|  | /* | 
|  | * Copyright (C) 2007 The Android Open Source Project | 
|  | * | 
|  | * Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | * you may not use this file except in compliance with the License. | 
|  | * You may obtain a copy of the License at | 
|  | * | 
|  | *      http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | * Unless required by applicable law or agreed to in writing, software | 
|  | * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | * See the License for the specific language governing permissions and | 
|  | * limitations under the License. | 
|  | */ | 
|  |  | 
|  | #define TRACE_TAG SOCKETS | 
|  |  | 
|  | #include "sysdeps.h" | 
|  |  | 
|  | #include <ctype.h> | 
|  | #include <errno.h> | 
|  | #include <stdio.h> | 
|  | #include <stdlib.h> | 
|  | #include <string.h> | 
|  | #include <unistd.h> | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <mutex> | 
|  | #include <string> | 
|  | #include <vector> | 
|  |  | 
|  | #if !ADB_HOST | 
|  | #include <android-base/properties.h> | 
|  | #include <log/log_properties.h> | 
|  | #endif | 
|  |  | 
|  | #include "adb.h" | 
|  | #include "adb_io.h" | 
|  | #include "transport.h" | 
|  |  | 
|  | static std::recursive_mutex& local_socket_list_lock = *new std::recursive_mutex(); | 
|  | static unsigned local_socket_next_id = 1; | 
|  |  | 
|  | static asocket local_socket_list = { | 
|  | .next = &local_socket_list, .prev = &local_socket_list, | 
|  | }; | 
|  |  | 
|  | /* the the list of currently closing local sockets. | 
|  | ** these have no peer anymore, but still packets to | 
|  | ** write to their fd. | 
|  | */ | 
|  | static asocket local_socket_closing_list = { | 
|  | .next = &local_socket_closing_list, .prev = &local_socket_closing_list, | 
|  | }; | 
|  |  | 
|  | // Parse the global list of sockets to find one with id |local_id|. | 
|  | // If |peer_id| is not 0, also check that it is connected to a peer | 
|  | // with id |peer_id|. Returns an asocket handle on success, NULL on failure. | 
|  | asocket* find_local_socket(unsigned local_id, unsigned peer_id) { | 
|  | asocket* s; | 
|  | asocket* result = NULL; | 
|  |  | 
|  | std::lock_guard<std::recursive_mutex> lock(local_socket_list_lock); | 
|  | for (s = local_socket_list.next; s != &local_socket_list; s = s->next) { | 
|  | if (s->id != local_id) { | 
|  | continue; | 
|  | } | 
|  | if (peer_id == 0 || (s->peer && s->peer->id == peer_id)) { | 
|  | result = s; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static void insert_local_socket(asocket* s, asocket* list) { | 
|  | s->next = list; | 
|  | s->prev = s->next->prev; | 
|  | s->prev->next = s; | 
|  | s->next->prev = s; | 
|  | } | 
|  |  | 
|  | void install_local_socket(asocket* s) { | 
|  | std::lock_guard<std::recursive_mutex> lock(local_socket_list_lock); | 
|  |  | 
|  | s->id = local_socket_next_id++; | 
|  |  | 
|  | // Socket ids should never be 0. | 
|  | if (local_socket_next_id == 0) { | 
|  | fatal("local socket id overflow"); | 
|  | } | 
|  |  | 
|  | insert_local_socket(s, &local_socket_list); | 
|  | } | 
|  |  | 
|  | void remove_socket(asocket* s) { | 
|  | // socket_list_lock should already be held | 
|  | if (s->prev && s->next) { | 
|  | s->prev->next = s->next; | 
|  | s->next->prev = s->prev; | 
|  | s->next = 0; | 
|  | s->prev = 0; | 
|  | s->id = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | void close_all_sockets(atransport* t) { | 
|  | asocket* s; | 
|  |  | 
