| /* | 
 |  * Copyright (C) 2017 The Android Open Source Project | 
 |  * | 
 |  * Licensed under the Apache License, Version 2.0 (the "License"); | 
 |  * you may not use this file except in compliance with the License. | 
 |  * You may obtain a copy of the License at | 
 |  * | 
 |  *      http://www.apache.org/licenses/LICENSE-2.0 | 
 |  * | 
 |  * Unless required by applicable law or agreed to in writing, software | 
 |  * distributed under the License is distributed on an "AS IS" BASIS, | 
 |  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 |  * See the License for the specific language governing permissions and | 
 |  * limitations under the License. | 
 |  */ | 
 |  | 
 | #include <stdint.h> | 
 |  | 
 | #include <unwindstack/DwarfError.h> | 
 | #include <unwindstack/DwarfLocation.h> | 
 | #include <unwindstack/DwarfMemory.h> | 
 | #include <unwindstack/DwarfSection.h> | 
 | #include <unwindstack/DwarfStructs.h> | 
 | #include <unwindstack/Log.h> | 
 | #include <unwindstack/Memory.h> | 
 | #include <unwindstack/Regs.h> | 
 |  | 
 | #include "DwarfCfa.h" | 
 | #include "DwarfDebugFrame.h" | 
 | #include "DwarfEhFrame.h" | 
 | #include "DwarfEncoding.h" | 
 | #include "DwarfOp.h" | 
 | #include "RegsInfo.h" | 
 |  | 
 | namespace unwindstack { | 
 |  | 
 | DwarfSection::DwarfSection(Memory* memory) : memory_(memory) {} | 
 |  | 
 | bool DwarfSection::Step(uint64_t pc, Regs* regs, Memory* process_memory, bool* finished) { | 
 |   // Lookup the pc in the cache. | 
 |   auto it = loc_regs_.upper_bound(pc); | 
 |   if (it == loc_regs_.end() || pc < it->second.pc_start) { | 
 |     last_error_.code = DWARF_ERROR_NONE; | 
 |     const DwarfFde* fde = GetFdeFromPc(pc); | 
 |     if (fde == nullptr || fde->cie == nullptr) { | 
 |       last_error_.code = DWARF_ERROR_ILLEGAL_STATE; | 
 |       return false; | 
 |     } | 
 |  | 
 |     // Now get the location information for this pc. | 
 |     dwarf_loc_regs_t loc_regs; | 
 |     if (!GetCfaLocationInfo(pc, fde, &loc_regs)) { | 
 |       return false; | 
 |     } | 
 |     loc_regs.cie = fde->cie; | 
 |  | 
 |     // Store it in the cache. | 
 |     it = loc_regs_.emplace(loc_regs.pc_end, std::move(loc_regs)).first; | 
 |   } | 
 |  | 
 |   // Now eval the actual registers. | 
 |   return Eval(it->second.cie, process_memory, it->second, regs, finished); | 
 | } | 
 |  | 
 | template <typename AddressType> | 
 | const DwarfCie* DwarfSectionImpl<AddressType>::GetCieFromOffset(uint64_t offset) { | 
 |   auto cie_entry = cie_entries_.find(offset); | 
 |   if (cie_entry != cie_entries_.end()) { | 
 |     return &cie_entry->second; | 
 |   } | 
 |   DwarfCie* cie = &cie_entries_[offset]; | 
 |   memory_.set_cur_offset(offset); | 
 |   if (!FillInCieHeader(cie) || !FillInCie(cie)) { | 
 |     // Erase the cached entry. | 
 |     cie_entries_.erase(offset); | 
 |     return nullptr; | 
 |   } | 
 |   return cie; | 
 | } | 
 |  | 
 | template <typename AddressType> | 
 | bool DwarfSectionImpl<AddressType>::FillInCieHeader(DwarfCie* cie) { | 
 |   cie->lsda_encoding = DW_EH_PE_omit; | 
 |   uint32_t length32; | 
 |   if (!memory_.ReadBytes(&length32, sizeof(length32))) { | 
 |     last_error_.code = DWARF_ERROR_MEMORY_INVALID; | 
 |     last_error_.address = memory_.cur_offset(); | 
 |     return false; | 
 |   } | 
 |   if (length32 == static_cast<uint32_t>(-1)) { | 
 |     // 64 bit Cie | 
 |     uint64_t length64; | 
 |     if (!memory_.ReadBytes(&length64, sizeof(length64))) { | 
 |       last_error_.code = DWARF_ERROR_MEMORY_INVALID; | 
 |       last_error_.address = memory_.cur_offset(); | 
 |       return false; | 
 |     } | 
 |  | 
 |     cie->cfa_instructions_end = memory_.cur_offset() + length64; | 
 |     cie->fde_address_encoding = DW_EH_PE_sdata8; | 
 |  | 
 |     uint64_t cie_id; | 
 |     if (!memory_.ReadBytes(&cie_id, sizeof(cie_id))) { | 
