|  | /* | 
|  | * Copyright (C) 2017 The Android Open Source Project | 
|  | * | 
|  | * Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | * you may not use this file except in compliance with the License. | 
|  | * You may obtain a copy of the License at | 
|  | * | 
|  | *      http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | * Unless required by applicable law or agreed to in writing, software | 
|  | * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | * See the License for the specific language governing permissions and | 
|  | * limitations under the License. | 
|  | */ | 
|  |  | 
|  | // This file contains the functions that initialize SELinux during boot as well as helper functions | 
|  | // for SELinux operation for init. | 
|  |  | 
|  | // When the system boots, there is no SEPolicy present and init is running in the kernel domain. | 
|  | // Init loads the SEPolicy from the file system, restores the context of /system/bin/init based on | 
|  | // this SEPolicy, and finally exec()'s itself to run in the proper domain. | 
|  |  | 
|  | // The SEPolicy on Android comes in two variants: monolithic and split. | 
|  |  | 
|  | // The monolithic policy variant is for legacy non-treble devices that contain a single SEPolicy | 
|  | // file located at /sepolicy and is directly loaded into the kernel SELinux subsystem. | 
|  |  | 
|  | // The split policy is for supporting treble devices and updateable apexes.  It splits the SEPolicy | 
|  | // across files on /system/etc/selinux (the 'plat' portion of the policy), /vendor/etc/selinux | 
|  | // (the 'vendor' portion of the policy), /system_ext/etc/selinux, /product/etc/selinux, | 
|  | // /odm/etc/selinux, and /dev/selinux (the apex portion of policy).  This is necessary to allow | 
|  | // images to be updated independently of the vendor image, while maintaining contributions from | 
|  | // multiple partitions in the SEPolicy.  This is especially important for VTS testing, where the | 
|  | // SEPolicy on the Google System Image may not be identical to the system image shipped on a | 
|  | // vendor's device. | 
|  |  | 
|  | // The split SEPolicy is loaded as described below: | 
|  | // 1) There is a precompiled SEPolicy located at either /vendor/etc/selinux/precompiled_sepolicy or | 
|  | //    /odm/etc/selinux/precompiled_sepolicy if odm parition is present.  Stored along with this file | 
|  | //    are the sha256 hashes of the parts of the SEPolicy on /system, /system_ext, /product, and apex | 
|  | //    that were used to compile this precompiled policy.  The system partition contains a similar | 
|  | //    sha256 of the parts of the SEPolicy that it currently contains. Symmetrically, system_ext, | 
|  | //    product, and apex contain sha256 hashes of their SEPolicy. Init loads this | 
|  | //    precompiled_sepolicy directly if and only if the hashes along with the precompiled SEPolicy on | 
|  | //    /vendor or /odm match the hashes for system, system_ext, product, and apex SEPolicy, | 
|  | //    respectively. | 
|  | // 2) If these hashes do not match, then either /system or /system_ext /product, or apex (or some of | 
|  | //    them) have been updated out of sync with /vendor (or /odm if it is present) and the init needs | 
|  | //    to compile the SEPolicy.  /system contains the SEPolicy compiler, secilc, and it is used by | 
|  | //    the OpenSplitPolicy() function below to compile the SEPolicy to a temp directory and load it. | 
|  | //    That function contains even more documentation with the specific implementation details of how | 
|  | //    the SEPolicy is compiled if needed. | 
|  |  | 
|  | #include "selinux.h" | 
|  |  | 
|  | #include <android/api-level.h> | 
|  | #include <fcntl.h> | 
|  | #include <linux/audit.h> | 
|  | #include <linux/netlink.h> | 
|  | #include <stdlib.h> | 
|  | #include <sys/wait.h> | 
|  | #include <unistd.h> | 
|  | #include <fstream> | 
|  |  | 
|  | #include <CertUtils.h> | 
|  | #include <android-base/chrono_utils.h> | 
|  | #include <android-base/file.h> | 