|  | /* this is a little gross, but since s->close() *will* modify | 
|  | ** the list out from under you, your options are limited. | 
|  | */ | 
|  | std::lock_guard<std::recursive_mutex> lock(local_socket_list_lock); | 
|  | restart: | 
|  | for (s = local_socket_list.next; s != &local_socket_list; s = s->next) { | 
|  | if (s->transport == t || (s->peer && s->peer->transport == t)) { | 
|  | s->close(s); | 
|  | goto restart; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static int local_socket_enqueue(asocket* s, apacket* p) { | 
|  | D("LS(%d): enqueue %zu", s->id, p->len); | 
|  |  | 
|  | p->ptr = p->data; | 
|  |  | 
|  | /* if there is already data queue'd, we will receive | 
|  | ** events when it's time to write.  just add this to | 
|  | ** the tail | 
|  | */ | 
|  | if (s->pkt_first) { | 
|  | goto enqueue; | 
|  | } | 
|  |  | 
|  | /* write as much as we can, until we | 
|  | ** would block or there is an error/eof | 
|  | */ | 
|  | while (p->len > 0) { | 
|  | int r = adb_write(s->fd, p->ptr, p->len); | 
|  | if (r > 0) { | 
|  | p->len -= r; | 
|  | p->ptr += r; | 
|  | continue; | 
|  | } | 
|  | if ((r == 0) || (errno != EAGAIN)) { | 
|  | D("LS(%d): not ready, errno=%d: %s", s->id, errno, strerror(errno)); | 
|  | put_apacket(p); | 
|  | s->has_write_error = true; | 
|  | s->close(s); | 
|  | return 1; /* not ready (error) */ | 
|  | } else { | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (p->len == 0) { | 
|  | put_apacket(p); | 
|  | return 0; /* ready for more data */ | 
|  | } | 
|  |  | 
|  | enqueue: | 
|  | p->next = 0; | 
|  | if (s->pkt_first) { | 
|  | s->pkt_last->next = p; | 
|  | } else { | 
|  | s->pkt_first = p; | 
|  | } | 
|  | s->pkt_last = p; | 
|  |  | 
|  | /* make sure we are notified when we can drain the queue */ | 
|  | fdevent_add(&s->fde, FDE_WRITE); | 
|  |  | 
|  | return 1; /* not ready (backlog) */ | 
|  | } | 
|  |  | 
|  | static void local_socket_ready(asocket* s) { | 
|  | /* far side is ready for data, pay attention to | 
|  | readable events */ | 
|  | fdevent_add(&s->fde, FDE_READ); | 
|  | } | 
|  |  | 
|  | // be sure to hold the socket list lock when calling this | 
|  | static void local_socket_destroy(asocket* s) { | 
|  | apacket *p, *n; | 
|  | int exit_on_close = s->exit_on_close; | 
|  |  | 
|  | D("LS(%d): destroying fde.fd=%d", s->id, s->fde.fd); | 
|  |  | 
|  | /* IMPORTANT: the remove closes the fd | 
|  | ** that belongs to this socket | 
|  | */ | 
|  | fdevent_remove(&s->fde); | 
|  |  | 
|  | /* dispose of any unwritten data */ | 
|  | for (p = s->pkt_first; p; p = n) { | 
|  | D("LS(%d): discarding %zu bytes", s->id, p->len); | 
|  | n = p->next; | 
|  | put_apacket(p); | 
|  | } | 
|  | remove_socket(s); | 
|  | free(s); | 
|  |  | 
|  | if (exit_on_close) { | 
|  | D("local_socket_destroy: exiting"); | 
|  | exit(1); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void local_socket_close(asocket* s) { | 
|  | D("entered local_socket_close. LS(%d) fd=%d", s->id, s->fd); | 
|  | std::lock_guard<std::recursive_mutex> lock(local_socket_list_lock); | 
|  | if (s->peer) { | 
|  | D("LS(%d): closing peer. peer->id=%d peer->fd=%d", s->id, s->peer->id, s->peer->fd); | 
|  | /* Note: it's important to call shutdown before disconnecting from | 
|  | * the peer, this ensures that remote sockets can still get the id | 
|  | * of the local socket they're connected to, to send a CLOSE() | 
|  | * protocol event. */ | 
|  | if (s->peer->shutdown) { | 
|  | s->peer->shutdown(s->peer); | 
