ); | 
|  | D( "adb_creat: '%s' => fd %d", path, _fh_to_int(f) ); | 
|  | return _fh_to_int(f); | 
|  | } | 
|  |  | 
|  |  | 
|  | int  adb_read(int  fd, void* buf, int len) | 
|  | { | 
|  | FH     f = _fh_from_int(fd, __func__); | 
|  |  | 
|  | if (f == NULL) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | return f->clazz->_fh_read( f, buf, len ); | 
|  | } | 
|  |  | 
|  |  | 
|  | int  adb_write(int  fd, const void*  buf, int  len) | 
|  | { | 
|  | FH     f = _fh_from_int(fd, __func__); | 
|  |  | 
|  | if (f == NULL) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | return f->clazz->_fh_write(f, buf, len); | 
|  | } | 
|  |  | 
|  |  | 
|  | int  adb_lseek(int  fd, int  pos, int  where) | 
|  | { | 
|  | FH     f = _fh_from_int(fd, __func__); | 
|  |  | 
|  | if (!f) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | return f->clazz->_fh_lseek(f, pos, where); | 
|  | } | 
|  |  | 
|  |  | 
|  | int  adb_close(int  fd) | 
|  | { | 
|  | FH   f = _fh_from_int(fd, __func__); | 
|  |  | 
|  | if (!f) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | D( "adb_close: %s", f->name); | 
|  | _fh_close(f); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /**************************************************************************/ | 
|  | /**************************************************************************/ | 
|  | /*****                                                                *****/ | 
|  | /*****    socket-based file descriptors                               *****/ | 
|  | /*****                                                                *****/ | 
|  | /**************************************************************************/ | 
|  | /**************************************************************************/ | 
|  |  | 
|  | #undef setsockopt | 
|  |  | 
|  | static void _socket_set_errno( const DWORD err ) { | 
|  | // Because the Windows C Runtime (MSVCRT.DLL) strerror() does not support a | 
|  | // lot of POSIX and socket error codes, some of the resulting error codes | 
|  | // are mapped to strings by adb_strerror(). | 
|  | switch ( err ) { | 
|  | case 0:              errno = 0; break; | 
|  | // Don't map WSAEINTR since that is only for Winsock 1.1 which we don't use. | 
|  | // case WSAEINTR:    errno = EINTR; break; | 
|  | case WSAEFAULT:      errno = EFAULT; break; | 
|  | case WSAEINVAL:      errno = EINVAL; break; | 
|  | case WSAEMFILE:      errno = EMFILE; break; | 
|  | // Mapping WSAEWOULDBLOCK to EAGAIN is absolutely critical because | 
|  | // non-blocking sockets can cause an error code of WSAEWOULDBLOCK and | 
|  | // callers check specifically for EAGAIN. | 
|  | case WSAEWOULDBLOCK: errno = EAGAIN; break; | 
|  | case WSAENOTSOCK:    errno = ENOTSOCK; break; | 
|  | case WSAENOPROTOOPT: errno = ENOPROTOOPT; break; | 
|  | case WSAEOPNOTSUPP:  errno = EOPNOTSUPP; break; | 
|  | case WSAENETDOWN:    errno = ENETDOWN; break; | 
|  | case WSAENETRESET:   errno = ENETRESET; break; | 
|  | // Map WSAECONNABORTED to EPIPE instead of ECONNABORTED because POSIX seems | 
|  | // to use EPIPE for these situations and there are some callers that look | 
|  | // for EPIPE. | 
|  | case WSAECONNABORTED: errno = EPIPE; break; | 
|  | case WSAECONNRESET:  errno = ECONNRESET; break; | 
|  | case WSAENOBUFS:     errno = ENOBUFS; break; | 
|  | case WSAENOTCONN:    errno = ENOTCONN; break; | 
|  | // Don't map WSAETIMEDOUT because we don't currently use SO_RCVTIMEO or | 
|  | // SO_SNDTIMEO which would cause WSAETIMEDOUT to be returned. Future | 
|  | // considerations: Reportedly send() can return zero on timeout, and POSIX | 
|  | // code may expect EAGAIN instead of ETIMEDOUT on timeout. | 
|  | // case WSAETIMEDOUT: errno = ETIMEDOUT; break; | 
|  | case WSAEHOSTUNREACH: errno = EHOSTUNREACH; break; | 
|  | default: | 
|  | errno = EINVAL; | 
|  | D( "_socket_set_errno: mapping Windows error code %lu to errno %d", | 
|  | err, errno ); | 
|  | } | 
|  | } | 
|  |  | 
|  | extern int adb_poll(adb_pollfd* fds, size_t nfds, int timeout) { | 
|  | // WSAPoll doesn't handle invalid/non-socket handles, so we need to handle them ourselves. | 
|  | int skipped = 0; | 
|  | std::vector<WSAPOLLFD> sockets; | 
|  | std::vector<adb_pollfd*> original; | 
|  | for (size_t i = 0; i < nfds; ++i) { | 
|  | FH fh = _fh_from_int(fds[i].fd, __func__); | 
|  | if (!fh || !fh->used || fh->clazz != &_fh_socket_class) { | 
|  | D("adb_poll received bad FD %d", fds[i].fd); | 
|  | fds[i].revents = POLLNVAL; | 
|  | ++skipped; | 
|  | } else { | 
|  | WSAPOLLFD wsapollfd = { | 
|  | .fd = fh->u.socket, | 
|  | .events = static_cast<short>(fds[i].events) | 
|  | }; | 
|  | sockets.push_back(wsapollfd); | 
|  | original.push_back(&fds[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (sockets.empty()) { | 
|  | return skipped; | 
|  | } | 
|  |  | 
|  | int result = WSAPoll(sockets.data(), sockets.size(), timeout); | 
|  | if (result == SOCKET_ERROR) { | 
|  | _socket_set_errno(WSAGetLastError()); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | // Map the results back onto the original set. | 
|  | for (size_t i = 0; i < sockets.size(); ++i) { | 
|  | original[i]->revents = sockets[i].revents; | 
|  | } | 
|  |  | 
|  | // WSAPoll appears to return the number of unique FDs with avaiable events, instead of how many | 
|  | // of the pollfd elements have a non-zero revents field, which is what it and poll are specified | 
|  | // to do. Ignore its result and calculate the proper return value. | 
|  | result = 0; | 
|  | for (size_t i = 0; i < nfds; ++i) { | 
|  | if (fds[i].revents != 0) { | 
|  | ++result; | 
|  | } | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static void _fh_socket_init(FH f) { | 
|  | f->fh_socket = INVALID_SOCKET; | 
|  | } | 
|  |  | 
|  | static int _fh_socket_close( FH  f ) { | 
|  | if (f->fh_socket != INVALID_SOCKET) { | 
|  | /* gently tell any peer that we're closing the socket */ | 
|  | if (shutdown(f->fh_socket, SD_BOTH) == SOCKET_ERROR) { | 
|  | // If the socket is not connected, this returns an error. We want to | 
|  | // minimize logging spam, so don't log these errors for now. | 
|  | #if 0 | 
|  | D("socket shutdown failed: %s", | 
|  | android::base::SystemErrorCodeToString(WSAGetLastError()).c_str()); | 
|  | #endif | 
|  | } | 
|  | if (closesocket(f->fh_socket) == SOCKET_ERROR) { | 
|  | // Don't set errno here, since adb_close will ignore it. | 
|  | const DWORD err = WSAGetLastError(); | 
|  | D("closesocket failed: %s", android::base::SystemErrorCodeToString(err).c_str()); | 
|  | } | 
|  | f->fh_socket = INVALID_SOCKET; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int _fh_socket_lseek( FH  f, int pos, int origin ) { | 
|  | errno = EPIPE; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static int _fh_socket_read(FH f, void* buf, int len) { | 
|  | int  result = recv(f->fh_socket, reinterpret_cast<char*>(buf), len, 0); | 
|  | if (result == SOCKET_ERROR) { | 
|  | const DWORD err = WSAGetLastError(); | 
|  | // WSAEWOULDBLOCK is normal with a non-blocking socket, so don't trace | 
|  | // that to reduce spam and confusion. | 
|  | if (err != WSAEWOULDBLOCK) { | 
|  | D("recv fd %d failed: %s", _fh_to_int(f), | 
|  | android::base::SystemErrorCodeToString(err).c_str()); | 
|  | } | 
|  | _socket_set_errno(err); | 
|  | result = -1; | 
|  | } | 
|  | return  result; | 
|  | } | 
|  |  | 
|  | static int _fh_socket_write(FH f, const void* buf, int len) { | 
|  | int  result = send(f->fh_socket, reinterpret_cast<const char*>(buf), len, 0); | 
|  | if (result == SOCKET_ERROR) { | 
|  | const DWORD err = WSAGetLastError(); | 
|  | // WSAEWOULDBLOCK is normal with a non-blocking socket, so don't trace | 
|  | // that to reduce spam and confusion. | 
|  | if (err != WSAEWOULDBLOCK) { | 
|  | D("send fd %d failed: %s", _fh_to_int(f), | 
|  | android::base::SystemErrorCodeToString(err).c_str()); | 
|  | } | 
|  | _socket_set_errno(err); | 
|  | result = -1; | 
|  | } else { | 
|  | // According to https://code.google.com/p/chromium/issues/detail?id=27870 | 
|  | // Winsock Layered Service Providers may cause this. | 
|  | CHECK_LE(result, len) << "Tried to write " << len << " bytes to " | 
|  | << f->name << ", but " << result | 
|  | << " bytes reportedly written"; | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /**************************************************************************/ | 
|  | /**************************************************************************/ | 
|  | /*****                                                                *****/ | 
|  | /*****    replacement for libs/cutils/socket_xxxx.c                   *****/ | 
|  | /*****                                                                *****/ | 
|  | /**************************************************************************/ | 
|  | /**************************************************************************/ | 
|  |  | 
|  | #include <winsock2.h> | 
|  |  | 
|  | static int  _winsock_init; | 
|  |  | 
|  | static void | 
|  | _init_winsock( void ) | 
|  | { | 
|  | // TODO: Multiple threads calling this may potentially cause multiple calls | 
|  | // to WSAStartup() which offers no real benefit. | 
|  | if (!_winsock_init) { | 
|  | WSADATA  wsaData; | 
|  | int      rc = WSAStartup( MAKEWORD(2,2), &wsaData); | 
|  | if (rc != 0) { | 
|  | fatal("adb: could not initialize Winsock: %s", | 
|  | android::base::SystemErrorCodeToString(rc).c_str()); | 
|  | } | 
|  | _winsock_init = 1; | 
|  |  | 
|  | // Note that we do not call atexit() to register WSACleanup to be called | 
|  | // at normal process termination because: | 
|  | // 1) When exit() is called, there are still threads actively using | 
|  | //    Winsock because we don't cleanly shutdown all threads, so it | 
|  | //    doesn't make sense to call WSACleanup() and may cause problems | 
|  | //    with those threads. | 
|  | // 2) A deadlock can occur when exit() holds a C Runtime lock, then it | 
|  | //    calls WSACleanup() which tries to unload a DLL, which tries to | 
|  | //    grab the LoaderLock. This conflicts with the device_poll_thread | 
|  | //    which holds the LoaderLock because AdbWinApi.dll calls | 
|  | //    setupapi.dll which tries to load wintrust.dll which tries to load | 
|  | //    crypt32.dll which calls atexit() which tries to acquire the C | 
|  | //    Runtime lock that the other thread holds. | 
|  | } | 
|  | } | 
|  |  | 
|  | // Map a socket type to an explicit socket protocol instead of using the socket | 
|  | // protocol of 0. Explicit socket protocols are used by most apps and we should | 
|  | // do the same to reduce the chance of exercising uncommon code-paths that might | 
|  | // have problems or that might load different Winsock service providers that | 
|  | // have problems. | 
|  | static int GetSocketProtocolFromSocketType(int type) { | 
|  | switch (type) { | 
|  | case SOCK_STREAM: | 
|  | return IPPROTO_TCP; | 
|  | case SOCK_DGRAM: | 
|  | return IPPROTO_UDP; | 
|  | default: | 
|  | LOG(FATAL) << "Unknown socket type: " << type; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | int network_loopback_client(int port, int type, std::string* error) { | 
|  | struct sockaddr_in addr; | 
|  | SOCKET s; | 
|  |  | 