|  | #include <android-base/logging.h> | 
|  | #include <android-base/parseint.h> | 
|  | #include <android-base/result.h> | 
|  | #include <android-base/scopeguard.h> | 
|  | #include <android-base/strings.h> | 
|  | #include <android-base/unique_fd.h> | 
|  | #include <fs_avb/fs_avb.h> | 
|  | #include <fs_mgr.h> | 
|  | #include <fsverity_init.h> | 
|  | #include <libgsi/libgsi.h> | 
|  | #include <libsnapshot/snapshot.h> | 
|  | #include <mini_keyctl_utils.h> | 
|  | #include <selinux/android.h> | 
|  | #include <ziparchive/zip_archive.h> | 
|  |  | 
|  | #include "block_dev_initializer.h" | 
|  | #include "debug_ramdisk.h" | 
|  | #include "reboot_utils.h" | 
|  | #include "snapuserd_transition.h" | 
|  | #include "util.h" | 
|  |  | 
|  | using namespace std::string_literals; | 
|  |  | 
|  | using android::base::ParseInt; | 
|  | using android::base::Timer; | 
|  | using android::base::unique_fd; | 
|  | using android::fs_mgr::AvbHandle; | 
|  | using android::snapshot::SnapshotManager; | 
|  |  | 
|  | namespace android { | 
|  | namespace init { | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | enum EnforcingStatus { SELINUX_PERMISSIVE, SELINUX_ENFORCING }; | 
|  |  | 
|  | EnforcingStatus StatusFromProperty() { | 
|  | EnforcingStatus status = SELINUX_ENFORCING; | 
|  |  | 
|  | ImportKernelCmdline([&](const std::string& key, const std::string& value) { | 
|  | if (key == "androidboot.selinux" && value == "permissive") { | 
|  | status = SELINUX_PERMISSIVE; | 
|  | } | 
|  | }); | 
|  |  | 
|  | if (status == SELINUX_ENFORCING) { | 
|  | ImportBootconfig([&](const std::string& key, const std::string& value) { | 
|  | if (key == "androidboot.selinux" && value == "permissive") { | 
|  | status = SELINUX_PERMISSIVE; | 
|  | } | 
|  | }); | 
|  | } | 
|  |  | 
|  | return status; | 
|  | } | 
|  |  | 
|  | bool IsEnforcing() { | 
|  | if (ALLOW_PERMISSIVE_SELINUX) { | 
|  | return StatusFromProperty() == SELINUX_ENFORCING; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Forks, executes the provided program in the child, and waits for the completion in the parent. | 
|  | // Child's stderr is captured and logged using LOG(ERROR). | 
|  | bool ForkExecveAndWaitForCompletion(const char* filename, char* const argv[]) { | 
|  | // Create a pipe used for redirecting child process's output. | 
|  | // * pipe_fds[0] is the FD the parent will use for reading. | 
|  | // * pipe_fds[1] is the FD the child will use for writing. | 
|  | int pipe_fds[2]; | 
|  | if (pipe(pipe_fds) == -1) { | 
|  | PLOG(ERROR) << "Failed to create pipe"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | pid_t child_pid = fork(); | 
|  | if (child_pid == -1) { | 
|  | PLOG(ERROR) << "Failed to fork for " << filename; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (child_pid == 0) { | 
|  | // fork succeeded -- this is executing in the child process | 
|  |  | 
|  | // Close the pipe FD not used by this process | 
|  | close(pipe_fds[0]); | 
|  |  | 
|  | // Redirect stderr to the pipe FD provided by the parent | 
|  | if (TEMP_FAILURE_RETRY(dup2(pipe_fds[1], STDERR_FILENO)) == -1) { | 
|  | PLOG(ERROR) << "Failed to redirect stderr of " << filename; | 
|  | _exit(127); | 
|  | return false; | 
|  | } | 
|  | close(pipe_fds[1]); | 
|  |  | 
|  | if (execv(filename, argv) == -1) { | 
|  | PLOG(ERROR) << "Failed to execve " << filename; | 
|  | return false; | 
|  | } | 
|  | // Unreachable because execve will have succeeded and replaced this code | 
|  | // with child process's code. | 
|  | _exit(127); | 
|  | return false; | 
|  | } else { | 
|  | // fork succeeded -- this is executing in the original/parent process | 
|  |  | 
|  | // Close the pipe FD not used by this process | 
|  | close(pipe_fds[1]); | 
|  |  | 
|  | // Log the redirected output of the child process. | 
|  | // It's unfortunate that there's no standard way to obtain an istream for a file descriptor. | 
|  | // As a result, we're buffering all output and logging it in one go at the end of the | 
|  | // invocation, instead of logging it as it comes in. | 