|  | } | 
|  | s->peer->peer = nullptr; | 
|  | s->peer->close(s->peer); | 
|  | s->peer = nullptr; | 
|  | } | 
|  |  | 
|  | /* If we are already closing, or if there are no | 
|  | ** pending packets, destroy immediately | 
|  | */ | 
|  | if (s->closing || s->has_write_error || s->pkt_first == NULL) { | 
|  | int id = s->id; | 
|  | local_socket_destroy(s); | 
|  | D("LS(%d): closed", id); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* otherwise, put on the closing list | 
|  | */ | 
|  | D("LS(%d): closing", s->id); | 
|  | s->closing = 1; | 
|  | fdevent_del(&s->fde, FDE_READ); | 
|  | remove_socket(s); | 
|  | D("LS(%d): put on socket_closing_list fd=%d", s->id, s->fd); | 
|  | insert_local_socket(s, &local_socket_closing_list); | 
|  | CHECK_EQ(FDE_WRITE, s->fde.state & FDE_WRITE); | 
|  | } | 
|  |  | 
|  | static void local_socket_event_func(int fd, unsigned ev, void* _s) { | 
|  | asocket* s = reinterpret_cast<asocket*>(_s); | 
|  | D("LS(%d): event_func(fd=%d(==%d), ev=%04x)", s->id, s->fd, fd, ev); | 
|  |  | 
|  | /* put the FDE_WRITE processing before the FDE_READ | 
|  | ** in order to simplify the code. | 
|  | */ | 
|  | if (ev & FDE_WRITE) { | 
|  | apacket* p; | 
|  | while ((p = s->pkt_first) != nullptr) { | 
|  | while (p->len > 0) { | 
|  | int r = adb_write(fd, p->ptr, p->len); | 
|  | if (r == -1) { | 
|  | /* returning here is ok because FDE_READ will | 
|  | ** be processed in the next iteration loop | 
|  | */ | 
|  | if (errno == EAGAIN) { | 
|  | return; | 
|  | } | 
|  | } else if (r > 0) { | 
|  | p->ptr += r; | 
|  | p->len -= r; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | D(" closing after write because r=%d and errno is %d", r, errno); | 
|  | s->has_write_error = true; | 
|  | s->close(s); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (p->len == 0) { | 
|  | s->pkt_first = p->next; | 
|  | if (s->pkt_first == 0) { | 
|  | s->pkt_last = 0; | 
|  | } | 
|  | put_apacket(p); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* if we sent the last packet of a closing socket, | 
|  | ** we can now destroy it. | 
|  | */ | 
|  | if (s->closing) { | 
|  | D(" closing because 'closing' is set after write"); | 
|  | s->close(s); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* no more packets queued, so we can ignore | 
|  | ** writable events again and tell our peer | 
|  | ** to resume writing | 
|  | */ | 
|  | fdevent_del(&s->fde, FDE_WRITE); | 
|  | s->peer->ready(s->peer); | 
|  | } | 
|  |  | 
|  | if (ev & FDE_READ) { | 
|  | apacket* p = get_apacket(); | 
|  | char* x = p->data; | 
|  | const size_t max_payload = s->get_max_payload(); | 
|  | size_t avail = max_payload; | 
|  | int r = 0; | 
|  | int is_eof = 0; | 
|  |  | 
|  | while (avail > 0) { | 
|  | r = adb_read(fd, x, avail); | 
|  | D("LS(%d): post adb_read(fd=%d,...) r=%d (errno=%d) avail=%zu", s->id, s->fd, r, | 
|  | r < 0 ? errno : 0, avail); | 
|  | if (r == -1) { | 
|  | if (errno == EAGAIN) { | 
|  | break; | 
|  | } | 
|  | } else if (r > 0) { | 
|  | avail -= r; | 
|  | x += r; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* r = 0 or unhandled error */ | 
|  | is_eof = 1; | 
|  | break; | 
|  | } | 
|  | D("LS(%d): fd=%d post avail loop. r=%d is_eof=%d forced_eof=%d", s->id, s->fd, r, is_eof, | 
|  | s->fde.force_eof); | 
|  | if ((avail == max_payload) || (s->peer == 0)) { | 
|  | put_apacket(p); | 
|  | } else { | 
|  | p->len = max_payload - avail; | 
|  |  | 
|  | // s->peer->enqueue() may call s->close() and free s, | 