|  | unique_fh f(_fh_alloc(&_fh_socket_class)); | 
|  | if (!f) { | 
|  | *error = strerror(errno); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (!_winsock_init) _init_winsock(); | 
|  |  | 
|  | memset(&addr, 0, sizeof(addr)); | 
|  | addr.sin_family = AF_INET; | 
|  | addr.sin_port = htons(port); | 
|  | addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK); | 
|  |  | 
|  | s = socket(AF_INET, type, GetSocketProtocolFromSocketType(type)); | 
|  | if (s == INVALID_SOCKET) { | 
|  | const DWORD err = WSAGetLastError(); | 
|  | *error = android::base::StringPrintf("cannot create socket: %s", | 
|  | android::base::SystemErrorCodeToString(err).c_str()); | 
|  | D("%s", error->c_str()); | 
|  | _socket_set_errno(err); | 
|  | return -1; | 
|  | } | 
|  | f->fh_socket = s; | 
|  |  | 
|  | if (connect(s, (struct sockaddr*)&addr, sizeof(addr)) == SOCKET_ERROR) { | 
|  | // Save err just in case inet_ntoa() or ntohs() changes the last error. | 
|  | const DWORD err = WSAGetLastError(); | 
|  | *error = android::base::StringPrintf("cannot connect to %s:%u: %s", | 
|  | inet_ntoa(addr.sin_addr), ntohs(addr.sin_port), | 
|  | android::base::SystemErrorCodeToString(err).c_str()); | 
|  | D("could not connect to %s:%d: %s", type != SOCK_STREAM ? "udp" : "tcp", port, | 
|  | error->c_str()); | 
|  | _socket_set_errno(err); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | const int fd = _fh_to_int(f.get()); | 
|  | snprintf(f->name, sizeof(f->name), "%d(lo-client:%s%d)", fd, type != SOCK_STREAM ? "udp:" : "", | 
|  | port); | 
|  | D("port %d type %s => fd %d", port, type != SOCK_STREAM ? "udp" : "tcp", fd); | 
|  | f.release(); | 
|  | return fd; | 
|  | } | 
|  |  | 
|  | #define LISTEN_BACKLOG 4 | 
|  |  | 
|  | // interface_address is INADDR_LOOPBACK or INADDR_ANY. | 
|  | static int _network_server(int port, int type, u_long interface_address, std::string* error) { | 
|  | struct sockaddr_in addr; | 
|  | SOCKET s; | 
|  | int n; | 
|  |  | 
|  | unique_fh f(_fh_alloc(&_fh_socket_class)); | 
|  | if (!f) { | 
|  | *error = strerror(errno); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (!_winsock_init) _init_winsock(); | 
|  |  | 
|  | memset(&addr, 0, sizeof(addr)); | 
|  | addr.sin_family = AF_INET; | 
|  | addr.sin_port = htons(port); | 
|  | addr.sin_addr.s_addr = htonl(interface_address); | 
|  |  | 
|  | // TODO: Consider using dual-stack socket that can simultaneously listen on | 
|  | // IPv4 and IPv6. | 
|  | s = socket(AF_INET, type, GetSocketProtocolFromSocketType(type)); | 
|  | if (s == INVALID_SOCKET) { | 
|  | const DWORD err = WSAGetLastError(); | 
|  | *error = android::base::StringPrintf("cannot create socket: %s", | 
|  | android::base::SystemErrorCodeToString(err).c_str()); | 
|  | D("%s", error->c_str()); | 
|  | _socket_set_errno(err); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | f->fh_socket = s; | 
|  |  | 
|  | // Note: SO_REUSEADDR on Windows allows multiple processes to bind to the | 
|  | // same port, so instead use SO_EXCLUSIVEADDRUSE. | 
|  | n = 1; | 
|  | if (setsockopt(s, SOL_SOCKET, SO_EXCLUSIVEADDRUSE, (const char*)&n, sizeof(n)) == SOCKET_ERROR) { | 
|  | const DWORD err = WSAGetLastError(); | 
|  | *error = android::base::StringPrintf("cannot set socket option SO_EXCLUSIVEADDRUSE: %s", | 
|  | android::base::SystemErrorCodeToString(err).c_str()); | 
|  | D("%s", error->c_str()); | 
|  | _socket_set_errno(err); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (bind(s, (struct sockaddr*)&addr, sizeof(addr)) == SOCKET_ERROR) { | 
|  | // Save err just in case inet_ntoa() or ntohs() changes the last error. | 
|  | const DWORD err = WSAGetLastError(); | 
|  | *error = android::base::StringPrintf("cannot bind to %s:%u: %s", inet_ntoa(addr.sin_addr), | 
|  | ntohs(addr.sin_port), | 
|  | android::base::SystemErrorCodeToString(err).c_str()); | 
|  | D("could not bind to %s:%d: %s", type != SOCK_STREAM ? "udp" : "tcp", port, error->c_str()); | 
|  | _socket_set_errno(err); | 
|  | return -1; | 
|  | } | 
|  | if (type == SOCK_STREAM) { | 
|  | if (listen(s, LISTEN_BACKLOG) == SOCKET_ERROR) { | 
|  | const DWORD err = WSAGetLastError(); | 
|  | *error = android::base::StringPrintf( | 
|  | "cannot listen on socket: %s", android::base::SystemErrorCodeToString(err).c_str()); | 
|  | D("could not listen on %s:%d: %s", type != SOCK_STREAM ? "udp" : "tcp", port, | 
|  | error->c_str()); | 
|  | _socket_set_errno(err); | 
|  | return -1; | 
|  | } | 
|  | } | 
|  | const int fd = _fh_to_int(f.get()); | 
|  | snprintf(f->name, sizeof(f->name), "%d(%s-server:%s%d)", fd, | 
|  | interface_address == INADDR_LOOPBACK ? "lo" : "any", type != SOCK_STREAM ? "udp:" : "", | 
|  | port); | 
|  | D("port %d type %s => fd %d", port, type != SOCK_STREAM ? "udp" : "tcp", fd); | 
|  | f.release(); | 
|  | return fd; | 
|  | } | 
|  |  | 
|  | int network_loopback_server(int port, int type, std::string* error) { | 
|  | return _network_server(port, type, INADDR_LOOPBACK, error); | 
|  | } | 
|  |  | 
|  | int network_inaddr_any_server(int port, int type, std::string* error) { | 
|  | return _network_server(port, type, INADDR_ANY, error); | 
|  | } | 
|  |  | 
|  | int network_connect(const std::string& host, int port, int type, int timeout, std::string* error) { | 
|  | unique_fh f(_fh_alloc(&_fh_socket_class)); | 
|  | if (!f) { | 
|  | *error = strerror(errno); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (!_winsock_init) _init_winsock(); | 
|  |  | 
|  | struct addrinfo hints; | 
|  | memset(&hints, 0, sizeof(hints)); | 
|  | hints.ai_family = AF_UNSPEC; | 
|  | hints.ai_socktype = type; | 
|  | hints.ai_protocol = GetSocketProtocolFromSocketType(type); | 
|  |  | 
|  | char port_str[16]; | 
|  | snprintf(port_str, sizeof(port_str), "%d", port); | 
|  |  | 
|  | struct addrinfo* addrinfo_ptr = nullptr; | 
|  |  | 
|  | #if (NTDDI_VERSION >= NTDDI_WINXPSP2) || (_WIN32_WINNT >= _WIN32_WINNT_WS03) | 
|  | // TODO: When the Android SDK tools increases the Windows system | 
|  | // requirements >= WinXP SP2, switch to android::base::UTF8ToWide() + GetAddrInfoW(). | 
|  | #else | 
|  | // Otherwise, keep using getaddrinfo(), or do runtime API detection | 
|  | // with GetProcAddress("GetAddrInfoW"). | 
|  | #endif | 
|  | if (getaddrinfo(host.c_str(), port_str, &hints, &addrinfo_ptr) != 0) { | 
|  | const DWORD err = WSAGetLastError(); | 
|  | *error = android::base::StringPrintf("cannot resolve host '%s' and port %s: %s", | 
|  | host.c_str(), port_str, | 
|  | android::base::SystemErrorCodeToString(err).c_str()); | 
|  |  | 
|  | D("%s", error->c_str()); | 
|  | _socket_set_errno(err); | 
|  | return -1; | 
|  | } | 
|  | std::unique_ptr<struct addrinfo, decltype(&freeaddrinfo)> addrinfo(addrinfo_ptr, freeaddrinfo); | 
|  | addrinfo_ptr = nullptr; | 
|  |  | 
|  | // TODO: Try all the addresses if there's more than one? This just uses | 
|  | // the first. Or, could call WSAConnectByName() (Windows Vista and newer) | 
|  | // which tries all addresses, takes a timeout and more. | 
|  | SOCKET s = socket(addrinfo->ai_family, addrinfo->ai_socktype, addrinfo->ai_protocol); | 
|  | if (s == INVALID_SOCKET) { | 
|  | const DWORD err = WSAGetLastError(); | 
|  | *error = android::base::StringPrintf("cannot create socket: %s", | 
|  | android::base::SystemErrorCodeToString(err).c_str()); | 
|  | D("%s", error->c_str()); | 
|  | _socket_set_errno(err); | 
|  | return -1; | 
|  | } | 
|  | f->fh_socket = s; | 
|  |  | 
|  | // TODO: Implement timeouts for Windows. Seems like the default in theory | 
|  | // (according to http://serverfault.com/a/671453) and in practice is 21 sec. | 
|  | if (connect(s, addrinfo->ai_addr, addrinfo->ai_addrlen) == SOCKET_ERROR) { | 
|  | // TODO: Use WSAAddressToString or inet_ntop on address. | 
|  | const DWORD err = WSAGetLastError(); | 
|  | *error = android::base::StringPrintf("cannot connect to %s:%s: %s", host.c_str(), port_str, | 
|  | android::base::SystemErrorCodeToString(err).c_str()); | 
|  | D("could not connect to %s:%s:%s: %s", type != SOCK_STREAM ? "udp" : "tcp", host.c_str(), | 
|  | port_str, error->c_str()); | 
|  | _socket_set_errno(err); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | const int fd = _fh_to_int(f.get()); | 
|  | snprintf(f->name, sizeof(f->name), "%d(net-client:%s%d)", fd, type != SOCK_STREAM ? "udp:" : "", | 
|  | port); | 
|  | D("host '%s' port %d type %s => fd %d", host.c_str(), port, type != SOCK_STREAM ? "udp" : "tcp", | 
|  | fd); | 
|  | f.release(); | 
|  | return fd; | 
|  | } | 
|  |  | 
|  | int  adb_register_socket(SOCKET s) { | 
|  | FH f = _fh_alloc( &_fh_socket_class ); | 
|  | f->fh_socket = s; | 
|  | return _fh_to_int(f); | 
|  | } | 
|  |  | 
|  | #undef accept | 
|  | int  adb_socket_accept(int  serverfd, struct sockaddr*  addr, socklen_t  *addrlen) | 
|  | { | 
|  | FH   serverfh = _fh_from_int(serverfd, __func__); | 
|  |  | 
|  | if ( !serverfh || serverfh->clazz != &_fh_socket_class ) { | 
|  | D("adb_socket_accept: invalid fd %d", serverfd); | 
|  | errno = EBADF; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | unique_fh fh(_fh_alloc( &_fh_socket_class )); | 
|  | if (!fh) { | 
|  | PLOG(ERROR) << "adb_socket_accept: failed to allocate accepted socket " | 
|  | "descriptor"; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | fh->fh_socket = accept( serverfh->fh_socket, addr, addrlen ); | 
|  | if (fh->fh_socket == INVALID_SOCKET) { | 
|  | const DWORD err = WSAGetLastError(); | 
|  | LOG(ERROR) << "adb_socket_accept: accept on fd " << serverfd << | 
|  | " failed: " + android::base::SystemErrorCodeToString(err); | 
|  | _socket_set_errno( err ); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | const int fd = _fh_to_int(fh.get()); | 
|  | snprintf( fh->name, sizeof(fh->name), "%d(accept:%s)", fd, serverfh->name ); | 
|  | D( "adb_socket_accept on fd %d returns fd %d", serverfd, fd ); | 
|  | fh.release(); | 
|  | return  fd; | 
|  | } | 
|  |  | 
|  |  | 
|  | int  adb_setsockopt( int  fd, int  level, int  optname, const void*  optval, socklen_t  optlen ) | 
|  | { | 
|  | FH   fh = _fh_from_int(fd, __func__); | 
|  |  | 
|  | if ( !fh || fh->clazz != &_fh_socket_class ) { | 
|  | D("adb_setsockopt: invalid fd %d", fd); | 
|  | errno = EBADF; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | // TODO: Once we can assume Windows Vista or later, if the caller is trying | 
|  | // to set SOL_SOCKET, SO_SNDBUF/SO_RCVBUF, ignore it since the OS has | 
|  | // auto-tuning. | 
|  |  | 
|  | int result = setsockopt( fh->fh_socket, level, optname, | 
|  | reinterpret_cast<const char*>(optval), optlen ); | 
|  | if ( result == SOCKET_ERROR ) { | 
|  | const DWORD err = WSAGetLastError(); | 
|  | D("adb_setsockopt: setsockopt on fd %d level %d optname %d failed: %s\n", | 
|  | fd, level, optname, android::base::SystemErrorCodeToString(err).c_str()); | 
|  | _socket_set_errno( err ); | 
|  | result = -1; | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | int adb_getsockname(int fd, struct sockaddr* sockaddr, socklen_t* optlen) { | 
|  | FH fh = _fh_from_int(fd, __func__); | 
|  |  | 
|  | if (!fh || fh->clazz != &_fh_socket_class) { | 
|  | D("adb_getsockname: invalid fd %d", fd); | 
|  | errno = EBADF; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | int result = getsockname(fh->fh_socket, sockaddr, optlen); | 