|  | const int child_out_fd = pipe_fds[0]; | 
|  | std::string child_output; | 
|  | if (!android::base::ReadFdToString(child_out_fd, &child_output)) { | 
|  | PLOG(ERROR) << "Failed to capture full output of " << filename; | 
|  | } | 
|  | close(child_out_fd); | 
|  | if (!child_output.empty()) { | 
|  | // Log captured output, line by line, because LOG expects to be invoked for each line | 
|  | std::istringstream in(child_output); | 
|  | std::string line; | 
|  | while (std::getline(in, line)) { | 
|  | LOG(ERROR) << filename << ": " << line; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Wait for child to terminate | 
|  | int status; | 
|  | if (TEMP_FAILURE_RETRY(waitpid(child_pid, &status, 0)) != child_pid) { | 
|  | PLOG(ERROR) << "Failed to wait for " << filename; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (WIFEXITED(status)) { | 
|  | int status_code = WEXITSTATUS(status); | 
|  | if (status_code == 0) { | 
|  | return true; | 
|  | } else { | 
|  | LOG(ERROR) << filename << " exited with status " << status_code; | 
|  | } | 
|  | } else if (WIFSIGNALED(status)) { | 
|  | LOG(ERROR) << filename << " killed by signal " << WTERMSIG(status); | 
|  | } else if (WIFSTOPPED(status)) { | 
|  | LOG(ERROR) << filename << " stopped by signal " << WSTOPSIG(status); | 
|  | } else { | 
|  | LOG(ERROR) << "waitpid for " << filename << " returned unexpected status: " << status; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool ReadFirstLine(const char* file, std::string* line) { | 
|  | line->clear(); | 
|  |  | 
|  | std::string contents; | 
|  | if (!android::base::ReadFileToString(file, &contents, true /* follow symlinks */)) { | 
|  | return false; | 
|  | } | 
|  | std::istringstream in(contents); | 
|  | std::getline(in, *line); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | Result<std::string> FindPrecompiledSplitPolicy() { | 
|  | std::string precompiled_sepolicy; | 
|  | // If there is an odm partition, precompiled_sepolicy will be in | 
|  | // odm/etc/selinux. Otherwise it will be in vendor/etc/selinux. | 
|  | static constexpr const char vendor_precompiled_sepolicy[] = | 
|  | "/vendor/etc/selinux/precompiled_sepolicy"; | 
|  | static constexpr const char odm_precompiled_sepolicy[] = | 
|  | "/odm/etc/selinux/precompiled_sepolicy"; | 
|  | if (access(odm_precompiled_sepolicy, R_OK) == 0) { | 
|  | precompiled_sepolicy = odm_precompiled_sepolicy; | 
|  | } else if (access(vendor_precompiled_sepolicy, R_OK) == 0) { | 
|  | precompiled_sepolicy = vendor_precompiled_sepolicy; | 
|  | } else { | 
|  | return ErrnoError() << "No precompiled sepolicy at " << vendor_precompiled_sepolicy; | 
|  | } | 
|  |  | 
|  | // Use precompiled sepolicy only when all corresponding hashes are equal. | 
|  | std::vector<std::pair<std::string, std::string>> sepolicy_hashes{ | 
|  | {"/system/etc/selinux/plat_sepolicy_and_mapping.sha256", | 
|  | precompiled_sepolicy + ".plat_sepolicy_and_mapping.sha256"}, | 
|  | {"/system_ext/etc/selinux/system_ext_sepolicy_and_mapping.sha256", | 
|  | precompiled_sepolicy + ".system_ext_sepolicy_and_mapping.sha256"}, | 
|  | {"/product/etc/selinux/product_sepolicy_and_mapping.sha256", | 
|  | precompiled_sepolicy + ".product_sepolicy_and_mapping.sha256"}, | 
|  | {"/dev/selinux/apex_sepolicy.sha256", precompiled_sepolicy + ".apex_sepolicy.sha256"}, | 
|  | }; | 
|  |  | 
|  | for (const auto& [actual_id_path, precompiled_id_path] : sepolicy_hashes) { | 
|  | // Both of them should exist or both of them shouldn't exist. | 
|  | if (access(actual_id_path.c_str(), R_OK) != 0) { | 
|  | if (access(precompiled_id_path.c_str(), R_OK) == 0) { | 
|  | return Error() << precompiled_id_path << " exists but " << actual_id_path | 
|  | << " doesn't"; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | std::string actual_id; | 
|  | if (!ReadFirstLine(actual_id_path.c_str(), &actual_id)) { | 
|  | return ErrnoError() << "Failed to read " << actual_id_path; | 
|  | } | 
|  |  | 
|  | std::string precompiled_id; | 