 |       last_error_.code = DWARF_ERROR_MEMORY_INVALID; | 
 |       last_error_.address = memory_.cur_offset(); | 
 |       return false; | 
 |     } | 
 |     if (cie_id != cie64_value_) { | 
 |       // This is not a Cie, something has gone horribly wrong. | 
 |       last_error_.code = DWARF_ERROR_ILLEGAL_VALUE; | 
 |       return false; | 
 |     } | 
 |   } else { | 
 |     // 32 bit Cie | 
 |     cie->cfa_instructions_end = memory_.cur_offset() + length32; | 
 |     cie->fde_address_encoding = DW_EH_PE_sdata4; | 
 |  | 
 |     uint32_t cie_id; | 
 |     if (!memory_.ReadBytes(&cie_id, sizeof(cie_id))) { | 
 |       last_error_.code = DWARF_ERROR_MEMORY_INVALID; | 
 |       last_error_.address = memory_.cur_offset(); | 
 |       return false; | 
 |     } | 
 |     if (cie_id != cie32_value_) { | 
 |       // This is not a Cie, something has gone horribly wrong. | 
 |       last_error_.code = DWARF_ERROR_ILLEGAL_VALUE; | 
 |       return false; | 
 |     } | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | template <typename AddressType> | 
 | bool DwarfSectionImpl<AddressType>::FillInCie(DwarfCie* cie) { | 
 |   if (!memory_.ReadBytes(&cie->version, sizeof(cie->version))) { | 
 |     last_error_.code = DWARF_ERROR_MEMORY_INVALID; | 
 |     last_error_.address = memory_.cur_offset(); | 
 |     return false; | 
 |   } | 
 |  | 
 |   if (cie->version != 1 && cie->version != 3 && cie->version != 4 && cie->version != 5) { | 
 |     // Unrecognized version. | 
 |     last_error_.code = DWARF_ERROR_UNSUPPORTED_VERSION; | 
 |     return false; | 
 |   } | 
 |  | 
 |   // Read the augmentation string. | 
 |   char aug_value; | 
 |   do { | 
 |     if (!memory_.ReadBytes(&aug_value, 1)) { | 
 |       last_error_.code = DWARF_ERROR_MEMORY_INVALID; | 
 |       last_error_.address = memory_.cur_offset(); | 
 |       return false; | 
 |     } | 
 |     cie->augmentation_string.push_back(aug_value); | 
 |   } while (aug_value != '\0'); | 
 |  | 
 |   if (cie->version == 4 || cie->version == 5) { | 
 |     // Skip the Address Size field since we only use it for validation. | 
 |     memory_.set_cur_offset(memory_.cur_offset() + 1); | 
 |  | 
 |     // Segment Size | 
 |     if (!memory_.ReadBytes(&cie->segment_size, 1)) { | 
 |       last_error_.code = DWARF_ERROR_MEMORY_INVALID; | 
 |       last_error_.address = memory_.cur_offset(); | 
 |       return false; | 
 |     } | 
 |   } | 
 |  | 
 |   // Code Alignment Factor | 
 |   if (!memory_.ReadULEB128(&cie->code_alignment_factor)) { | 
 |     last_error_.code = DWARF_ERROR_MEMORY_INVALID; | 
 |     last_error_.address = memory_.cur_offset(); | 
 |     return false; | 
 |   } | 
 |  | 
 |   // Data Alignment Factor | 
 |   if (!memory_.ReadSLEB128(&cie->data_alignment_factor)) { | 
 |     last_error_.code = DWARF_ERROR_MEMORY_INVALID; | 
 |     last_error_.address = memory_.cur_offset(); | 
 |     return false; | 
 |   } | 
 |  | 
 |   if (cie->version == 1) { | 
 |     // Return Address is a single byte. | 
 |     uint8_t return_address_register; | 
 |     if (!memory_.ReadBytes(&return_address_register, 1)) { | 
 |       last_error_.code = DWARF_ERROR_MEMORY_INVALID; | 
 |       last_error_.address = memory_.cur_offset(); | 
 |       return false; | 
 |     } | 
 |     cie->return_address_register = return_address_register; | 
 |   } else if (!memory_.ReadULEB128(&cie->return_address_register)) { | 
 |     last_error_.code = DWARF_ERROR_MEMORY_INVALID; | 
 |     last_error_.address = memory_.cur_offset(); | 
 |     return false; | 
 |   } | 
 |  | 
 |   if (cie->augmentation_string[0] != 'z') { | 
 |     cie->cfa_instructions_offset = memory_.cur_offset(); | 
 |     return true; | 
 |   } | 
 |  | 
 |   uint64_t aug_length; | 
 |   if (!memory_.ReadULEB128(&aug_length)) { | 
 |     last_error_.code = DWARF_ERROR_MEMORY_INVALID; | 