|  | if (result == SOCKET_ERROR) { | 
|  | const DWORD err = WSAGetLastError(); | 
|  | D("adb_getsockname: setsockopt on fd %d failed: %s\n", fd, | 
|  | android::base::SystemErrorCodeToString(err).c_str()); | 
|  | _socket_set_errno(err); | 
|  | result = -1; | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | int adb_socket_get_local_port(int fd) { | 
|  | sockaddr_storage addr_storage; | 
|  | socklen_t addr_len = sizeof(addr_storage); | 
|  |  | 
|  | if (adb_getsockname(fd, reinterpret_cast<sockaddr*>(&addr_storage), &addr_len) < 0) { | 
|  | D("adb_socket_get_local_port: adb_getsockname failed: %s", strerror(errno)); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (!(addr_storage.ss_family == AF_INET || addr_storage.ss_family == AF_INET6)) { | 
|  | D("adb_socket_get_local_port: unknown address family received: %d", addr_storage.ss_family); | 
|  | errno = ECONNABORTED; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | return ntohs(reinterpret_cast<sockaddr_in*>(&addr_storage)->sin_port); | 
|  | } | 
|  |  | 
|  | int  adb_shutdown(int  fd) | 
|  | { | 
|  | FH   f = _fh_from_int(fd, __func__); | 
|  |  | 
|  | if (!f || f->clazz != &_fh_socket_class) { | 
|  | D("adb_shutdown: invalid fd %d", fd); | 
|  | errno = EBADF; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | D( "adb_shutdown: %s", f->name); | 
|  | if (shutdown(f->fh_socket, SD_BOTH) == SOCKET_ERROR) { | 
|  | const DWORD err = WSAGetLastError(); | 
|  | D("socket shutdown fd %d failed: %s", fd, | 
|  | android::base::SystemErrorCodeToString(err).c_str()); | 
|  | _socket_set_errno(err); | 
|  | return -1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Emulate socketpair(2) by binding and connecting to a socket. | 
|  | int adb_socketpair(int sv[2]) { | 
|  | int server = -1; | 
|  | int client = -1; | 
|  | int accepted = -1; | 
|  | int local_port = -1; | 
|  | std::string error; | 
|  |  | 
|  | server = network_loopback_server(0, SOCK_STREAM, &error); | 
|  | if (server < 0) { | 
|  | D("adb_socketpair: failed to create server: %s", error.c_str()); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | local_port = adb_socket_get_local_port(server); | 
|  | if (local_port < 0) { | 
|  | D("adb_socketpair: failed to get server port number: %s", error.c_str()); | 
|  | goto fail; | 
|  | } | 
|  | D("adb_socketpair: bound on port %d", local_port); | 
|  |  | 
|  | client = network_loopback_client(local_port, SOCK_STREAM, &error); | 
|  | if (client < 0) { | 
|  | D("adb_socketpair: failed to connect client: %s", error.c_str()); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | accepted = adb_socket_accept(server, nullptr, nullptr); | 
|  | if (accepted < 0) { | 
|  | D("adb_socketpair: failed to accept: %s", strerror(errno)); | 
|  | goto fail; | 
|  | } | 
|  | adb_close(server); | 
|  | sv[0] = client; | 
|  | sv[1] = accepted; | 
|  | return 0; | 
|  |  | 
|  | fail: | 
|  | if (server >= 0) { | 
|  | adb_close(server); | 
|  | } | 
|  | if (client >= 0) { | 
|  | adb_close(client); | 
|  | } | 
|  | if (accepted >= 0) { | 
|  | adb_close(accepted); | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | bool set_file_block_mode(int fd, bool block) { | 
|  | FH fh = _fh_from_int(fd, __func__); | 
|  |  | 
|  | if (!fh || !fh->used) { | 
|  | errno = EBADF; | 
|  | D("Setting nonblocking on bad file descriptor %d", fd); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (fh->clazz == &_fh_socket_class) { | 
|  | u_long x = !block; | 
|  | if (ioctlsocket(fh->u.socket, FIONBIO, &x) != 0) { | 
|  | int error = WSAGetLastError(); | 
|  | _socket_set_errno(error); | 
|  | D("Setting %d nonblocking failed (%d)", fd, error); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } else { | 
|  | errno = ENOTSOCK; | 
|  | D("Setting nonblocking on non-socket %d", fd); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool set_tcp_keepalive(int fd, int interval_sec) { | 
|  | FH fh = _fh_from_int(fd, __func__); | 
|  |  | 
|  | if (!fh || fh->clazz != &_fh_socket_class) { | 
|  | D("set_tcp_keepalive(%d) failed: invalid fd", fd); | 
|  | errno = EBADF; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | tcp_keepalive keepalive; | 
|  | keepalive.onoff = (interval_sec > 0); | 
|  | keepalive.keepalivetime = interval_sec * 1000; | 
|  | keepalive.keepaliveinterval = interval_sec * 1000; | 
|  |  | 
|  | DWORD bytes_returned = 0; | 
|  | if (WSAIoctl(fh->fh_socket, SIO_KEEPALIVE_VALS, &keepalive, sizeof(keepalive), nullptr, 0, | 
|  | &bytes_returned, nullptr, nullptr) != 0) { | 
|  | const DWORD err = WSAGetLastError(); | 
|  | D("set_tcp_keepalive(%d) failed: %s", fd, | 
|  | android::base::SystemErrorCodeToString(err).c_str()); | 
|  | _socket_set_errno(err); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /**************************************************************************/ | 
|  | /**************************************************************************/ | 
|  | /*****                                                                *****/ | 
|  | /*****      Console Window Terminal Emulation                         *****/ | 
|  | /*****                                                                *****/ | 
|  | /**************************************************************************/ | 
|  | /**************************************************************************/ | 
|  |  | 
|  | // This reads input from a Win32 console window and translates it into Unix | 
|  | // terminal-style sequences. This emulates mostly Gnome Terminal (in Normal | 
|  | // mode, not Application mode), which itself emulates xterm. Gnome Terminal | 
|  | // is emulated instead of xterm because it is probably more popular than xterm: | 
|  | // Ubuntu's default Ctrl-Alt-T shortcut opens Gnome Terminal, Gnome Terminal | 
|  | // supports modern fonts, etc. It seems best to emulate the terminal that most | 
|  | // Android developers use because they'll fix apps (the shell, etc.) to keep | 
|  | // working with that terminal's emulation. | 
|  | // | 
|  | // The point of this emulation is not to be perfect or to solve all issues with | 
|  | // console windows on Windows, but to be better than the original code which | 
|  | // just called read() (which called ReadFile(), which called ReadConsoleA()) | 
|  | // which did not support Ctrl-C, tab completion, shell input line editing | 
|  | // keys, server echo, and more. | 
|  | // | 
|  | // This implementation reconfigures the console with SetConsoleMode(), then | 
|  | // calls ReadConsoleInput() to get raw input which it remaps to Unix | 
|  | // terminal-style sequences which is returned via unix_read() which is used | 
|  | // by the 'adb shell' command. | 
|  | // | 
|  | // Code organization: | 
|  | // | 
|  | // * _get_console_handle() and unix_isatty() provide console information. | 
|  | // * stdin_raw_init() and stdin_raw_restore() reconfigure the console. | 
|  | // * unix_read() detects console windows (as opposed to pipes, files, etc.). | 
|  | // * _console_read() is the main code of the emulation. | 
|  |  | 
|  | // Returns a console HANDLE if |fd| is a console, otherwise returns nullptr. | 
|  | // If a valid HANDLE is returned and |mode| is not null, |mode| is also filled | 
|  | // with the console mode. Requires GENERIC_READ access to the underlying HANDLE. | 
|  | static HANDLE _get_console_handle(int fd, DWORD* mode=nullptr) { | 
|  | // First check isatty(); this is very fast and eliminates most non-console | 
|  | // FDs, but returns 1 for both consoles and character devices like NUL. | 
|  | #pragma push_macro("isatty") | 
|  | #undef isatty | 
|  | if (!isatty(fd)) { | 
|  | return nullptr; | 
|  | } | 
|  | #pragma pop_macro("isatty") | 
|  |  | 
|  | // To differentiate between character devices and consoles we need to get | 
|  | // the underlying HANDLE and use GetConsoleMode(), which is what requires | 
|  | // GENERIC_READ permissions. | 
|  | const intptr_t intptr_handle = _get_osfhandle(fd); | 
|  | if (intptr_handle == -1) { | 
|  | return nullptr; | 
|  | } | 
|  | const HANDLE handle = reinterpret_cast<const HANDLE>(intptr_handle); | 
|  | DWORD temp_mode = 0; | 
|  | if (!GetConsoleMode(handle, mode ? mode : &temp_mode)) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | return handle; | 
|  | } | 
|  |  | 
|  | // Returns a console handle if |stream| is a console, otherwise returns nullptr. | 
|  | static HANDLE _get_console_handle(FILE* const stream) { | 
|  | // Save and restore errno to make it easier for callers to prevent from overwriting errno. | 
|  | android::base::ErrnoRestorer er; | 
|  | const int fd = fileno(stream); | 
|  | if (fd < 0) { | 
|  | return nullptr; | 
|  | } | 
|  | return _get_console_handle(fd); | 
|  | } | 
|  |  | 
|  | int unix_isatty(int fd) { | 
|  | return _get_console_handle(fd) ? 1 : 0; | 
|  | } | 
|  |  | 
|  | // Get the next KEY_EVENT_RECORD that should be processed. | 
|  | static bool _get_key_event_record(const HANDLE console, INPUT_RECORD* const input_record) { | 
|  | for (;;) { | 
|  | DWORD read_count = 0; | 
|  | memset(input_record, 0, sizeof(*input_record)); | 
|  | if (!ReadConsoleInputA(console, input_record, 1, &read_count)) { | 
|  | D("_get_key_event_record: ReadConsoleInputA() failed: %s\n", | 
|  | android::base::SystemErrorCodeToString(GetLastError()).c_str()); | 
|  | errno = EIO; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (read_count == 0) {   // should be impossible | 
|  | fatal("ReadConsoleInputA returned 0"); | 
|  | } | 
|  |  | 
|  | if (read_count != 1) {   // should be impossible | 
|  | fatal("ReadConsoleInputA did not return one input record"); | 
|  | } | 
|  |  | 
|  | // If the console window is resized, emulate SIGWINCH by breaking out | 
|  | // of read() with errno == EINTR. Note that there is no event on | 
|  | // vertical resize because we don't give the console our own custom | 
|  | // screen buffer (with CreateConsoleScreenBuffer() + | 
|  | // SetConsoleActiveScreenBuffer()). Instead, we use the default which | 
|  | // supports scrollback, but doesn't seem to raise an event for vertical | 
|  | // window resize. | 
|  | if (input_record->EventType == WINDOW_BUFFER_SIZE_EVENT) { | 
|  | errno = EINTR; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if ((input_record->EventType == KEY_EVENT) && | 
|  | (input_record->Event.KeyEvent.bKeyDown)) { | 
|  | if (input_record->Event.KeyEvent.wRepeatCount == 0) { | 
|  | fatal("ReadConsoleInputA returned a key event with zero repeat" | 
|  | " count"); | 
|  | } | 
|  |  | 
|  | // Got an interesting INPUT_RECORD, so return | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static __inline__ bool _is_shift_pressed(const DWORD control_key_state) { | 
|  | return (control_key_state & SHIFT_PRESSED) != 0; | 
|  | } | 
|  |  | 
|  | static __inline__ bool _is_ctrl_pressed(const DWORD control_key_state) { | 
|  | return (control_key_state & (LEFT_CTRL_PRESSED | RIGHT_CTRL_PRESSED)) != 0; | 
|  | } | 
|  |  | 
|  | static __inline__ bool _is_alt_pressed(const DWORD control_key_state) { | 
|  | return (control_key_state & (LEFT_ALT_PRESSED | RIGHT_ALT_PRESSED)) != 0; | 
|  | } | 
|  |  | 