|  | // so save variables for debug printing below. | 
|  | unsigned saved_id = s->id; | 
|  | int saved_fd = s->fd; | 
|  | r = s->peer->enqueue(s->peer, p); | 
|  | D("LS(%u): fd=%d post peer->enqueue(). r=%d", saved_id, saved_fd, r); | 
|  |  | 
|  | if (r < 0) { | 
|  | /* error return means they closed us as a side-effect | 
|  | ** and we must return immediately. | 
|  | ** | 
|  | ** note that if we still have buffered packets, the | 
|  | ** socket will be placed on the closing socket list. | 
|  | ** this handler function will be called again | 
|  | ** to process FDE_WRITE events. | 
|  | */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (r > 0) { | 
|  | /* if the remote cannot accept further events, | 
|  | ** we disable notification of READs.  They'll | 
|  | ** be enabled again when we get a call to ready() | 
|  | */ | 
|  | fdevent_del(&s->fde, FDE_READ); | 
|  | } | 
|  | } | 
|  | /* Don't allow a forced eof if data is still there */ | 
|  | if ((s->fde.force_eof && !r) || is_eof) { | 
|  | D(" closing because is_eof=%d r=%d s->fde.force_eof=%d", is_eof, r, s->fde.force_eof); | 
|  | s->close(s); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ev & FDE_ERROR) { | 
|  | /* this should be caught be the next read or write | 
|  | ** catching it here means we may skip the last few | 
|  | ** bytes of readable data. | 
|  | */ | 
|  | D("LS(%d): FDE_ERROR (fd=%d)", s->id, s->fd); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | asocket* create_local_socket(int fd) { | 
|  | asocket* s = reinterpret_cast<asocket*>(calloc(1, sizeof(asocket))); | 
|  | if (s == NULL) { | 
|  | fatal("cannot allocate socket"); | 
|  | } | 
|  | s->fd = fd; | 
|  | s->enqueue = local_socket_enqueue; | 
|  | s->ready = local_socket_ready; | 
|  | s->shutdown = NULL; | 
|  | s->close = local_socket_close; | 
|  | install_local_socket(s); | 
|  |  | 
|  | fdevent_install(&s->fde, fd, local_socket_event_func, s); | 
|  | D("LS(%d): created (fd=%d)", s->id, s->fd); | 
|  | return s; | 
|  | } | 
|  |  | 
|  | asocket* create_local_service_socket(const char* name, const atransport* transport) { | 
|  | #if !ADB_HOST | 
|  | if (!strcmp(name, "jdwp")) { | 
|  | return create_jdwp_service_socket(); | 
|  | } | 
|  | if (!strcmp(name, "track-jdwp")) { | 
|  | return create_jdwp_tracker_service_socket(); | 
|  | } | 
|  | #endif | 
|  | int fd = service_to_fd(name, transport); | 
|  | if (fd < 0) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | asocket* s = create_local_socket(fd); | 
|  | D("LS(%d): bound to '%s' via %d", s->id, name, fd); | 
|  |  | 
|  | #if !ADB_HOST | 
|  | if ((!strncmp(name, "root:", 5) && getuid() != 0 && __android_log_is_debuggable()) || | 
|  | (!strncmp(name, "unroot:", 7) && getuid() == 0) || | 
|  | !strncmp(name, "usb:", 4) || | 
|  | !strncmp(name, "tcpip:", 6)) { | 
|  | D("LS(%d): enabling exit_on_close", s->id); | 
|  | s->exit_on_close = 1; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | return s; | 
|  | } | 
|  |  | 
|  | #if ADB_HOST | 
|  | static asocket* create_host_service_socket(const char* name, const char* serial) { | 
|  | asocket* s; | 
|  |  | 
|  | s = host_service_to_socket(name, serial); | 
|  |  | 
|  | if (s != NULL) { | 
|  | D("LS(%d) bound to '%s'", s->id, name); | 
|  | return s; | 
|  | } | 
|  |  | 
|  | return s; | 
|  | } | 
|  | #endif /* ADB_HOST */ | 
|  |  | 
|  | static int remote_socket_enqueue(asocket* s, apacket* p) { | 