 |     last_error_.address = memory_.cur_offset(); | 
 |     return false; | 
 |   } | 
 |   cie->cfa_instructions_offset = memory_.cur_offset() + aug_length; | 
 |  | 
 |   for (size_t i = 1; i < cie->augmentation_string.size(); i++) { | 
 |     switch (cie->augmentation_string[i]) { | 
 |       case 'L': | 
 |         if (!memory_.ReadBytes(&cie->lsda_encoding, 1)) { | 
 |           last_error_.code = DWARF_ERROR_MEMORY_INVALID; | 
 |           last_error_.address = memory_.cur_offset(); | 
 |           return false; | 
 |         } | 
 |         break; | 
 |       case 'P': { | 
 |         uint8_t encoding; | 
 |         if (!memory_.ReadBytes(&encoding, 1)) { | 
 |           last_error_.code = DWARF_ERROR_MEMORY_INVALID; | 
 |           last_error_.address = memory_.cur_offset(); | 
 |           return false; | 
 |         } | 
 |         memory_.set_pc_offset(pc_offset_); | 
 |         if (!memory_.ReadEncodedValue<AddressType>(encoding, &cie->personality_handler)) { | 
 |           last_error_.code = DWARF_ERROR_MEMORY_INVALID; | 
 |           last_error_.address = memory_.cur_offset(); | 
 |           return false; | 
 |         } | 
 |       } break; | 
 |       case 'R': | 
 |         if (!memory_.ReadBytes(&cie->fde_address_encoding, 1)) { | 
 |           last_error_.code = DWARF_ERROR_MEMORY_INVALID; | 
 |           last_error_.address = memory_.cur_offset(); | 
 |           return false; | 
 |         } | 
 |         break; | 
 |     } | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | template <typename AddressType> | 
 | const DwarfFde* DwarfSectionImpl<AddressType>::GetFdeFromOffset(uint64_t offset) { | 
 |   auto fde_entry = fde_entries_.find(offset); | 
 |   if (fde_entry != fde_entries_.end()) { | 
 |     return &fde_entry->second; | 
 |   } | 
 |   DwarfFde* fde = &fde_entries_[offset]; | 
 |   memory_.set_cur_offset(offset); | 
 |   if (!FillInFdeHeader(fde) || !FillInFde(fde)) { | 
 |     fde_entries_.erase(offset); | 
 |     return nullptr; | 
 |   } | 
 |   return fde; | 
 | } | 
 |  | 
 | template <typename AddressType> | 
 | bool DwarfSectionImpl<AddressType>::FillInFdeHeader(DwarfFde* fde) { | 
 |   uint32_t length32; | 
 |   if (!memory_.ReadBytes(&length32, sizeof(length32))) { | 
 |     last_error_.code = DWARF_ERROR_MEMORY_INVALID; | 
 |     last_error_.address = memory_.cur_offset(); | 
 |     return false; | 
 |   } | 
 |  | 
 |   if (length32 == static_cast<uint32_t>(-1)) { | 
 |     // 64 bit Fde. | 
 |     uint64_t length64; | 
 |     if (!memory_.ReadBytes(&length64, sizeof(length64))) { | 
 |       last_error_.code = DWARF_ERROR_MEMORY_INVALID; | 
 |       last_error_.address = memory_.cur_offset(); | 
 |       return false; | 
 |     } | 
 |     fde->cfa_instructions_end = memory_.cur_offset() + length64; | 
 |  | 
 |     uint64_t value64; | 
 |     if (!memory_.ReadBytes(&value64, sizeof(value64))) { | 
 |       last_error_.code = DWARF_ERROR_MEMORY_INVALID; | 
 |       last_error_.address = memory_.cur_offset(); | 
 |       return false; | 
 |     } | 
 |     if (value64 == cie64_value_) { | 
 |       // This is a Cie, this means something has gone wrong. | 
 |       last_error_.code = DWARF_ERROR_ILLEGAL_VALUE; | 
 |       return false; | 
 |     } | 
 |  | 
 |     // Get the Cie pointer, which is necessary to properly read the rest of | 
 |     // of the Fde information. | 
 |     fde->cie_offset = GetCieOffsetFromFde64(value64); | 
 |   } else { | 
 |     // 32 bit Fde. | 
 |     fde->cfa_instructions_end = memory_.cur_offset() + length32; | 
 |  | 
 |     uint32_t value32; | 
 |     if (!memory_.ReadBytes(&value32, sizeof(value32))) { | 
 |       last_error_.code = DWARF_ERROR_MEMORY_INVALID; | 
 |       last_error_.address = memory_.cur_offset(); | 
 |       return false; | 
 |     } | 
 |     if (value32 == cie32_value_) { | 