|  | static __inline__ bool _is_numlock_on(const DWORD control_key_state) { | 
|  | return (control_key_state & NUMLOCK_ON) != 0; | 
|  | } | 
|  |  | 
|  | static __inline__ bool _is_capslock_on(const DWORD control_key_state) { | 
|  | return (control_key_state & CAPSLOCK_ON) != 0; | 
|  | } | 
|  |  | 
|  | static __inline__ bool _is_enhanced_key(const DWORD control_key_state) { | 
|  | return (control_key_state & ENHANCED_KEY) != 0; | 
|  | } | 
|  |  | 
|  | // Constants from MSDN for ToAscii(). | 
|  | static const BYTE TOASCII_KEY_OFF = 0x00; | 
|  | static const BYTE TOASCII_KEY_DOWN = 0x80; | 
|  | static const BYTE TOASCII_KEY_TOGGLED_ON = 0x01;   // for CapsLock | 
|  |  | 
|  | // Given a key event, ignore a modifier key and return the character that was | 
|  | // entered without the modifier. Writes to *ch and returns the number of bytes | 
|  | // written. | 
|  | static size_t _get_char_ignoring_modifier(char* const ch, | 
|  | const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state, | 
|  | const WORD modifier) { | 
|  | // If there is no character from Windows, try ignoring the specified | 
|  | // modifier and look for a character. Note that if AltGr is being used, | 
|  | // there will be a character from Windows. | 
|  | if (key_event->uChar.AsciiChar == '\0') { | 
|  | // Note that we read the control key state from the passed in argument | 
|  | // instead of from key_event since the argument has been normalized. | 
|  | if (((modifier == VK_SHIFT)   && | 
|  | _is_shift_pressed(control_key_state)) || | 
|  | ((modifier == VK_CONTROL) && | 
|  | _is_ctrl_pressed(control_key_state)) || | 
|  | ((modifier == VK_MENU)    && _is_alt_pressed(control_key_state))) { | 
|  |  | 
|  | BYTE key_state[256]   = {0}; | 
|  | key_state[VK_SHIFT]   = _is_shift_pressed(control_key_state) ? | 
|  | TOASCII_KEY_DOWN : TOASCII_KEY_OFF; | 
|  | key_state[VK_CONTROL] = _is_ctrl_pressed(control_key_state)  ? | 
|  | TOASCII_KEY_DOWN : TOASCII_KEY_OFF; | 
|  | key_state[VK_MENU]    = _is_alt_pressed(control_key_state)   ? | 
|  | TOASCII_KEY_DOWN : TOASCII_KEY_OFF; | 
|  | key_state[VK_CAPITAL] = _is_capslock_on(control_key_state)   ? | 
|  | TOASCII_KEY_TOGGLED_ON : TOASCII_KEY_OFF; | 
|  |  | 
|  | // cause this modifier to be ignored | 
|  | key_state[modifier]   = TOASCII_KEY_OFF; | 
|  |  | 
|  | WORD translated = 0; | 
|  | if (ToAscii(key_event->wVirtualKeyCode, | 
|  | key_event->wVirtualScanCode, key_state, &translated, 0) == 1) { | 
|  | // Ignoring the modifier, we found a character. | 
|  | *ch = (CHAR)translated; | 
|  | return 1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Just use whatever Windows told us originally. | 
|  | *ch = key_event->uChar.AsciiChar; | 
|  |  | 
|  | // If the character from Windows is NULL, return a size of zero. | 
|  | return (*ch == '\0') ? 0 : 1; | 
|  | } | 
|  |  | 
|  | // If a Ctrl key is pressed, lookup the character, ignoring the Ctrl key, | 
|  | // but taking into account the shift key. This is because for a sequence like | 
|  | // Ctrl-Alt-0, we want to find the character '0' and for Ctrl-Alt-Shift-0, | 
|  | // we want to find the character ')'. | 
|  | // | 
|  | // Note that Windows doesn't seem to pass bKeyDown for Ctrl-Shift-NoAlt-0 | 
|  | // because it is the default key-sequence to switch the input language. | 
|  | // This is configurable in the Region and Language control panel. | 
|  | static __inline__ size_t _get_non_control_char(char* const ch, | 
|  | const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state) { | 
|  | return _get_char_ignoring_modifier(ch, key_event, control_key_state, | 
|  | VK_CONTROL); | 
|  | } | 
|  |  | 
|  | // Get without Alt. | 
|  | static __inline__ size_t _get_non_alt_char(char* const ch, | 
|  | const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state) { | 
|  | return _get_char_ignoring_modifier(ch, key_event, control_key_state, | 
|  | VK_MENU); | 
|  | } | 
|  |  | 
|  | // Ignore the control key, find the character from Windows, and apply any | 
|  | // Control key mappings (for example, Ctrl-2 is a NULL character). Writes to | 
|  | // *pch and returns number of bytes written. | 
|  | static size_t _get_control_character(char* const pch, | 
|  | const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state) { | 
|  | const size_t len = _get_non_control_char(pch, key_event, | 
|  | control_key_state); | 
|  |  | 
|  | if ((len == 1) && _is_ctrl_pressed(control_key_state)) { | 
|  | char ch = *pch; | 
|  | switch (ch) { | 
|  | case '2': | 
|  | case '@': | 
|  | case '`': | 
|  | ch = '\0'; | 
|  | break; | 
|  | case '3': | 
|  | case '[': | 
|  | case '{': | 
|  | ch = '\x1b'; | 
|  | break; | 
|  | case '4': | 
|  | case '\\': | 
|  | case '|': | 
|  | ch = '\x1c'; | 
|  | break; | 
|  | case '5': | 
|  | case ']': | 
|  | case '}': | 
|  | ch = '\x1d'; | 
|  | break; | 
|  | case '6': | 
|  | case '^': | 
|  | case '~': | 
|  | ch = '\x1e'; | 
|  | break; | 
|  | case '7': | 
|  | case '-': | 
|  | case '_': | 
|  | ch = '\x1f'; | 
|  | break; | 
|  | case '8': | 
|  | ch = '\x7f'; | 
|  | break; | 
|  | case '/': | 
|  | if (!_is_alt_pressed(control_key_state)) { | 
|  | ch = '\x1f'; | 
|  | } | 
|  | break; | 
|  | case '?': | 
|  | if (!_is_alt_pressed(control_key_state)) { | 
|  | ch = '\x7f'; | 
|  | } | 
|  | break; | 
|  | } | 
|  | *pch = ch; | 
|  | } | 
|  |  | 
|  | return len; | 
|  | } | 
|  |  | 
|  | static DWORD _normalize_altgr_control_key_state( | 
|  | const KEY_EVENT_RECORD* const key_event) { | 
|  | DWORD control_key_state = key_event->dwControlKeyState; | 
|  |  | 
|  | // If we're in an AltGr situation where the AltGr key is down (depending on | 
|  | // the keyboard layout, that might be the physical right alt key which | 
|  | // produces a control_key_state where Right-Alt and Left-Ctrl are down) or | 
|  | // AltGr-equivalent keys are down (any Ctrl key + any Alt key), and we have | 
|  | // a character (which indicates that there was an AltGr mapping), then act | 
|  | // as if alt and control are not really down for the purposes of modifiers. | 
|  | // This makes it so that if the user with, say, a German keyboard layout | 
|  | // presses AltGr-] (which we see as Right-Alt + Left-Ctrl + key), we just | 
|  | // output the key and we don't see the Alt and Ctrl keys. | 
|  | if (_is_ctrl_pressed(control_key_state) && | 
|  | _is_alt_pressed(control_key_state) | 
|  | && (key_event->uChar.AsciiChar != '\0')) { | 
|  | // Try to remove as few bits as possible to improve our chances of | 
|  | // detecting combinations like Left-Alt + AltGr, Right-Ctrl + AltGr, or | 
|  | // Left-Alt + Right-Ctrl + AltGr. | 
|  | if ((control_key_state & RIGHT_ALT_PRESSED) != 0) { | 
|  | // Remove Right-Alt. | 
|  | control_key_state &= ~RIGHT_ALT_PRESSED; | 
|  | // If uChar is set, a Ctrl key is pressed, and Right-Alt is | 
|  | // pressed, Left-Ctrl is almost always set, except if the user | 
|  | // presses Right-Ctrl, then AltGr (in that specific order) for | 
|  | // whatever reason. At any rate, make sure the bit is not set. | 
|  | control_key_state &= ~LEFT_CTRL_PRESSED; | 
|  | } else if ((control_key_state & LEFT_ALT_PRESSED) != 0) { | 
|  | // Remove Left-Alt. | 
|  | control_key_state &= ~LEFT_ALT_PRESSED; | 
|  | // Whichever Ctrl key is down, remove it from the state. We only | 
|  | // remove one key, to improve our chances of detecting the | 
|  | // corner-case of Left-Ctrl + Left-Alt + Right-Ctrl. | 
|  | if ((control_key_state & LEFT_CTRL_PRESSED) != 0) { | 
|  | // Remove Left-Ctrl. | 
|  | control_key_state &= ~LEFT_CTRL_PRESSED; | 
|  | } else if ((control_key_state & RIGHT_CTRL_PRESSED) != 0) { | 
|  | // Remove Right-Ctrl. | 
|  | control_key_state &= ~RIGHT_CTRL_PRESSED; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Note that this logic isn't 100% perfect because Windows doesn't | 
|  | // allow us to detect all combinations because a physical AltGr key | 
|  | // press shows up as two bits, plus some combinations are ambiguous | 
|  | // about what is actually physically pressed. | 
|  | } | 
|  |  | 
|  | return control_key_state; | 
|  | } | 
|  |  | 
|  | // If NumLock is on and Shift is pressed, SHIFT_PRESSED is not set in | 
|  | // dwControlKeyState for the following keypad keys: period, 0-9. If we detect | 
|  | // this scenario, set the SHIFT_PRESSED bit so we can add modifiers | 
|  | // appropriately. | 
|  | static DWORD _normalize_keypad_control_key_state(const WORD vk, | 
|  | const DWORD control_key_state) { | 
|  | if (!_is_numlock_on(control_key_state)) { | 
|  | return control_key_state; | 
|  | } | 
|  | if (!_is_enhanced_key(control_key_state)) { | 
|  | switch (vk) { | 
|  | case VK_INSERT: // 0 | 
|  | case VK_DELETE: // . | 
|  | case VK_END:    // 1 | 
|  | case VK_DOWN:   // 2 | 
|  | case VK_NEXT:   // 3 | 
|  | case VK_LEFT:   // 4 | 
|  | case VK_CLEAR:  // 5 | 
|  | case VK_RIGHT:  // 6 | 
|  | case VK_HOME:   // 7 | 
|  | case VK_UP:     // 8 | 
|  | case VK_PRIOR:  // 9 | 
|  | return control_key_state | SHIFT_PRESSED; | 
|  | } | 
|  | } | 
|  |  | 
|  | return control_key_state; | 
|  | } | 
|  |  | 
|  | static const char* _get_keypad_sequence(const DWORD control_key_state, | 
|  | const char* const normal, const char* const shifted) { | 
|  | if (_is_shift_pressed(control_key_state)) { | 
|  | // Shift is pressed and NumLock is off | 
|  | return shifted; | 
|  | } else { | 
|  | // Shift is not pressed and NumLock is off, or, | 
|  | // Shift is pressed and NumLock is on, in which case we want the | 
|  | // NumLock and Shift to neutralize each other, thus, we want the normal | 
|  | // sequence. | 
|  | return normal; | 
|  | } | 
|  | // If Shift is not pressed and NumLock is on, a different virtual key code | 
|  | // is returned by Windows, which can be taken care of by a different case | 
|  | // statement in _console_read(). | 
|  | } | 
|  |  | 
|  | // Write sequence to buf and return the number of bytes written. | 
|  | static size_t _get_modifier_sequence(char* const buf, const WORD vk, | 
|  | DWORD control_key_state, const char* const normal) { | 
|  | // Copy the base sequence into buf. | 
|  | const size_t len = strlen(normal); | 
|  | memcpy(buf, normal, len); | 
|  |  | 
|  | int code = 0; | 
|  |  | 
|  | control_key_state = _normalize_keypad_control_key_state(vk, | 
|  | control_key_state); | 
|  |  | 
|  | if (_is_shift_pressed(control_key_state)) { | 
|  | code |= 0x1; | 
|  | } | 
|  | if (_is_alt_pressed(control_key_state)) {   // any alt key pressed | 
|  | code |= 0x2; | 
|  | } | 
|  | if (_is_ctrl_pressed(control_key_state)) {  // any control key pressed | 
|  | code |= 0x4; | 
|  | } | 
|  | // If some modifier was held down, then we need to insert the modifier code | 
|  | if (code != 0) { | 
|  | if (len == 0) { | 
|  | // Should be impossible because caller should pass a string of | 
|  | // non-zero length. | 
|  | return 0; | 
|  | } | 
|  | size_t index = len - 1; | 
|  | const char lastChar = buf[index]; | 
|  | if (lastChar != '~') { | 
|  | buf[index++] = '1'; | 
|  | } | 
|  | buf[index++] = ';';         // modifier separator | 
|  | // 2 = shift, 3 = alt, 4 = shift & alt, 5 = control, | 
|  | // 6 = shift & control, 7 = alt & control, 8 = shift & alt & control | 