|  | D("entered remote_socket_enqueue RS(%d) WRITE fd=%d peer.fd=%d", s->id, s->fd, s->peer->fd); | 
|  | p->msg.command = A_WRTE; | 
|  | p->msg.arg0 = s->peer->id; | 
|  | p->msg.arg1 = s->id; | 
|  | p->msg.data_length = p->len; | 
|  | send_packet(p, s->transport); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void remote_socket_ready(asocket* s) { | 
|  | D("entered remote_socket_ready RS(%d) OKAY fd=%d peer.fd=%d", s->id, s->fd, s->peer->fd); | 
|  | apacket* p = get_apacket(); | 
|  | p->msg.command = A_OKAY; | 
|  | p->msg.arg0 = s->peer->id; | 
|  | p->msg.arg1 = s->id; | 
|  | send_packet(p, s->transport); | 
|  | } | 
|  |  | 
|  | static void remote_socket_shutdown(asocket* s) { | 
|  | D("entered remote_socket_shutdown RS(%d) CLOSE fd=%d peer->fd=%d", s->id, s->fd, | 
|  | s->peer ? s->peer->fd : -1); | 
|  | apacket* p = get_apacket(); | 
|  | p->msg.command = A_CLSE; | 
|  | if (s->peer) { | 
|  | p->msg.arg0 = s->peer->id; | 
|  | } | 
|  | p->msg.arg1 = s->id; | 
|  | send_packet(p, s->transport); | 
|  | } | 
|  |  | 
|  | static void remote_socket_close(asocket* s) { | 
|  | if (s->peer) { | 
|  | s->peer->peer = 0; | 
|  | D("RS(%d) peer->close()ing peer->id=%d peer->fd=%d", s->id, s->peer->id, s->peer->fd); | 
|  | s->peer->close(s->peer); | 
|  | } | 
|  | D("entered remote_socket_close RS(%d) CLOSE fd=%d peer->fd=%d", s->id, s->fd, | 
|  | s->peer ? s->peer->fd : -1); | 
|  | D("RS(%d): closed", s->id); | 
|  | free(s); | 
|  | } | 
|  |  | 
|  | // Create a remote socket to exchange packets with a remote service through transport | 
|  | // |t|. Where |id| is the socket id of the corresponding service on the other | 
|  | //  side of the transport (it is allocated by the remote side and _cannot_ be 0). | 
|  | // Returns a new non-NULL asocket handle. | 
|  | asocket* create_remote_socket(unsigned id, atransport* t) { | 
|  | if (id == 0) { | 
|  | fatal("invalid remote socket id (0)"); | 
|  | } | 
|  | asocket* s = reinterpret_cast<asocket*>(calloc(1, sizeof(asocket))); | 
|  |  | 
|  | if (s == NULL) { | 
|  | fatal("cannot allocate socket"); | 
|  | } | 
|  | s->id = id; | 
|  | s->enqueue = remote_socket_enqueue; | 
|  | s->ready = remote_socket_ready; | 
|  | s->shutdown = remote_socket_shutdown; | 
|  | s->close = remote_socket_close; | 
|  | s->transport = t; | 
|  |  | 
|  | D("RS(%d): created", s->id); | 
|  | return s; | 
|  | } | 
|  |  | 
|  | void connect_to_remote(asocket* s, const char* destination) { | 
|  | D("Connect_to_remote call RS(%d) fd=%d", s->id, s->fd); | 
|  | apacket* p = get_apacket(); | 
|  | size_t len = strlen(destination) + 1; | 
|  |  | 
|  | if (len > (s->get_max_payload() - 1)) { | 
|  | fatal("destination oversized"); | 
|  | } | 
|  |  | 
|  | D("LS(%d): connect('%s')", s->id, destination); | 
|  | p->msg.command = A_OPEN; | 
|  | p->msg.arg0 = s->id; | 
|  | p->msg.data_length = len; | 
|  | strcpy((char*)p->data, destination); | 
|  | send_packet(p, s->transport); | 
|  | } | 
|  |  | 
|  | /* this is used by magic sockets to rig local sockets to | 
|  | send the go-ahead message when they connect */ | 
|  | static void local_socket_ready_notify(asocket* s) { | 
|  | s->ready = local_socket_ready; | 
|  | s->shutdown = NULL; | 
|  | s->close = local_socket_close; | 
|  | SendOkay(s->fd); | 
|  | s->ready(s); | 
|  | } | 
|  |  | 
|  | /* this is used by magic sockets to rig local sockets to | 
|  | send the failure message if they are closed before | 
|  | connected (to avoid closing them without a status message) */ | 