 |       // This is a Cie, this means something has gone wrong. | 
 |       last_error_.code = DWARF_ERROR_ILLEGAL_VALUE; | 
 |       return false; | 
 |     } | 
 |  | 
 |     // Get the Cie pointer, which is necessary to properly read the rest of | 
 |     // of the Fde information. | 
 |     fde->cie_offset = GetCieOffsetFromFde32(value32); | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | template <typename AddressType> | 
 | bool DwarfSectionImpl<AddressType>::FillInFde(DwarfFde* fde) { | 
 |   uint64_t cur_offset = memory_.cur_offset(); | 
 |  | 
 |   const DwarfCie* cie = GetCieFromOffset(fde->cie_offset); | 
 |   if (cie == nullptr) { | 
 |     return false; | 
 |   } | 
 |   fde->cie = cie; | 
 |  | 
 |   if (cie->segment_size != 0) { | 
 |     // Skip over the segment selector for now. | 
 |     cur_offset += cie->segment_size; | 
 |   } | 
 |   memory_.set_cur_offset(cur_offset); | 
 |  | 
 |   // The load bias only applies to the start. | 
 |   memory_.set_pc_offset(section_bias_); | 
 |   bool valid = memory_.ReadEncodedValue<AddressType>(cie->fde_address_encoding, &fde->pc_start); | 
 |   fde->pc_start = AdjustPcFromFde(fde->pc_start); | 
 |  | 
 |   memory_.set_pc_offset(0); | 
 |   if (!valid || !memory_.ReadEncodedValue<AddressType>(cie->fde_address_encoding, &fde->pc_end)) { | 
 |     last_error_.code = DWARF_ERROR_MEMORY_INVALID; | 
 |     last_error_.address = memory_.cur_offset(); | 
 |     return false; | 
 |   } | 
 |   fde->pc_end += fde->pc_start; | 
 |  | 
 |   if (cie->augmentation_string.size() > 0 && cie->augmentation_string[0] == 'z') { | 
 |     // Augmentation Size | 
 |     uint64_t aug_length; | 
 |     if (!memory_.ReadULEB128(&aug_length)) { | 
 |       last_error_.code = DWARF_ERROR_MEMORY_INVALID; | 
 |       last_error_.address = memory_.cur_offset(); | 
 |       return false; | 
 |     } | 
 |     uint64_t cur_offset = memory_.cur_offset(); | 
 |  | 
 |     memory_.set_pc_offset(pc_offset_); | 
 |     if (!memory_.ReadEncodedValue<AddressType>(cie->lsda_encoding, &fde->lsda_address)) { | 
 |       last_error_.code = DWARF_ERROR_MEMORY_INVALID; | 
 |       last_error_.address = memory_.cur_offset(); | 
 |       return false; | 
 |     } | 
 |  | 
 |     // Set our position to after all of the augmentation data. | 
 |     memory_.set_cur_offset(cur_offset + aug_length); | 
 |   } | 
 |   fde->cfa_instructions_offset = memory_.cur_offset(); | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | template <typename AddressType> | 
 | bool DwarfSectionImpl<AddressType>::EvalExpression(const DwarfLocation& loc, Memory* regular_memory, | 
 |                                                    AddressType* value, | 
 |                                                    RegsInfo<AddressType>* regs_info, | 
 |                                                    bool* is_dex_pc) { | 
 |   DwarfOp<AddressType> op(&memory_, regular_memory); | 
 |   op.set_regs_info(regs_info); | 
 |  | 
 |   // Need to evaluate the op data. | 
 |   uint64_t end = loc.values[1]; | 
 |   uint64_t start = end - loc.values[0]; | 
 |   if (!op.Eval(start, end)) { | 
 |     last_error_ = op.last_error(); | 
 |     return false; | 
 |   } | 
 |   if (op.StackSize() == 0) { | 
 |     last_error_.code = DWARF_ERROR_ILLEGAL_STATE; | 
 |     return false; | 
 |   } | 
 |   // We don't support an expression that evaluates to a register number. | 
 |   if (op.is_register()) { | 
 |     last_error_.code = DWARF_ERROR_NOT_IMPLEMENTED; | 
 |     return false; | 
 |   } | 
 |   *value = op.StackAt(0); | 
 |   if (is_dex_pc != nullptr && op.dex_pc_set()) { | 
 |     *is_dex_pc = true; | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | template <typename AddressType> | 
 | struct EvalInfo { | 
 |   const dwarf_loc_regs_t* loc_regs; | 
 |   const DwarfCie* cie; | 
 |   Memory* regular_memory; | 