|  | buf[index++] = '1' + code; | 
|  | buf[index++] = lastChar;    // move ~ (or other last char) to the end | 
|  | return index; | 
|  | } | 
|  | return len; | 
|  | } | 
|  |  | 
|  | // Write sequence to buf and return the number of bytes written. | 
|  | static size_t _get_modifier_keypad_sequence(char* const buf, const WORD vk, | 
|  | const DWORD control_key_state, const char* const normal, | 
|  | const char shifted) { | 
|  | if (_is_shift_pressed(control_key_state)) { | 
|  | // Shift is pressed and NumLock is off | 
|  | if (shifted != '\0') { | 
|  | buf[0] = shifted; | 
|  | return sizeof(buf[0]); | 
|  | } else { | 
|  | return 0; | 
|  | } | 
|  | } else { | 
|  | // Shift is not pressed and NumLock is off, or, | 
|  | // Shift is pressed and NumLock is on, in which case we want the | 
|  | // NumLock and Shift to neutralize each other, thus, we want the normal | 
|  | // sequence. | 
|  | return _get_modifier_sequence(buf, vk, control_key_state, normal); | 
|  | } | 
|  | // If Shift is not pressed and NumLock is on, a different virtual key code | 
|  | // is returned by Windows, which can be taken care of by a different case | 
|  | // statement in _console_read(). | 
|  | } | 
|  |  | 
|  | // The decimal key on the keypad produces a '.' for U.S. English and a ',' for | 
|  | // Standard German. Figure this out at runtime so we know what to output for | 
|  | // Shift-VK_DELETE. | 
|  | static char _get_decimal_char() { | 
|  | return (char)MapVirtualKeyA(VK_DECIMAL, MAPVK_VK_TO_CHAR); | 
|  | } | 
|  |  | 
|  | // Prefix the len bytes in buf with the escape character, and then return the | 
|  | // new buffer length. | 
|  | size_t _escape_prefix(char* const buf, const size_t len) { | 
|  | // If nothing to prefix, don't do anything. We might be called with | 
|  | // len == 0, if alt was held down with a dead key which produced nothing. | 
|  | if (len == 0) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | memmove(&buf[1], buf, len); | 
|  | buf[0] = '\x1b'; | 
|  | return len + 1; | 
|  | } | 
|  |  | 
|  | // Internal buffer to satisfy future _console_read() calls. | 
|  | static auto& g_console_input_buffer = *new std::vector<char>(); | 
|  |  | 
|  | // Writes to buffer buf (of length len), returning number of bytes written or -1 on error. Never | 
|  | // returns zero on console closure because Win32 consoles are never 'closed' (as far as I can tell). | 
|  | static int _console_read(const HANDLE console, void* buf, size_t len) { | 
|  | for (;;) { | 
|  | // Read of zero bytes should not block waiting for something from the console. | 
|  | if (len == 0) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Flush as much as possible from input buffer. | 
|  | if (!g_console_input_buffer.empty()) { | 
|  | const int bytes_read = std::min(len, g_console_input_buffer.size()); | 
|  | memcpy(buf, g_console_input_buffer.data(), bytes_read); | 
|  | const auto begin = g_console_input_buffer.begin(); | 
|  | g_console_input_buffer.erase(begin, begin + bytes_read); | 
|  | return bytes_read; | 
|  | } | 
|  |  | 
|  | // Read from the actual console. This may block until input. | 
|  | INPUT_RECORD input_record; | 
|  | if (!_get_key_event_record(console, &input_record)) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | KEY_EVENT_RECORD* const key_event = &input_record.Event.KeyEvent; | 
|  | const WORD vk = key_event->wVirtualKeyCode; | 
|  | const CHAR ch = key_event->uChar.AsciiChar; | 
|  | const DWORD control_key_state = _normalize_altgr_control_key_state( | 
|  | key_event); | 
|  |  | 
|  | // The following emulation code should write the output sequence to | 
|  | // either seqstr or to seqbuf and seqbuflen. | 
|  | const char* seqstr = NULL;  // NULL terminated C-string | 
|  | // Enough space for max sequence string below, plus modifiers and/or | 
|  | // escape prefix. | 
|  | char seqbuf[16]; | 
|  | size_t seqbuflen = 0;       // Space used in seqbuf. | 
|  |  | 
|  | #define MATCH(vk, normal) \ | 
|  | case (vk): \ | 
|  | { \ | 
|  | seqstr = (normal); \ | 
|  | } \ | 
|  | break; | 
|  |  | 
|  | // Modifier keys should affect the output sequence. | 
|  | #define MATCH_MODIFIER(vk, normal) \ | 
|  | case (vk): \ | 
|  | { \ | 
|  | seqbuflen = _get_modifier_sequence(seqbuf, (vk), \ | 
|  | control_key_state, (normal)); \ | 
|  | } \ | 
|  | break; | 
|  |  | 
|  | // The shift key should affect the output sequence. | 
|  | #define MATCH_KEYPAD(vk, normal, shifted) \ | 
|  | case (vk): \ | 
|  | { \ | 
|  | seqstr = _get_keypad_sequence(control_key_state, (normal), \ | 
|  | (shifted)); \ | 
|  | } \ | 
|  | break; | 
|  |  | 
|  | // The shift key and other modifier keys should affect the output | 
|  | // sequence. | 
|  | #define MATCH_MODIFIER_KEYPAD(vk, normal, shifted) \ | 
|  | case (vk): \ | 
|  | { \ | 
|  | seqbuflen = _get_modifier_keypad_sequence(seqbuf, (vk), \ | 
|  | control_key_state, (normal), (shifted)); \ | 
|  | } \ | 
|  | break; | 
|  |  | 
|  | #define ESC "\x1b" | 
|  | #define CSI ESC "[" | 
|  | #define SS3 ESC "O" | 
|  |  | 
|  | // Only support normal mode, not application mode. | 
|  |  | 
|  | // Enhanced keys: | 
|  | // * 6-pack: insert, delete, home, end, page up, page down | 
|  | // * cursor keys: up, down, right, left | 
|  | // * keypad: divide, enter | 
|  | // * Undocumented: VK_PAUSE (Ctrl-NumLock), VK_SNAPSHOT, | 
|  | //   VK_CANCEL (Ctrl-Pause/Break), VK_NUMLOCK | 
|  | if (_is_enhanced_key(control_key_state)) { | 
|  | switch (vk) { | 
|  | case VK_RETURN: // Enter key on keypad | 
|  | if (_is_ctrl_pressed(control_key_state)) { | 
|  | seqstr = "\n"; | 
|  | } else { | 
|  | seqstr = "\r"; | 
|  | } | 
|  | break; | 
|  |  | 
|  | MATCH_MODIFIER(VK_PRIOR, CSI "5~"); // Page Up | 
|  | MATCH_MODIFIER(VK_NEXT,  CSI "6~"); // Page Down | 
|  |  | 
|  | // gnome-terminal currently sends SS3 "F" and SS3 "H", but that | 
|  | // will be fixed soon to match xterm which sends CSI "F" and | 
|  | // CSI "H". https://bugzilla.redhat.com/show_bug.cgi?id=1119764 | 
|  | MATCH(VK_END,  CSI "F"); | 
|  | MATCH(VK_HOME, CSI "H"); | 
|  |  | 
|  | MATCH_MODIFIER(VK_LEFT,  CSI "D"); | 
|  | MATCH_MODIFIER(VK_UP,    CSI "A"); | 
|  | MATCH_MODIFIER(VK_RIGHT, CSI "C"); | 
|  | MATCH_MODIFIER(VK_DOWN,  CSI "B"); | 
|  |  | 
|  | MATCH_MODIFIER(VK_INSERT, CSI "2~"); | 
|  | MATCH_MODIFIER(VK_DELETE, CSI "3~"); | 
|  |  | 
|  | MATCH(VK_DIVIDE, "/"); | 
|  | } | 
|  | } else {    // Non-enhanced keys: | 
|  | switch (vk) { | 
|  | case VK_BACK:   // backspace | 
|  | if (_is_alt_pressed(control_key_state)) { | 
|  | seqstr = ESC "\x7f"; | 
|  | } else { | 
|  | seqstr = "\x7f"; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case VK_TAB: | 
|  | if (_is_shift_pressed(control_key_state)) { | 
|  | seqstr = CSI "Z"; | 
|  | } else { | 
|  | seqstr = "\t"; | 
|  | } | 
|  | break; | 
|  |  | 
|  | // Number 5 key in keypad when NumLock is off, or if NumLock is | 
|  | // on and Shift is down. | 
|  | MATCH_KEYPAD(VK_CLEAR, CSI "E", "5"); | 
|  |  | 
|  | case VK_RETURN:     // Enter key on main keyboard | 
|  | if (_is_alt_pressed(control_key_state)) { | 
|  | seqstr = ESC "\n"; | 
|  | } else if (_is_ctrl_pressed(control_key_state)) { | 
|  | seqstr = "\n"; | 
|  | } else { | 
|  | seqstr = "\r"; | 
|  | } | 
|  | break; | 
|  |  | 
|  | // VK_ESCAPE: Don't do any special handling. The OS uses many | 
|  | // of the sequences with Escape and many of the remaining | 
|  | // sequences don't produce bKeyDown messages, only !bKeyDown | 
|  | // for whatever reason. | 
|  |  | 
|  | case VK_SPACE: | 
|  | if (_is_alt_pressed(control_key_state)) { | 
|  | seqstr = ESC " "; | 
|  | } else if (_is_ctrl_pressed(control_key_state)) { | 
|  | seqbuf[0] = '\0';   // NULL char | 
|  | seqbuflen = 1; | 
|  | } else { | 
|  | seqstr = " "; | 
|  | } | 
|  | break; | 
|  |  | 
|  | MATCH_MODIFIER_KEYPAD(VK_PRIOR, CSI "5~", '9'); // Page Up | 
|  | MATCH_MODIFIER_KEYPAD(VK_NEXT,  CSI "6~", '3'); // Page Down | 
|  |  | 
|  | MATCH_KEYPAD(VK_END,  CSI "4~", "1"); | 
|  | MATCH_KEYPAD(VK_HOME, CSI "1~", "7"); | 
|  |  | 
|  | MATCH_MODIFIER_KEYPAD(VK_LEFT,  CSI "D", '4'); | 
|  | MATCH_MODIFIER_KEYPAD(VK_UP,    CSI "A", '8'); | 
|  | MATCH_MODIFIER_KEYPAD(VK_RIGHT, CSI "C", '6'); | 
|  | MATCH_MODIFIER_KEYPAD(VK_DOWN,  CSI "B", '2'); | 
|  |  | 
|  | MATCH_MODIFIER_KEYPAD(VK_INSERT, CSI "2~", '0'); | 
|  | MATCH_MODIFIER_KEYPAD(VK_DELETE, CSI "3~", | 
|  | _get_decimal_char()); | 
|  |  | 
|  | case 0x30:          // 0 | 
|  | case 0x31:          // 1 | 
|  | case 0x39:          // 9 | 
|  | case VK_OEM_1:      // ;: | 
|  | case VK_OEM_PLUS:   // =+ | 
|  | case VK_OEM_COMMA:  // ,< | 
|  | case VK_OEM_PERIOD: // .> | 
|  | case VK_OEM_7:      // '" | 
|  | case VK_OEM_102:    // depends on keyboard, could be <> or \| | 
|  | case VK_OEM_2:      // /? | 
|  | case VK_OEM_3:      // `~ | 
|  | case VK_OEM_4:      // [{ | 
|  | case VK_OEM_5:      // \| | 
|  | case VK_OEM_6:      // ]} | 
|  | { | 
|  | seqbuflen = _get_control_character(seqbuf, key_event, | 
|  | control_key_state); | 
|  |  | 
|  | if (_is_alt_pressed(control_key_state)) { | 
|  | seqbuflen = _escape_prefix(seqbuf, seqbuflen); | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case 0x32:          // 2 | 
|  | case 0x33:          // 3 | 
|  | case 0x34:          // 4 | 
|  | case 0x35:          // 5 | 
|  | case 0x36:          // 6 | 
|  | case 0x37:          // 7 | 
|  | case 0x38:          // 8 | 
|  | case VK_OEM_MINUS:  // -_ | 
|  | { | 
|  | seqbuflen = _get_control_character(seqbuf, key_event, | 
|  | control_key_state); | 
|  |  | 
|  | // If Alt is pressed and it isn't Ctrl-Alt-ShiftUp, then | 
|  | // prefix with escape. | 
|  | if (_is_alt_pressed(control_key_state) && | 
|  | !(_is_ctrl_pressed(control_key_state) && | 
|  | !_is_shift_pressed(control_key_state))) { | 
|  | seqbuflen = _escape_prefix(seqbuf, seqbuflen); | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case 0x41:  // a | 
|  | case 0x42:  // b | 
|  | case 0x43:  // c | 
|  | case 0x44:  // d | 
|  | case 0x45:  // e | 
|  | case 0x46:  // f | 
|  | case 0x47:  // g | 
|  | case 0x48:  // h | 
|  | case 0x49:  // i | 
|  | case 0x4a:  // j | 
|  | case 0x4b:  // k | 
|  | case 0x4c:  // l | 
|  | case 0x4d:  // m | 
|  | case 0x4e:  // n | 
|  | case 0x4f:  // o | 
|  | case 0x50:  // p | 
|  | case 0x51:  // q | 
|  | case 0x52:  // r | 
|  | case 0x53:  // s | 
|  | case 0x54:  // t | 
|  | case 0x55:  // u | 
|  | case 0x56:  // v | 
|  | case 0x57:  // w | 
|  | case 0x58:  // x | 
|  | case 0x59:  // y | 
|  | case 0x5a:  // z | 
|  | { | 
|  | seqbuflen = _get_non_alt_char(seqbuf, key_event, | 
|  | control_key_state); | 
|  |  | 
|  | // If Alt is pressed, then prefix with escape. | 
|  | if (_is_alt_pressed(control_key_state)) { | 
|  | seqbuflen = _escape_prefix(seqbuf, seqbuflen); | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | // These virtual key codes are generated by the keys on the | 
|  | // keypad *when NumLock is on* and *Shift is up*. | 
|  | MATCH(VK_NUMPAD0, "0"); | 
|  | MATCH(VK_NUMPAD1, "1"); | 
|  | MATCH(VK_NUMPAD2, "2"); | 
|  | MATCH(VK_NUMPAD3, "3"); | 
|  | MATCH(VK_NUMPAD4, "4"); | 
|  | MATCH(VK_NUMPAD5, "5"); | 
|  | MATCH(VK_NUMPAD6, "6"); | 