|  | static void local_socket_close_notify(asocket* s) { | 
|  | s->ready = local_socket_ready; | 
|  | s->shutdown = NULL; | 
|  | s->close = local_socket_close; | 
|  | SendFail(s->fd, "closed"); | 
|  | s->close(s); | 
|  | } | 
|  |  | 
|  | static unsigned unhex(char* s, int len) { | 
|  | unsigned n = 0, c; | 
|  |  | 
|  | while (len-- > 0) { | 
|  | switch ((c = *s++)) { | 
|  | case '0': | 
|  | case '1': | 
|  | case '2': | 
|  | case '3': | 
|  | case '4': | 
|  | case '5': | 
|  | case '6': | 
|  | case '7': | 
|  | case '8': | 
|  | case '9': | 
|  | c -= '0'; | 
|  | break; | 
|  | case 'a': | 
|  | case 'b': | 
|  | case 'c': | 
|  | case 'd': | 
|  | case 'e': | 
|  | case 'f': | 
|  | c = c - 'a' + 10; | 
|  | break; | 
|  | case 'A': | 
|  | case 'B': | 
|  | case 'C': | 
|  | case 'D': | 
|  | case 'E': | 
|  | case 'F': | 
|  | c = c - 'A' + 10; | 
|  | break; | 
|  | default: | 
|  | return 0xffffffff; | 
|  | } | 
|  |  | 
|  | n = (n << 4) | c; | 
|  | } | 
|  |  | 
|  | return n; | 
|  | } | 
|  |  | 
|  | #if ADB_HOST | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | // Returns the position in |service| following the target serial parameter. Serial format can be | 
|  | // any of: | 
|  | //   * [tcp:|udp:]<serial>[:<port>]:<command> | 
|  | //   * <prefix>:<serial>:<command> | 
|  | // Where <port> must be a base-10 number and <prefix> may be any of {usb,product,model,device}. | 
|  | // | 
|  | // The returned pointer will point to the ':' just before <command>, or nullptr if not found. | 
|  | char* skip_host_serial(char* service) { | 
|  | static const std::vector<std::string>& prefixes = | 
|  | *(new std::vector<std::string>{"usb:", "product:", "model:", "device:"}); | 
|  |  | 
|  | for (const std::string& prefix : prefixes) { | 
|  | if (!strncmp(service, prefix.c_str(), prefix.length())) { | 
|  | return strchr(service + prefix.length(), ':'); | 
|  | } | 
|  | } | 
|  |  | 
|  | // For fastboot compatibility, ignore protocol prefixes. | 
|  | if (!strncmp(service, "tcp:", 4) || !strncmp(service, "udp:", 4)) { | 
|  | service += 4; | 
|  | } | 
|  |  | 
|  | // Check for an IPv6 address. `adb connect` creates the serial number from the canonical | 
|  | // network address so it will always have the [] delimiters. | 
|  | if (service[0] == '[') { | 
|  | char* ipv6_end = strchr(service, ']'); | 
|  | if (ipv6_end != nullptr) { | 
|  | service = ipv6_end; | 
|  | } | 
|  | } | 
|  |  | 
|  | // The next colon we find must either begin the port field or the command field. | 
|  | char* colon_ptr = strchr(service, ':'); | 
|  | if (!colon_ptr) { | 
|  | // No colon in service string. | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // If the next field is only decimal digits and ends with another colon, it's a port. | 
|  | char* serial_end = colon_ptr; | 
|  | if (isdigit(serial_end[1])) { | 
|  | serial_end++; | 
|  | while (*serial_end && isdigit(*serial_end)) { | 
|  | serial_end++; | 
|  | } | 
|  | if (*serial_end != ':') { | 
|  | // Something other than "<port>:" was found, this must be the command field instead. | 
|  | serial_end = colon_ptr; | 
|  | } | 
|  | } | 
|  | return serial_end; | 
|  | } | 
|  |  | 
|  | }  // namespace internal | 
|  |  | 
|  | #endif  // ADB_HOST | 
|  |  | 
|  | static int smart_socket_enqueue(asocket* s, apacket* p) { | 
|  | unsigned len; | 
|  | #if ADB_HOST | 
|  | char* service = nullptr; | 
|  | char* serial = nullptr; | 
|  | TransportType type = kTransportAny; | 