 |   AddressType cfa; | 
 |   bool return_address_undefined = false; | 
 |   RegsInfo<AddressType> regs_info; | 
 | }; | 
 |  | 
 | template <typename AddressType> | 
 | bool DwarfSectionImpl<AddressType>::EvalRegister(const DwarfLocation* loc, uint32_t reg, | 
 |                                                  AddressType* reg_ptr, void* info) { | 
 |   EvalInfo<AddressType>* eval_info = reinterpret_cast<EvalInfo<AddressType>*>(info); | 
 |   Memory* regular_memory = eval_info->regular_memory; | 
 |   switch (loc->type) { | 
 |     case DWARF_LOCATION_OFFSET: | 
 |       if (!regular_memory->ReadFully(eval_info->cfa + loc->values[0], reg_ptr, sizeof(AddressType))) { | 
 |         last_error_.code = DWARF_ERROR_MEMORY_INVALID; | 
 |         last_error_.address = eval_info->cfa + loc->values[0]; | 
 |         return false; | 
 |       } | 
 |       break; | 
 |     case DWARF_LOCATION_VAL_OFFSET: | 
 |       *reg_ptr = eval_info->cfa + loc->values[0]; | 
 |       break; | 
 |     case DWARF_LOCATION_REGISTER: { | 
 |       uint32_t cur_reg = loc->values[0]; | 
 |       if (cur_reg >= eval_info->regs_info.Total()) { | 
 |         last_error_.code = DWARF_ERROR_ILLEGAL_VALUE; | 
 |         return false; | 
 |       } | 
 |       *reg_ptr = eval_info->regs_info.Get(cur_reg) + loc->values[1]; | 
 |       break; | 
 |     } | 
 |     case DWARF_LOCATION_EXPRESSION: | 
 |     case DWARF_LOCATION_VAL_EXPRESSION: { | 
 |       AddressType value; | 
 |       bool is_dex_pc = false; | 
 |       if (!EvalExpression(*loc, regular_memory, &value, &eval_info->regs_info, &is_dex_pc)) { | 
 |         return false; | 
 |       } | 
 |       if (loc->type == DWARF_LOCATION_EXPRESSION) { | 
 |         if (!regular_memory->ReadFully(value, reg_ptr, sizeof(AddressType))) { | 
 |           last_error_.code = DWARF_ERROR_MEMORY_INVALID; | 
 |           last_error_.address = value; | 
 |           return false; | 
 |         } | 
 |       } else { | 
 |         *reg_ptr = value; | 
 |         if (is_dex_pc) { | 
 |           eval_info->regs_info.regs->set_dex_pc(value); | 
 |         } | 
 |       } | 
 |       break; | 
 |     } | 
 |     case DWARF_LOCATION_UNDEFINED: | 
 |       if (reg == eval_info->cie->return_address_register) { | 
 |         eval_info->return_address_undefined = true; | 
 |       } | 
 |       break; | 
 |     default: | 
 |       break; | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | template <typename AddressType> | 
 | bool DwarfSectionImpl<AddressType>::Eval(const DwarfCie* cie, Memory* regular_memory, | 
 |                                          const dwarf_loc_regs_t& loc_regs, Regs* regs, | 
 |                                          bool* finished) { | 
 |   RegsImpl<AddressType>* cur_regs = reinterpret_cast<RegsImpl<AddressType>*>(regs); | 
 |   if (cie->return_address_register >= cur_regs->total_regs()) { | 
 |     last_error_.code = DWARF_ERROR_ILLEGAL_VALUE; | 
 |     return false; | 
 |   } | 
 |  | 
 |   // Get the cfa value; | 
 |   auto cfa_entry = loc_regs.find(CFA_REG); | 
 |   if (cfa_entry == loc_regs.end()) { | 
 |     last_error_.code = DWARF_ERROR_CFA_NOT_DEFINED; | 
 |     return false; | 
 |   } | 
 |  | 
 |   // Always set the dex pc to zero when evaluating. | 
 |   cur_regs->set_dex_pc(0); | 
 |  | 
 |   EvalInfo<AddressType> eval_info{.loc_regs = &loc_regs, | 
 |                                   .cie = cie, | 
 |                                   .regular_memory = regular_memory, | 
 |                                   .regs_info = RegsInfo<AddressType>(cur_regs)}; | 
 |   const DwarfLocation* loc = &cfa_entry->second; | 
 |   // Only a few location types are valid for the cfa. | 
 |   switch (loc->type) { | 
 |     case DWARF_LOCATION_REGISTER: | 
 |       if (loc->values[0] >= cur_regs->total_regs()) { | 
 |         last_error_.code = DWARF_ERROR_ILLEGAL_VALUE; | 