|  | MATCH(VK_NUMPAD7, "7"); | 
|  | MATCH(VK_NUMPAD8, "8"); | 
|  | MATCH(VK_NUMPAD9, "9"); | 
|  |  | 
|  | MATCH(VK_MULTIPLY, "*"); | 
|  | MATCH(VK_ADD,      "+"); | 
|  | MATCH(VK_SUBTRACT, "-"); | 
|  | // VK_DECIMAL is generated by the . key on the keypad *when | 
|  | // NumLock is on* and *Shift is up* and the sequence is not | 
|  | // Ctrl-Alt-NoShift-. (which causes Ctrl-Alt-Del and the | 
|  | // Windows Security screen to come up). | 
|  | case VK_DECIMAL: | 
|  | // U.S. English uses '.', Germany German uses ','. | 
|  | seqbuflen = _get_non_control_char(seqbuf, key_event, | 
|  | control_key_state); | 
|  | break; | 
|  |  | 
|  | MATCH_MODIFIER(VK_F1,  SS3 "P"); | 
|  | MATCH_MODIFIER(VK_F2,  SS3 "Q"); | 
|  | MATCH_MODIFIER(VK_F3,  SS3 "R"); | 
|  | MATCH_MODIFIER(VK_F4,  SS3 "S"); | 
|  | MATCH_MODIFIER(VK_F5,  CSI "15~"); | 
|  | MATCH_MODIFIER(VK_F6,  CSI "17~"); | 
|  | MATCH_MODIFIER(VK_F7,  CSI "18~"); | 
|  | MATCH_MODIFIER(VK_F8,  CSI "19~"); | 
|  | MATCH_MODIFIER(VK_F9,  CSI "20~"); | 
|  | MATCH_MODIFIER(VK_F10, CSI "21~"); | 
|  | MATCH_MODIFIER(VK_F11, CSI "23~"); | 
|  | MATCH_MODIFIER(VK_F12, CSI "24~"); | 
|  |  | 
|  | MATCH_MODIFIER(VK_F13, CSI "25~"); | 
|  | MATCH_MODIFIER(VK_F14, CSI "26~"); | 
|  | MATCH_MODIFIER(VK_F15, CSI "28~"); | 
|  | MATCH_MODIFIER(VK_F16, CSI "29~"); | 
|  | MATCH_MODIFIER(VK_F17, CSI "31~"); | 
|  | MATCH_MODIFIER(VK_F18, CSI "32~"); | 
|  | MATCH_MODIFIER(VK_F19, CSI "33~"); | 
|  | MATCH_MODIFIER(VK_F20, CSI "34~"); | 
|  |  | 
|  | // MATCH_MODIFIER(VK_F21, ???); | 
|  | // MATCH_MODIFIER(VK_F22, ???); | 
|  | // MATCH_MODIFIER(VK_F23, ???); | 
|  | // MATCH_MODIFIER(VK_F24, ???); | 
|  | } | 
|  | } | 
|  |  | 
|  | #undef MATCH | 
|  | #undef MATCH_MODIFIER | 
|  | #undef MATCH_KEYPAD | 
|  | #undef MATCH_MODIFIER_KEYPAD | 
|  | #undef ESC | 
|  | #undef CSI | 
|  | #undef SS3 | 
|  |  | 
|  | const char* out; | 
|  | size_t outlen; | 
|  |  | 
|  | // Check for output in any of: | 
|  | // * seqstr is set (and strlen can be used to determine the length). | 
|  | // * seqbuf and seqbuflen are set | 
|  | // Fallback to ch from Windows. | 
|  | if (seqstr != NULL) { | 
|  | out = seqstr; | 
|  | outlen = strlen(seqstr); | 
|  | } else if (seqbuflen > 0) { | 
|  | out = seqbuf; | 
|  | outlen = seqbuflen; | 
|  | } else if (ch != '\0') { | 
|  | // Use whatever Windows told us it is. | 
|  | seqbuf[0] = ch; | 
|  | seqbuflen = 1; | 
|  | out = seqbuf; | 
|  | outlen = seqbuflen; | 
|  | } else { | 
|  | // No special handling for the virtual key code and Windows isn't | 
|  | // telling us a character code, then we don't know how to translate | 
|  | // the key press. | 
|  | // | 
|  | // Consume the input and 'continue' to cause us to get a new key | 
|  | // event. | 
|  | D("_console_read: unknown virtual key code: %d, enhanced: %s", | 
|  | vk, _is_enhanced_key(control_key_state) ? "true" : "false"); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // put output wRepeatCount times into g_console_input_buffer | 
|  | while (key_event->wRepeatCount-- > 0) { | 
|  | g_console_input_buffer.insert(g_console_input_buffer.end(), out, out + outlen); | 
|  | } | 
|  |  | 
|  | // Loop around and try to flush g_console_input_buffer | 
|  | } | 
|  | } | 
|  |  | 
|  | static DWORD _old_console_mode; // previous GetConsoleMode() result | 
|  | static HANDLE _console_handle;  // when set, console mode should be restored | 
|  |  | 
|  | void stdin_raw_init() { | 
|  | const HANDLE in = _get_console_handle(STDIN_FILENO, &_old_console_mode); | 
|  | if (in == nullptr) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Disable ENABLE_PROCESSED_INPUT so that Ctrl-C is read instead of | 
|  | // calling the process Ctrl-C routine (configured by | 
|  | // SetConsoleCtrlHandler()). | 
|  | // Disable ENABLE_LINE_INPUT so that input is immediately sent. | 
|  | // Disable ENABLE_ECHO_INPUT to disable local echo. Disabling this | 
|  | // flag also seems necessary to have proper line-ending processing. | 
|  | DWORD new_console_mode = _old_console_mode & ~(ENABLE_PROCESSED_INPUT | | 
|  | ENABLE_LINE_INPUT | | 
|  | ENABLE_ECHO_INPUT); | 
|  | // Enable ENABLE_WINDOW_INPUT to get window resizes. | 
|  | new_console_mode |= ENABLE_WINDOW_INPUT; | 
|  |  | 
|  | if (!SetConsoleMode(in, new_console_mode)) { | 
|  | // This really should not fail. | 
|  | D("stdin_raw_init: SetConsoleMode() failed: %s", | 
|  | android::base::SystemErrorCodeToString(GetLastError()).c_str()); | 
|  | } | 
|  |  | 
|  | // Once this is set, it means that stdin has been configured for | 
|  | // reading from and that the old console mode should be restored later. | 
|  | _console_handle = in; | 
|  |  | 
|  | // Note that we don't need to configure C Runtime line-ending | 
|  | // translation because _console_read() does not call the C Runtime to | 
|  | // read from the console. | 
|  | } | 
|  |  | 
|  | void stdin_raw_restore() { | 
|  | if (_console_handle != NULL) { | 
|  | const HANDLE in = _console_handle; | 
|  | _console_handle = NULL;  // clear state | 
|  |  | 
|  | if (!SetConsoleMode(in, _old_console_mode)) { | 
|  | // This really should not fail. | 
|  | D("stdin_raw_restore: SetConsoleMode() failed: %s", | 
|  | android::base::SystemErrorCodeToString(GetLastError()).c_str()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Called by 'adb shell' and 'adb exec-in' (via unix_read()) to read from stdin. | 
|  | int unix_read_interruptible(int fd, void* buf, size_t len) { | 
|  | if ((fd == STDIN_FILENO) && (_console_handle != NULL)) { | 
|  | // If it is a request to read from stdin, and stdin_raw_init() has been | 
|  | // called, and it successfully configured the console, then read from | 
|  | // the console using Win32 console APIs and partially emulate a unix | 
|  | // terminal. | 
|  | return _console_read(_console_handle, buf, len); | 
|  | } else { | 
|  | // On older versions of Windows (definitely 7, definitely not 10), | 
|  | // ReadConsole() with a size >= 31367 fails, so if |fd| is a console | 
|  | // we need to limit the read size. | 
|  | if (len > 4096 && unix_isatty(fd)) { | 
|  | len = 4096; | 
|  | } | 
|  | // Just call into C Runtime which can read from pipes/files and which | 
|  | // can do LF/CR translation (which is overridable with _setmode()). | 
|  | // Undefine the macro that is set in sysdeps.h which bans calls to | 
|  | // plain read() in favor of unix_read() or adb_read(). | 
|  | #pragma push_macro("read") | 
|  | #undef read | 
|  | return read(fd, buf, len); | 
|  | #pragma pop_macro("read") | 
|  | } | 
|  | } | 
|  |  | 
|  | /**************************************************************************/ | 
|  | /**************************************************************************/ | 
|  | /*****                                                                *****/ | 
|  | /*****      Unicode support                                           *****/ | 
|  | /*****                                                                *****/ | 
|  | /**************************************************************************/ | 
|  | /**************************************************************************/ | 
|  |  | 
|  | // This implements support for using files with Unicode filenames and for | 
|  | // outputting Unicode text to a Win32 console window. This is inspired from | 
|  | // http://utf8everywhere.org/. | 
|  | // | 
|  | // Background | 
|  | // ---------- | 
|  | // | 
|  | // On POSIX systems, to deal with files with Unicode filenames, just pass UTF-8 | 
|  | // filenames to APIs such as open(). This works because filenames are largely | 
|  | // opaque 'cookies' (perhaps excluding path separators). | 
|  | // | 
|  | // On Windows, the native file APIs such as CreateFileW() take 2-byte wchar_t | 
|  | // UTF-16 strings. There is an API, CreateFileA() that takes 1-byte char | 
|  | // strings, but the strings are in the ANSI codepage and not UTF-8. (The | 
|  | // CreateFile() API is really just a macro that adds the W/A based on whether | 
|  | // the UNICODE preprocessor symbol is defined). | 
|  | // | 
|  | // Options | 
|  | // ------- | 
|  | // | 
|  | // Thus, to write a portable program, there are a few options: | 
|  | // | 
|  | // 1. Write the program with wchar_t filenames (wchar_t path[256];). | 
|  | //    For Windows, just call CreateFileW(). For POSIX, write a wrapper openW() | 
|  | //    that takes a wchar_t string, converts it to UTF-8 and then calls the real | 
|  | //    open() API. | 
|  | // | 
|  | // 2. Write the program with a TCHAR typedef that is 2 bytes on Windows and | 
|  | //    1 byte on POSIX. Make T-* wrappers for various OS APIs and call those, | 
|  | //    potentially touching a lot of code. | 
|  | // | 
|  | // 3. Write the program with a 1-byte char filenames (char path[256];) that are | 
|  | //    UTF-8. For POSIX, just call open(). For Windows, write a wrapper that | 
|  | //    takes a UTF-8 string, converts it to UTF-16 and then calls the real OS | 
|  | //    or C Runtime API. | 
|  | // | 
|  | // The Choice | 
|  | // ---------- | 
|  | // | 
|  | // The code below chooses option 3, the UTF-8 everywhere strategy. It uses | 
|  | // android::base::WideToUTF8() which converts UTF-16 to UTF-8. This is used by the | 
|  | // NarrowArgs helper class that is used to convert wmain() args into UTF-8 | 
|  | // args that are passed to main() at the beginning of program startup. We also use | 
|  | // android::base::UTF8ToWide() which converts from UTF-8 to UTF-16. This is used to | 
|  | // implement wrappers below that call UTF-16 OS and C Runtime APIs. | 
|  | // | 
|  | // Unicode console output | 
|  | // ---------------------- | 
|  | // | 
|  | // The way to output Unicode to a Win32 console window is to call | 
|  | // WriteConsoleW() with UTF-16 text. (The user must also choose a proper font | 
|  | // such as Lucida Console or Consolas, and in the case of East Asian languages | 
|  | // (such as Chinese, Japanese, Korean), the user must go to the Control Panel | 
|  | // and change the "system locale" to Chinese, etc., which allows a Chinese, etc. | 
|  | // font to be used in console windows.) | 
|  | // | 
|  | // The problem is getting the C Runtime to make fprintf and related APIs call | 
|  | // WriteConsoleW() under the covers. The C Runtime API, _setmode() sounds | 
|  | // promising, but the various modes have issues: | 
|  | // | 
|  | // 1. _setmode(_O_TEXT) (the default) does not use WriteConsoleW() so UTF-8 and | 
|  | //    UTF-16 do not display properly. | 
|  | // 2. _setmode(_O_BINARY) does not use WriteConsoleW() and the text comes out | 
|  | //    totally wrong. | 
|  | // 3. _setmode(_O_U8TEXT) seems to cause the C Runtime _invalid_parameter | 
|  | //    handler to be called (upon a later I/O call), aborting the process. | 
|  | // 4. _setmode(_O_U16TEXT) and _setmode(_O_WTEXT) cause non-wide printf/fprintf | 
|  | //    to output nothing. | 
|  | // | 
|  | // So the only solution is to write our own adb_fprintf() that converts UTF-8 | 
|  | // to UTF-16 and then calls WriteConsoleW(). | 
|  |  | 
|  |  | 
|  | // Constructor for helper class to convert wmain() UTF-16 args to UTF-8 to | 
|  | // be passed to main(). | 