|  | #endif | 
|  |  | 
|  | D("SS(%d): enqueue %zu", s->id, p->len); | 
|  |  | 
|  | if (s->pkt_first == 0) { | 
|  | s->pkt_first = p; | 
|  | s->pkt_last = p; | 
|  | } else { | 
|  | if ((s->pkt_first->len + p->len) > s->get_max_payload()) { | 
|  | D("SS(%d): overflow", s->id); | 
|  | put_apacket(p); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | memcpy(s->pkt_first->data + s->pkt_first->len, p->data, p->len); | 
|  | s->pkt_first->len += p->len; | 
|  | put_apacket(p); | 
|  |  | 
|  | p = s->pkt_first; | 
|  | } | 
|  |  | 
|  | /* don't bother if we can't decode the length */ | 
|  | if (p->len < 4) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | len = unhex(p->data, 4); | 
|  | if ((len < 1) || (len > MAX_PAYLOAD_V1)) { | 
|  | D("SS(%d): bad size (%d)", s->id, len); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | D("SS(%d): len is %d", s->id, len); | 
|  | /* can't do anything until we have the full header */ | 
|  | if ((len + 4) > p->len) { | 
|  | D("SS(%d): waiting for %zu more bytes", s->id, len + 4 - p->len); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | p->data[len + 4] = 0; | 
|  |  | 
|  | D("SS(%d): '%s'", s->id, (char*)(p->data + 4)); | 
|  |  | 
|  | #if ADB_HOST | 
|  | service = (char*)p->data + 4; | 
|  | if (!strncmp(service, "host-serial:", strlen("host-serial:"))) { | 
|  | char* serial_end; | 
|  | service += strlen("host-serial:"); | 
|  |  | 
|  | // serial number should follow "host:" and could be a host:port string. | 
|  | serial_end = internal::skip_host_serial(service); | 
|  | if (serial_end) { | 
|  | *serial_end = 0;  // terminate string | 
|  | serial = service; | 
|  | service = serial_end + 1; | 
|  | } | 
|  | } else if (!strncmp(service, "host-usb:", strlen("host-usb:"))) { | 
|  | type = kTransportUsb; | 
|  | service += strlen("host-usb:"); | 
|  | } else if (!strncmp(service, "host-local:", strlen("host-local:"))) { | 
|  | type = kTransportLocal; | 
|  | service += strlen("host-local:"); | 
|  | } else if (!strncmp(service, "host:", strlen("host:"))) { | 
|  | type = kTransportAny; | 
|  | service += strlen("host:"); | 
|  | } else { | 
|  | service = nullptr; | 
|  | } | 
|  |  | 
|  | if (service) { | 
|  | asocket* s2; | 
|  |  | 
|  | /* some requests are handled immediately -- in that | 
|  | ** case the handle_host_request() routine has sent | 
|  | ** the OKAY or FAIL message and all we have to do | 
|  | ** is clean up. | 
|  | */ | 
|  | if (handle_host_request(service, type, serial, s->peer->fd, s) == 0) { | 
|  | /* XXX fail message? */ | 
|  | D("SS(%d): handled host service '%s'", s->id, service); | 
|  | goto fail; | 
|  | } | 
|  | if (!strncmp(service, "transport", strlen("transport"))) { | 
|  | D("SS(%d): okay transport", s->id); | 
|  | p->len = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* try to find a local service with this name. | 
|  | ** if no such service exists, we'll fail out | 
|  | ** and tear down here. | 
|  | */ | 
|  | s2 = create_host_service_socket(service, serial); | 
|  | if (s2 == 0) { | 
|  | D("SS(%d): couldn't create host service '%s'", s->id, service); | 
|  | SendFail(s->peer->fd, "unknown host service"); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | /* we've connected to a local host service, | 
|  | ** so we make our peer back into a regular | 
|  | ** local socket and bind it to the new local | 
|  | ** service socket, acknowledge the successful | 
|  | ** connection, and close this smart socket now | 