 |         return false; | 
 |       } | 
 |       eval_info.cfa = (*cur_regs)[loc->values[0]]; | 
 |       eval_info.cfa += loc->values[1]; | 
 |       break; | 
 |     case DWARF_LOCATION_VAL_EXPRESSION: { | 
 |       AddressType value; | 
 |       if (!EvalExpression(*loc, regular_memory, &value, &eval_info.regs_info, nullptr)) { | 
 |         return false; | 
 |       } | 
 |       // There is only one type of valid expression for CFA evaluation. | 
 |       eval_info.cfa = value; | 
 |       break; | 
 |     } | 
 |     default: | 
 |       last_error_.code = DWARF_ERROR_ILLEGAL_VALUE; | 
 |       return false; | 
 |   } | 
 |  | 
 |   for (const auto& entry : loc_regs) { | 
 |     uint32_t reg = entry.first; | 
 |     // Already handled the CFA register. | 
 |     if (reg == CFA_REG) continue; | 
 |  | 
 |     AddressType* reg_ptr; | 
 |     if (reg >= cur_regs->total_regs()) { | 
 |       // Skip this unknown register. | 
 |       continue; | 
 |     } | 
 |  | 
 |     reg_ptr = eval_info.regs_info.Save(reg); | 
 |     if (!EvalRegister(&entry.second, reg, reg_ptr, &eval_info)) { | 
 |       return false; | 
 |     } | 
 |   } | 
 |  | 
 |   // Find the return address location. | 
 |   if (eval_info.return_address_undefined) { | 
 |     cur_regs->set_pc(0); | 
 |   } else { | 
 |     cur_regs->set_pc((*cur_regs)[cie->return_address_register]); | 
 |   } | 
 |  | 
 |   // If the pc was set to zero, consider this the final frame. | 
 |   *finished = (cur_regs->pc() == 0) ? true : false; | 
 |  | 
 |   cur_regs->set_sp(eval_info.cfa); | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | template <typename AddressType> | 
 | bool DwarfSectionImpl<AddressType>::GetCfaLocationInfo(uint64_t pc, const DwarfFde* fde, | 
 |                                                        dwarf_loc_regs_t* loc_regs) { | 
 |   DwarfCfa<AddressType> cfa(&memory_, fde); | 
 |  | 
 |   // Look for the cached copy of the cie data. | 
 |   auto reg_entry = cie_loc_regs_.find(fde->cie_offset); | 
 |   if (reg_entry == cie_loc_regs_.end()) { | 
 |     if (!cfa.GetLocationInfo(pc, fde->cie->cfa_instructions_offset, fde->cie->cfa_instructions_end, | 
 |                              loc_regs)) { | 
 |       last_error_ = cfa.last_error(); | 
 |       return false; | 
 |     } | 
 |     cie_loc_regs_[fde->cie_offset] = *loc_regs; | 
 |   } | 
 |   cfa.set_cie_loc_regs(&cie_loc_regs_[fde->cie_offset]); | 
 |   if (!cfa.GetLocationInfo(pc, fde->cfa_instructions_offset, fde->cfa_instructions_end, loc_regs)) { | 
 |     last_error_ = cfa.last_error(); | 
 |     return false; | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | template <typename AddressType> | 
 | bool DwarfSectionImpl<AddressType>::Log(uint8_t indent, uint64_t pc, const DwarfFde* fde) { | 
 |   DwarfCfa<AddressType> cfa(&memory_, fde); | 
 |  | 
 |   // Always print the cie information. | 
 |   const DwarfCie* cie = fde->cie; | 
 |   if (!cfa.Log(indent, pc, cie->cfa_instructions_offset, cie->cfa_instructions_end)) { | 
 |     last_error_ = cfa.last_error(); | 
 |     return false; | 
 |   } | 
 |   if (!cfa.Log(indent, pc, fde->cfa_instructions_offset, fde->cfa_instructions_end)) { | 
 |     last_error_ = cfa.last_error(); | 
 |     return false; | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | template <typename AddressType> | 
 | bool DwarfSectionImplNoHdr<AddressType>::Init(uint64_t offset, uint64_t size, | 
 |                                               int64_t section_bias) { | 
 |   section_bias_ = section_bias; | 
 |   entries_offset_ = offset; | 
 |   next_entries_offset_ = offset; | 
 |   entries_end_ = offset + size; | 
 |  | 
 |   memory_.clear_func_offset(); | 
 |   memory_.clear_text_offset(); | 
 |   memory_.set_cur_offset(offset); | 
 |   memory_.set_data_offset(offset); | 