|  | NarrowArgs::NarrowArgs(const int argc, wchar_t** const argv) { | 
|  | narrow_args = new char*[argc + 1]; | 
|  |  | 
|  | for (int i = 0; i < argc; ++i) { | 
|  | std::string arg_narrow; | 
|  | if (!android::base::WideToUTF8(argv[i], &arg_narrow)) { | 
|  | fatal_errno("cannot convert argument from UTF-16 to UTF-8"); | 
|  | } | 
|  | narrow_args[i] = strdup(arg_narrow.c_str()); | 
|  | } | 
|  | narrow_args[argc] = nullptr;   // terminate | 
|  | } | 
|  |  | 
|  | NarrowArgs::~NarrowArgs() { | 
|  | if (narrow_args != nullptr) { | 
|  | for (char** argp = narrow_args; *argp != nullptr; ++argp) { | 
|  | free(*argp); | 
|  | } | 
|  | delete[] narrow_args; | 
|  | narrow_args = nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | int unix_open(const char* path, int options, ...) { | 
|  | std::wstring path_wide; | 
|  | if (!android::base::UTF8ToWide(path, &path_wide)) { | 
|  | return -1; | 
|  | } | 
|  | if ((options & O_CREAT) == 0) { | 
|  | return _wopen(path_wide.c_str(), options); | 
|  | } else { | 
|  | int      mode; | 
|  | va_list  args; | 
|  | va_start(args, options); | 
|  | mode = va_arg(args, int); | 
|  | va_end(args); | 
|  | return _wopen(path_wide.c_str(), options, mode); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Version of opendir() that takes a UTF-8 path. | 
|  | DIR* adb_opendir(const char* path) { | 
|  | std::wstring path_wide; | 
|  | if (!android::base::UTF8ToWide(path, &path_wide)) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Just cast _WDIR* to DIR*. This doesn't work if the caller reads any of | 
|  | // the fields, but right now all the callers treat the structure as | 
|  | // opaque. | 
|  | return reinterpret_cast<DIR*>(_wopendir(path_wide.c_str())); | 
|  | } | 
|  |  | 
|  | // Version of readdir() that returns UTF-8 paths. | 
|  | struct dirent* adb_readdir(DIR* dir) { | 
|  | _WDIR* const wdir = reinterpret_cast<_WDIR*>(dir); | 
|  | struct _wdirent* const went = _wreaddir(wdir); | 
|  | if (went == nullptr) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Convert from UTF-16 to UTF-8. | 
|  | std::string name_utf8; | 
|  | if (!android::base::WideToUTF8(went->d_name, &name_utf8)) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Cast the _wdirent* to dirent* and overwrite the d_name field (which has | 
|  | // space for UTF-16 wchar_t's) with UTF-8 char's. | 
|  | struct dirent* ent = reinterpret_cast<struct dirent*>(went); | 
|  |  | 
|  | if (name_utf8.length() + 1 > sizeof(went->d_name)) { | 
|  | // Name too big to fit in existing buffer. | 
|  | errno = ENOMEM; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Note that sizeof(_wdirent::d_name) is bigger than sizeof(dirent::d_name) | 
|  | // because _wdirent contains wchar_t instead of char. So even if name_utf8 | 
|  | // can fit in _wdirent::d_name, the resulting dirent::d_name field may be | 
|  | // bigger than the caller expects because they expect a dirent structure | 
|  | // which has a smaller d_name field. Ignore this since the caller should be | 
|  | // resilient. | 
|  |  | 
|  | // Rewrite the UTF-16 d_name field to UTF-8. | 
|  | strcpy(ent->d_name, name_utf8.c_str()); | 
|  |  | 
|  | return ent; | 
|  | } | 
|  |  | 
|  | // Version of closedir() to go with our version of adb_opendir(). | 
|  | int adb_closedir(DIR* dir) { | 
|  | return _wclosedir(reinterpret_cast<_WDIR*>(dir)); | 
|  | } | 
|  |  | 
|  | // Version of unlink() that takes a UTF-8 path. | 
|  | int adb_unlink(const char* path) { | 
|  | std::wstring wpath; | 
|  | if (!android::base::UTF8ToWide(path, &wpath)) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | int  rc = _wunlink(wpath.c_str()); | 
|  |  | 
|  | if (rc == -1 && errno == EACCES) { | 
|  | /* unlink returns EACCES when the file is read-only, so we first */ | 
|  | /* try to make it writable, then unlink again...                 */ | 
|  | rc = _wchmod(wpath.c_str(), _S_IREAD | _S_IWRITE); | 
|  | if (rc == 0) | 
|  | rc = _wunlink(wpath.c_str()); | 
|  | } | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | // Version of mkdir() that takes a UTF-8 path. | 
|  | int adb_mkdir(const std::string& path, int mode) { | 
|  | std::wstring path_wide; | 
|  | if (!android::base::UTF8ToWide(path, &path_wide)) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | return _wmkdir(path_wide.c_str()); | 
|  | } | 
|  |  | 
|  | // Version of utime() that takes a UTF-8 path. | 
|  | int adb_utime(const char* path, struct utimbuf* u) { | 
|  | std::wstring path_wide; | 
|  | if (!android::base::UTF8ToWide(path, &path_wide)) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static_assert(sizeof(struct utimbuf) == sizeof(struct _utimbuf), | 
|  | "utimbuf and _utimbuf should be the same size because they both " | 
|  | "contain the same types, namely time_t"); | 
|  | return _wutime(path_wide.c_str(), reinterpret_cast<struct _utimbuf*>(u)); | 
|  | } | 
|  |  | 
|  | // Version of chmod() that takes a UTF-8 path. | 
|  | int adb_chmod(const char* path, int mode) { | 
|  | std::wstring path_wide; | 
|  | if (!android::base::UTF8ToWide(path, &path_wide)) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | return _wchmod(path_wide.c_str(), mode); | 
|  | } | 
|  |  | 
|  | // From libutils/Unicode.cpp, get the length of a UTF-8 sequence given the lead byte. | 
|  | static inline size_t utf8_codepoint_len(uint8_t ch) { | 
|  | return ((0xe5000000 >> ((ch >> 3) & 0x1e)) & 3) + 1; | 
|  | } | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | // Given a sequence of UTF-8 bytes (denoted by the range [first, last)), return the number of bytes | 
|  | // (from the beginning) that are complete UTF-8 sequences and append the remaining bytes to | 
|  | // remaining_bytes. | 
|  | size_t ParseCompleteUTF8(const char* const first, const char* const last, | 
|  | std::vector<char>* const remaining_bytes) { | 
|  | // Walk backwards from the end of the sequence looking for the beginning of a UTF-8 sequence. | 
|  | // Current_after points one byte past the current byte to be examined. | 
|  | for (const char* current_after = last; current_after != first; --current_after) { | 
|  | const char* const current = current_after - 1; | 
|  | const char ch = *current; | 
|  | const char kHighBit = 0x80u; | 
|  | const char kTwoHighestBits = 0xC0u; | 
|  | if ((ch & kHighBit) == 0) { // high bit not set | 
|  | // The buffer ends with a one-byte UTF-8 sequence, possibly followed by invalid trailing | 
|  | // bytes with no leading byte, so return the entire buffer. | 
|  | break; | 
|  | } else if ((ch & kTwoHighestBits) == kTwoHighestBits) { // top two highest bits set | 
|  | // Lead byte in UTF-8 sequence, so check if we have all the bytes in the sequence. | 
|  | const size_t bytes_available = last - current; | 
|  | if (bytes_available < utf8_codepoint_len(ch)) { | 
|  | // We don't have all the bytes in the UTF-8 sequence, so return all the bytes | 
|  | // preceding the current incomplete UTF-8 sequence and append the remaining bytes | 
|  | // to remaining_bytes. | 
|  | remaining_bytes->insert(remaining_bytes->end(), current, last); | 
|  | return current - first; | 
|  | } else { | 
|  | // The buffer ends with a complete UTF-8 sequence, possibly followed by invalid | 
|  | // trailing bytes with no lead byte, so return the entire buffer. | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | // Trailing byte, so keep going backwards looking for the lead byte. | 
|  | } | 
|  | } | 
|  |  | 
|  | // Return the size of the entire buffer. It is possible that we walked backward past invalid | 
|  | // trailing bytes with no lead byte, in which case we want to return all those invalid bytes | 
|  | // so that they can be processed. | 
|  | return last - first; | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | // Bytes that have not yet been output to the console because they are incomplete UTF-8 sequences. | 
|  | // Note that we use only one buffer even though stderr and stdout are logically separate streams. | 
|  | // This matches the behavior of Linux. | 
|  |  | 
|  | // Internal helper function to write UTF-8 bytes to a console. Returns -1 on error. | 
|  | static int _console_write_utf8(const char* const buf, const size_t buf_size, FILE* stream, | 
|  | HANDLE console) { | 
|  | static std::mutex& console_output_buffer_lock = *new std::mutex(); | 
|  | static auto& console_output_buffer = *new std::vector<char>(); | 
|  |  | 
|  | const int saved_errno = errno; | 
|  | std::vector<char> combined_buffer; | 
|  |  | 
|  | // Complete UTF-8 sequences that should be immediately written to the console. | 
|  | const char* utf8; | 
|  | size_t utf8_size; | 
|  |  | 
|  | { | 
|  | std::lock_guard<std::mutex> lock(console_output_buffer_lock); | 
|  | if (console_output_buffer.empty()) { | 
|  | // If console_output_buffer doesn't have a buffered up incomplete UTF-8 sequence (the | 
|  | // common case with plain ASCII), parse buf directly. | 
|  | utf8 = buf; | 
|  | utf8_size = internal::ParseCompleteUTF8(buf, buf + buf_size, &console_output_buffer); | 
|  | } else { | 
|  | // If console_output_buffer has a buffered up incomplete UTF-8 sequence, move it to | 
|  | // combined_buffer (and effectively clear console_output_buffer) and append buf to | 
|  | // combined_buffer, then parse it all together. | 
|  | combined_buffer.swap(console_output_buffer); | 
|  | combined_buffer.insert(combined_buffer.end(), buf, buf + buf_size); | 
|  |  | 
|  | utf8 = combined_buffer.data(); | 
|  | utf8_size = internal::ParseCompleteUTF8(utf8, utf8 + combined_buffer.size(), | 
|  | &console_output_buffer); | 
|  | } | 
|  | } | 
|  |  | 
|  | std::wstring utf16; | 
|  |  | 
|  | // Try to convert from data that might be UTF-8 to UTF-16, ignoring errors (just like Linux | 
|  | // which does not return an error on bad UTF-8). Data might not be UTF-8 if the user cat's | 
|  | // random data, runs dmesg (which might have non-UTF-8), etc. | 
|  | // This could throw std::bad_alloc. | 
|  | (void)android::base::UTF8ToWide(utf8, utf8_size, &utf16); | 
|  |  | 
|  | // Note that this does not do \n => \r\n translation because that | 
|  | // doesn't seem necessary for the Windows console. For the Windows | 
|  | // console \r moves to the beginning of the line and \n moves to a new | 
|  | // line. | 
|  |  | 
|  | // Flush any stream buffering so that our output is afterwards which | 
|  | // makes sense because our call is afterwards. | 
|  | (void)fflush(stream); | 
|  |  | 
|  | // Write UTF-16 to the console. | 
|  | DWORD written = 0; | 
|  | if (!WriteConsoleW(console, utf16.c_str(), utf16.length(), &written, NULL)) { | 
|  | errno = EIO; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | // Return the size of the original buffer passed in, signifying that we consumed it all, even | 
|  | // if nothing was displayed, in the case of being passed an incomplete UTF-8 sequence. This | 
|  | // matches the Linux behavior. | 
|  | errno = saved_errno; | 
|  | return buf_size; | 
|  | } | 
|  |  | 
|  | // Function prototype because attributes cannot be placed on func definitions. | 
|  | static int _console_vfprintf(const HANDLE console, FILE* stream, | 
|  | const char *format, va_list ap) | 
|  | __attribute__((__format__(ADB_FORMAT_ARCHETYPE, 3, 0))); | 