|  | ** that its work is done. | 
|  | */ | 
|  | SendOkay(s->peer->fd); | 
|  |  | 
|  | s->peer->ready = local_socket_ready; | 
|  | s->peer->shutdown = nullptr; | 
|  | s->peer->close = local_socket_close; | 
|  | s->peer->peer = s2; | 
|  | s2->peer = s->peer; | 
|  | s->peer = 0; | 
|  | D("SS(%d): okay", s->id); | 
|  | s->close(s); | 
|  |  | 
|  | /* initial state is "ready" */ | 
|  | s2->ready(s2); | 
|  | return 0; | 
|  | } | 
|  | #else /* !ADB_HOST */ | 
|  | if (s->transport == nullptr) { | 
|  | std::string error_msg = "unknown failure"; | 
|  | s->transport = acquire_one_transport(kTransportAny, nullptr, nullptr, &error_msg); | 
|  | if (s->transport == nullptr) { | 
|  | SendFail(s->peer->fd, error_msg); | 
|  | goto fail; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (!s->transport) { | 
|  | SendFail(s->peer->fd, "device offline (no transport)"); | 
|  | goto fail; | 
|  | } else if (s->transport->GetConnectionState() == kCsOffline) { | 
|  | /* if there's no remote we fail the connection | 
|  | ** right here and terminate it | 
|  | */ | 
|  | SendFail(s->peer->fd, "device offline (transport offline)"); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | /* instrument our peer to pass the success or fail | 
|  | ** message back once it connects or closes, then | 
|  | ** detach from it, request the connection, and | 
|  | ** tear down | 
|  | */ | 
|  | s->peer->ready = local_socket_ready_notify; | 
|  | s->peer->shutdown = nullptr; | 
|  | s->peer->close = local_socket_close_notify; | 
|  | s->peer->peer = 0; | 
|  | /* give him our transport and upref it */ | 
|  | s->peer->transport = s->transport; | 
|  |  | 
|  | connect_to_remote(s->peer, (char*)(p->data + 4)); | 
|  | s->peer = 0; | 
|  | s->close(s); | 
|  | return 1; | 
|  |  | 
|  | fail: | 
|  | /* we're going to close our peer as a side-effect, so | 
|  | ** return -1 to signal that state to the local socket | 
|  | ** who is enqueueing against us | 
|  | */ | 
|  | s->close(s); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static void smart_socket_ready(asocket* s) { | 
|  | D("SS(%d): ready", s->id); | 
|  | } | 
|  |  | 
|  | static void smart_socket_close(asocket* s) { | 
|  | D("SS(%d): closed", s->id); | 
|  | if (s->pkt_first) { | 
|  | put_apacket(s->pkt_first); | 
|  | } | 
|  | if (s->peer) { | 
|  | s->peer->peer = 0; | 
|  | s->peer->close(s->peer); | 
|  | s->peer = 0; | 
|  | } | 
|  | free(s); | 
|  | } | 
|  |  | 
|  | static asocket* create_smart_socket(void) { | 
|  | D("Creating smart socket"); | 
|  | asocket* s = reinterpret_cast<asocket*>(calloc(1, sizeof(asocket))); | 
|  | if (s == NULL) fatal("cannot allocate socket"); | 
|  | s->enqueue = smart_socket_enqueue; | 
|  | s->ready = smart_socket_ready; | 
|  | s->shutdown = NULL; | 
|  | s->close = smart_socket_close; | 
|  |  | 
|  | D("SS(%d)", s->id); | 
|  | return s; | 
|  | } | 
|  |  | 
|  | void connect_to_smartsocket(asocket* s) { | 
|  | D("Connecting to smart socket"); | 
|  | asocket* ss = create_smart_socket(); | 
|  | s->peer = ss; | 
|  | ss->peer = s; | 
|  | s->ready(s); | 
|  | } | 
|  |  | 
|  | size_t asocket::get_max_payload() const { | 
|  | size_t max_payload = MAX_PAYLOAD; | 
|  | if (transport) { | 
|  | max_payload = std::min(max_payload, transport->get_max_payload()); | 
|  | } | 
|  | if (peer && peer->transport) { | 
|  | max_payload = std::min(max_payload, peer->transport->get_max_payload()); | 
|  | } | 
|  | return max_payload; | 
|  | } |