 |   pc_offset_ = offset; | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | // Create a cached version of the fde information such that it is a std::map | 
 | // that is indexed by end pc and contains a pair that represents the start pc | 
 | // followed by the fde object. The fde pointers are owned by fde_entries_ | 
 | // and not by the map object. | 
 | // It is possible for an fde to be represented by multiple entries in | 
 | // the map. This can happen if the the start pc and end pc overlap already | 
 | // existing entries. For example, if there is already an entry of 0x400, 0x200, | 
 | // and an fde has a start pc of 0x100 and end pc of 0x500, two new entries | 
 | // will be added: 0x200, 0x100 and 0x500, 0x400. | 
 | template <typename AddressType> | 
 | void DwarfSectionImplNoHdr<AddressType>::InsertFde(const DwarfFde* fde) { | 
 |   uint64_t start = fde->pc_start; | 
 |   uint64_t end = fde->pc_end; | 
 |   auto it = fdes_.upper_bound(start); | 
 |   bool add_element = false; | 
 |   while (it != fdes_.end() && start < end) { | 
 |     if (add_element) { | 
 |       add_element = false; | 
 |       if (end < it->second.first) { | 
 |         if (it->first == end) { | 
 |           return; | 
 |         } | 
 |         fdes_[end] = std::make_pair(start, fde); | 
 |         return; | 
 |       } | 
 |       if (start != it->second.first) { | 
 |         fdes_[it->second.first] = std::make_pair(start, fde); | 
 |       } | 
 |     } | 
 |     if (start < it->first) { | 
 |       if (end < it->second.first) { | 
 |         if (it->first != end) { | 
 |           fdes_[end] = std::make_pair(start, fde); | 
 |         } | 
 |         return; | 
 |       } | 
 |       add_element = true; | 
 |     } | 
 |     start = it->first; | 
 |     ++it; | 
 |   } | 
 |   if (start < end) { | 
 |     fdes_[end] = std::make_pair(start, fde); | 
 |   } | 
 | } | 
 |  | 
 | template <typename AddressType> | 
 | bool DwarfSectionImplNoHdr<AddressType>::GetNextCieOrFde(DwarfFde** fde_entry) { | 
 |   uint64_t start_offset = next_entries_offset_; | 
 |  | 
 |   memory_.set_cur_offset(next_entries_offset_); | 
 |   uint32_t value32; | 
 |   if (!memory_.ReadBytes(&value32, sizeof(value32))) { | 
 |     last_error_.code = DWARF_ERROR_MEMORY_INVALID; | 
 |     last_error_.address = memory_.cur_offset(); | 
 |     return false; | 
 |   } | 
 |  | 
 |   uint64_t cie_offset; | 
 |   uint8_t cie_fde_encoding; | 
 |   bool entry_is_cie = false; | 
 |   if (value32 == static_cast<uint32_t>(-1)) { | 
 |     // 64 bit entry. | 
 |     uint64_t value64; | 
 |     if (!memory_.ReadBytes(&value64, sizeof(value64))) { | 
 |       last_error_.code = DWARF_ERROR_MEMORY_INVALID; | 
 |       last_error_.address = memory_.cur_offset(); | 
 |       return false; | 
 |     } | 
 |  | 
 |     next_entries_offset_ = memory_.cur_offset() + value64; | 
 |     // Read the Cie Id of a Cie or the pointer of the Fde. | 
 |     if (!memory_.ReadBytes(&value64, sizeof(value64))) { | 
 |       last_error_.code = DWARF_ERROR_MEMORY_INVALID; | 
 |       last_error_.address = memory_.cur_offset(); | 
 |       return false; | 
 |     } | 
 |  | 
 |     if (value64 == cie64_value_) { | 
 |       entry_is_cie = true; | 
 |       cie_fde_encoding = DW_EH_PE_sdata8; | 
 |     } else { | 
 |       cie_offset = this->GetCieOffsetFromFde64(value64); | 
 |     } | 
 |   } else { | 
 |     next_entries_offset_ = memory_.cur_offset() + value32; | 
 |  | 
 |     // 32 bit Cie | 
 |     if (!memory_.ReadBytes(&value32, sizeof(value32))) { | 
 |       last_error_.code = DWARF_ERROR_MEMORY_INVALID; | 
 |       last_error_.address = memory_.cur_offset(); | 
 |       return false; | 
 |     } | 
 |  | 
 |     if (value32 == cie32_value_) { | 
 |       entry_is_cie = true; | 
 |       cie_fde_encoding = DW_EH_PE_sdata4; | 
 |     } else { | 
 |       cie_offset = this->GetCieOffsetFromFde32(value32); | 