|  |  | 
|  | // Internal function to format a UTF-8 string and write it to a Win32 console. | 
|  | // Returns -1 on error. | 
|  | static int _console_vfprintf(const HANDLE console, FILE* stream, | 
|  | const char *format, va_list ap) { | 
|  | const int saved_errno = errno; | 
|  | std::string output_utf8; | 
|  |  | 
|  | // Format the string. | 
|  | // This could throw std::bad_alloc. | 
|  | android::base::StringAppendV(&output_utf8, format, ap); | 
|  |  | 
|  | const int result = _console_write_utf8(output_utf8.c_str(), output_utf8.length(), stream, | 
|  | console); | 
|  | if (result != -1) { | 
|  | errno = saved_errno; | 
|  | } else { | 
|  | // If -1 was returned, errno has been set. | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | // Version of vfprintf() that takes UTF-8 and can write Unicode to a | 
|  | // Windows console. | 
|  | int adb_vfprintf(FILE *stream, const char *format, va_list ap) { | 
|  | const HANDLE console = _get_console_handle(stream); | 
|  |  | 
|  | // If there is an associated Win32 console, write to it specially, | 
|  | // otherwise defer to the regular C Runtime, passing it UTF-8. | 
|  | if (console != NULL) { | 
|  | return _console_vfprintf(console, stream, format, ap); | 
|  | } else { | 
|  | // If vfprintf is a macro, undefine it, so we can call the real | 
|  | // C Runtime API. | 
|  | #pragma push_macro("vfprintf") | 
|  | #undef vfprintf | 
|  | return vfprintf(stream, format, ap); | 
|  | #pragma pop_macro("vfprintf") | 
|  | } | 
|  | } | 
|  |  | 
|  | // Version of vprintf() that takes UTF-8 and can write Unicode to a Windows console. | 
|  | int adb_vprintf(const char *format, va_list ap) { | 
|  | return adb_vfprintf(stdout, format, ap); | 
|  | } | 
|  |  | 
|  | // Version of fprintf() that takes UTF-8 and can write Unicode to a | 
|  | // Windows console. | 
|  | int adb_fprintf(FILE *stream, const char *format, ...) { | 
|  | va_list ap; | 
|  | va_start(ap, format); | 
|  | const int result = adb_vfprintf(stream, format, ap); | 
|  | va_end(ap); | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | // Version of printf() that takes UTF-8 and can write Unicode to a | 
|  | // Windows console. | 
|  | int adb_printf(const char *format, ...) { | 
|  | va_list ap; | 
|  | va_start(ap, format); | 
|  | const int result = adb_vfprintf(stdout, format, ap); | 
|  | va_end(ap); | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | // Version of fputs() that takes UTF-8 and can write Unicode to a | 
|  | // Windows console. | 
|  | int adb_fputs(const char* buf, FILE* stream) { | 
|  | // adb_fprintf returns -1 on error, which is conveniently the same as EOF | 
|  | // which fputs (and hence adb_fputs) should return on error. | 
|  | static_assert(EOF == -1, "EOF is not -1, so this code needs to be fixed"); | 
|  | return adb_fprintf(stream, "%s", buf); | 
|  | } | 
|  |  | 
|  | // Version of fputc() that takes UTF-8 and can write Unicode to a | 
|  | // Windows console. | 
|  | int adb_fputc(int ch, FILE* stream) { | 
|  | const int result = adb_fprintf(stream, "%c", ch); | 
|  | if (result == -1) { | 
|  | return EOF; | 
|  | } | 
|  | // For success, fputc returns the char, cast to unsigned char, then to int. | 
|  | return static_cast<unsigned char>(ch); | 
|  | } | 
|  |  | 
|  | // Version of putchar() that takes UTF-8 and can write Unicode to a Windows console. | 
|  | int adb_putchar(int ch) { | 
|  | return adb_fputc(ch, stdout); | 
|  | } | 
|  |  | 
|  | // Version of puts() that takes UTF-8 and can write Unicode to a Windows console. | 
|  | int adb_puts(const char* buf) { | 
|  | // adb_printf returns -1 on error, which is conveniently the same as EOF | 
|  | // which puts (and hence adb_puts) should return on error. | 
|  | static_assert(EOF == -1, "EOF is not -1, so this code needs to be fixed"); | 
|  | return adb_printf("%s\n", buf); | 
|  | } | 
|  |  | 
|  | // Internal function to write UTF-8 to a Win32 console. Returns the number of | 
|  | // items (of length size) written. On error, returns a short item count or 0. | 
|  | static size_t _console_fwrite(const void* ptr, size_t size, size_t nmemb, | 
|  | FILE* stream, HANDLE console) { | 
|  | const int result = _console_write_utf8(reinterpret_cast<const char*>(ptr), size * nmemb, stream, | 
|  | console); | 
|  | if (result == -1) { | 
|  | return 0; | 
|  | } | 
|  | return result / size; | 
|  | } | 
|  |  | 
|  | // Version of fwrite() that takes UTF-8 and can write Unicode to a | 
|  | // Windows console. | 
|  | size_t adb_fwrite(const void* ptr, size_t size, size_t nmemb, FILE* stream) { | 
|  | const HANDLE console = _get_console_handle(stream); | 
|  |  | 
|  | // If there is an associated Win32 console, write to it specially, | 
|  | // otherwise defer to the regular C Runtime, passing it UTF-8. | 
|  | if (console != NULL) { | 
|  | return _console_fwrite(ptr, size, nmemb, stream, console); | 
|  | } else { | 
|  | // If fwrite is a macro, undefine it, so we can call the real | 
|  | // C Runtime API. | 
|  | #pragma push_macro("fwrite") | 
|  | #undef fwrite | 
|  | return fwrite(ptr, size, nmemb, stream); | 
|  | #pragma pop_macro("fwrite") | 
|  | } | 
|  | } | 
|  |  | 
|  | // Version of fopen() that takes a UTF-8 filename and can access a file with | 
|  | // a Unicode filename. | 
|  | FILE* adb_fopen(const char* path, const char* mode) { | 
|  | std::wstring path_wide; | 
|  | if (!android::base::UTF8ToWide(path, &path_wide)) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | std::wstring mode_wide; | 
|  | if (!android::base::UTF8ToWide(mode, &mode_wide)) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | return _wfopen(path_wide.c_str(), mode_wide.c_str()); | 
|  | } | 
|  |  | 
|  | // Return a lowercase version of the argument. Uses C Runtime tolower() on | 
|  | // each byte which is not UTF-8 aware, and theoretically uses the current C | 
|  | // Runtime locale (which in practice is not changed, so this becomes a ASCII | 
|  | // conversion). | 
|  | static std::string ToLower(const std::string& anycase) { | 
|  | // copy string | 
|  | std::string str(anycase); | 
|  | // transform the copy | 
|  | std::transform(str.begin(), str.end(), str.begin(), tolower); | 
|  | return str; | 
|  | } | 
|  |  | 
|  | extern "C" int main(int argc, char** argv); | 
|  |  | 
|  | // Link with -municode to cause this wmain() to be used as the program | 
|  | // entrypoint. It will convert the args from UTF-16 to UTF-8 and call the | 
|  | // regular main() with UTF-8 args. | 
|  | extern "C" int wmain(int argc, wchar_t **argv) { | 
|  | // Convert args from UTF-16 to UTF-8 and pass that to main(). | 
|  | NarrowArgs narrow_args(argc, argv); | 
|  | return main(argc, narrow_args.data()); | 
|  | } | 
|  |  | 
|  | // Shadow UTF-8 environment variable name/value pairs that are created from | 
|  | // _wenviron the first time that adb_getenv() is called. Note that this is not | 
|  | // currently updated if putenv, setenv, unsetenv are called. Note that no | 
|  | // thread synchronization is done, but we're called early enough in | 
|  | // single-threaded startup that things work ok. | 
|  | static auto& g_environ_utf8 = *new std::unordered_map<std::string, char*>(); | 
|  |  | 
|  | // Make sure that shadow UTF-8 environment variables are setup. | 
|  | static void _ensure_env_setup() { | 
|  | // If some name/value pairs exist, then we've already done the setup below. | 
|  | if (g_environ_utf8.size() != 0) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (_wenviron == nullptr) { | 
|  | // If _wenviron is null, then -municode probably wasn't used. That | 
|  | // linker flag will cause the entry point to setup _wenviron. It will | 
|  | // also require an implementation of wmain() (which we provide above). | 
|  | fatal("_wenviron is not set, did you link with -municode?"); | 
|  | } | 
|  |  | 
|  | // Read name/value pairs from UTF-16 _wenviron and write new name/value | 
|  | // pairs to UTF-8 g_environ_utf8. Note that it probably does not make sense | 
|  | // to use the D() macro here because that tracing only works if the | 
|  | // ADB_TRACE environment variable is setup, but that env var can't be read | 
|  | // until this code completes. | 
|  | for (wchar_t** env = _wenviron; *env != nullptr; ++env) { | 
|  | wchar_t* const equal = wcschr(*env, L'='); | 
|  | if (equal == nullptr) { | 
|  | // Malformed environment variable with no equal sign. Shouldn't | 
|  | // really happen, but we should be resilient to this. | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If we encounter an error converting UTF-16, don't error-out on account of a single env | 
|  | // var because the program might never even read this particular variable. | 
|  | std::string name_utf8; | 
|  | if (!android::base::WideToUTF8(*env, equal - *env, &name_utf8)) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Store lowercase name so that we can do case-insensitive searches. | 
|  | name_utf8 = ToLower(name_utf8); | 
|  |  | 
|  | std::string value_utf8; | 
|  | if (!android::base::WideToUTF8(equal + 1, &value_utf8)) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | char* const value_dup = strdup(value_utf8.c_str()); | 
|  |  | 
|  | // Don't overwrite a previus env var with the same name. In reality, | 
|  | // the system probably won't let two env vars with the same name exist | 
|  | // in _wenviron. | 
|  | g_environ_utf8.insert({name_utf8, value_dup}); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Version of getenv() that takes a UTF-8 environment variable name and | 
|  | // retrieves a UTF-8 value. Case-insensitive to match getenv() on Windows. | 
|  | char* adb_getenv(const char* name) { | 
|  | _ensure_env_setup(); | 
|  |  | 
|  | // Case-insensitive search by searching for lowercase name in a map of | 
|  | // lowercase names. | 
|  | const auto it = g_environ_utf8.find(ToLower(std::string(name))); | 
|  | if (it == g_environ_utf8.end()) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | return it->second; | 
|  | } | 
|  |  | 
|  | // Version of getcwd() that returns the current working directory in UTF-8. | 
|  | char* adb_getcwd(char* buf, int size) { | 
|  | wchar_t* wbuf = _wgetcwd(nullptr, 0); | 
|  | if (wbuf == nullptr) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | std::string buf_utf8; | 
|  | const bool narrow_result = android::base::WideToUTF8(wbuf, &buf_utf8); | 
|  | free(wbuf); | 
|  | wbuf = nullptr; | 
|  |  | 
|  | if (!narrow_result) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // If size was specified, make sure all the chars will fit. | 
|  | if (size != 0) { | 
|  | if (size < static_cast<int>(buf_utf8.length() + 1)) { | 
|  | errno = ERANGE; | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If buf was not specified, allocate storage. | 
|  | if (buf == nullptr) { | 
|  | if (size == 0) { | 
|  | size = buf_utf8.length() + 1; | 
|  | } | 
|  | buf = reinterpret_cast<char*>(malloc(size)); | 
|  | if (buf == nullptr) { | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Destination buffer was allocated with enough space, or we've already | 
|  | // checked an existing buffer size for enough space. | 
|  | strcpy(buf, buf_utf8.c_str()); | 
|  |  | 
|  | return buf; | 
|  | } |