 |     } | 
 |   } | 
 |  | 
 |   if (entry_is_cie) { | 
 |     DwarfCie* cie = &cie_entries_[start_offset]; | 
 |     cie->lsda_encoding = DW_EH_PE_omit; | 
 |     cie->cfa_instructions_end = next_entries_offset_; | 
 |     cie->fde_address_encoding = cie_fde_encoding; | 
 |  | 
 |     if (!this->FillInCie(cie)) { | 
 |       cie_entries_.erase(start_offset); | 
 |       return false; | 
 |     } | 
 |     *fde_entry = nullptr; | 
 |   } else { | 
 |     DwarfFde* fde = &fde_entries_[start_offset]; | 
 |     fde->cfa_instructions_end = next_entries_offset_; | 
 |     fde->cie_offset = cie_offset; | 
 |  | 
 |     if (!this->FillInFde(fde)) { | 
 |       fde_entries_.erase(start_offset); | 
 |       return false; | 
 |     } | 
 |     *fde_entry = fde; | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | template <typename AddressType> | 
 | void DwarfSectionImplNoHdr<AddressType>::GetFdes(std::vector<const DwarfFde*>* fdes) { | 
 |   // Loop through the already cached entries. | 
 |   uint64_t entry_offset = entries_offset_; | 
 |   while (entry_offset < next_entries_offset_) { | 
 |     auto cie_it = cie_entries_.find(entry_offset); | 
 |     if (cie_it != cie_entries_.end()) { | 
 |       entry_offset = cie_it->second.cfa_instructions_end; | 
 |     } else { | 
 |       auto fde_it = fde_entries_.find(entry_offset); | 
 |       if (fde_it == fde_entries_.end()) { | 
 |         // No fde or cie at this entry, should not be possible. | 
 |         return; | 
 |       } | 
 |       entry_offset = fde_it->second.cfa_instructions_end; | 
 |       fdes->push_back(&fde_it->second); | 
 |     } | 
 |   } | 
 |  | 
 |   while (next_entries_offset_ < entries_end_) { | 
 |     DwarfFde* fde; | 
 |     if (!GetNextCieOrFde(&fde)) { | 
 |       break; | 
 |     } | 
 |     if (fde != nullptr) { | 
 |       InsertFde(fde); | 
 |       fdes->push_back(fde); | 
 |     } | 
 |  | 
 |     if (next_entries_offset_ < memory_.cur_offset()) { | 
 |       // Simply consider the processing done in this case. | 
 |       break; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | template <typename AddressType> | 
 | const DwarfFde* DwarfSectionImplNoHdr<AddressType>::GetFdeFromPc(uint64_t pc) { | 
 |   // Search in the list of fdes we already have. | 
 |   auto it = fdes_.upper_bound(pc); | 
 |   if (it != fdes_.end()) { | 
 |     if (pc >= it->second.first) { | 
 |       return it->second.second; | 
 |     } | 
 |   } | 
 |  | 
 |   // The section might have overlapping pcs in fdes, so it is necessary | 
 |   // to do a linear search of the fdes by pc. As fdes are read, a cached | 
 |   // search map is created. | 
 |   while (next_entries_offset_ < entries_end_) { | 
 |     DwarfFde* fde; | 
 |     if (!GetNextCieOrFde(&fde)) { | 
 |       return nullptr; | 
 |     } | 
 |     if (fde != nullptr) { | 
 |       InsertFde(fde); | 
 |       if (pc >= fde->pc_start && pc < fde->pc_end) { | 
 |         return fde; | 
 |       } | 
 |     } | 
 |  | 
 |     if (next_entries_offset_ < memory_.cur_offset()) { | 
 |       // Simply consider the processing done in this case. | 
 |       break; | 
 |     } | 
 |   } | 
 |   return nullptr; | 
 | } | 
 |  | 
 | // Explicitly instantiate DwarfSectionImpl | 
 | template class DwarfSectionImpl<uint32_t>; | 
 | template class DwarfSectionImpl<uint64_t>; | 
 |  | 
 | // Explicitly instantiate DwarfSectionImplNoHdr | 
 | template class DwarfSectionImplNoHdr<uint32_t>; | 
 | template class DwarfSectionImplNoHdr<uint64_t>; | 
 |  | 
 | // Explicitly instantiate DwarfDebugFrame | 
 | template class DwarfDebugFrame<uint32_t>; | 
 | template class DwarfDebugFrame<uint64_t>; | 
 |  | 
 | // Explicitly instantiate DwarfEhFrame | 
 | template class DwarfEhFrame<uint32_t>; | 
 | template class DwarfEhFrame<uint64_t>; | 
 |  | 
 | }  // namespace unwindstack |