|  | if (!ReadFirstLine(precompiled_id_path.c_str(), &precompiled_id)) { | 
|  | return ErrnoError() << "Failed to read " << precompiled_id_path; | 
|  | } | 
|  |  | 
|  | if (actual_id.empty() || actual_id != precompiled_id) { | 
|  | return Error() << actual_id_path << " and " << precompiled_id_path << " differ"; | 
|  | } | 
|  | } | 
|  |  | 
|  | return precompiled_sepolicy; | 
|  | } | 
|  |  | 
|  | bool GetVendorMappingVersion(std::string* plat_vers) { | 
|  | if (!ReadFirstLine("/vendor/etc/selinux/plat_sepolicy_vers.txt", plat_vers)) { | 
|  | PLOG(ERROR) << "Failed to read /vendor/etc/selinux/plat_sepolicy_vers.txt"; | 
|  | return false; | 
|  | } | 
|  | if (plat_vers->empty()) { | 
|  | LOG(ERROR) << "No version present in plat_sepolicy_vers.txt"; | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | constexpr const char plat_policy_cil_file[] = "/system/etc/selinux/plat_sepolicy.cil"; | 
|  |  | 
|  | bool IsSplitPolicyDevice() { | 
|  | return access(plat_policy_cil_file, R_OK) != -1; | 
|  | } | 
|  |  | 
|  | std::optional<const char*> GetUserdebugPlatformPolicyFile() { | 
|  | // See if we need to load userdebug_plat_sepolicy.cil instead of plat_sepolicy.cil. | 
|  | const char* force_debuggable_env = getenv("INIT_FORCE_DEBUGGABLE"); | 
|  | if (force_debuggable_env && "true"s == force_debuggable_env && AvbHandle::IsDeviceUnlocked()) { | 
|  | const std::vector<const char*> debug_policy_candidates = { | 
|  | #if INSTALL_DEBUG_POLICY_TO_SYSTEM_EXT == 1 | 
|  | "/system_ext/etc/selinux/userdebug_plat_sepolicy.cil", | 
|  | #endif | 
|  | kDebugRamdiskSEPolicy, | 
|  | }; | 
|  | for (const char* debug_policy : debug_policy_candidates) { | 
|  | if (access(debug_policy, F_OK) == 0) { | 
|  | return debug_policy; | 
|  | } | 
|  | } | 
|  | } | 
|  | return std::nullopt; | 
|  | } | 
|  |  | 
|  | struct PolicyFile { | 
|  | unique_fd fd; | 
|  | std::string path; | 
|  | }; | 
|  |  | 
|  | bool OpenSplitPolicy(PolicyFile* policy_file) { | 
|  | // IMPLEMENTATION NOTE: Split policy consists of three or more CIL files: | 
|  | // * platform -- policy needed due to logic contained in the system image, | 
|  | // * vendor -- policy needed due to logic contained in the vendor image, | 
|  | // * mapping -- mapping policy which helps preserve forward-compatibility of non-platform policy | 
|  | //   with newer versions of platform policy. | 
|  | // * (optional) policy needed due to logic on product, system_ext, odm, or apex. | 
|  | // secilc is invoked to compile the above three policy files into a single monolithic policy | 
|  | // file. This file is then loaded into the kernel. | 
|  |  | 
|  | const auto userdebug_plat_sepolicy = GetUserdebugPlatformPolicyFile(); | 
|  | const bool use_userdebug_policy = userdebug_plat_sepolicy.has_value(); | 
|  | if (use_userdebug_policy) { | 
|  | LOG(INFO) << "Using userdebug system sepolicy " << *userdebug_plat_sepolicy; | 
|  | } | 
|  |  | 
|  | // Load precompiled policy from vendor image, if a matching policy is found there. The policy | 
|  | // must match the platform policy on the system image. | 
|  | // use_userdebug_policy requires compiling sepolicy with userdebug_plat_sepolicy.cil. | 
|  | // Thus it cannot use the precompiled policy from vendor image. | 
|  | if (!use_userdebug_policy) { | 
|  | if (auto res = FindPrecompiledSplitPolicy(); res.ok()) { | 
|  | unique_fd fd(open(res->c_str(), O_RDONLY | O_CLOEXEC | O_BINARY)); | 
|  | if (fd != -1) { | 
|  | policy_file->fd = std::move(fd); | 
|  | policy_file->path = std::move(*res); | 
|  | return true; | 
|  | } | 
|  | } else { | 
|  | LOG(INFO) << res.error(); | 
|  | } | 
|  | } | 
|  | // No suitable precompiled policy could be loaded | 
|  |  | 
|  | LOG(INFO) << "Compiling SELinux policy"; | 
|  |  | 
|  | // We store the output of the compilation on /dev because this is the most convenient tmpfs | 
|  | // storage mount available this early in the boot sequence. | 
|  | char compiled_sepolicy[] = "/dev/sepolicy.XXXXXX"; | 
|  | unique_fd compiled_sepolicy_fd(mkostemp(compiled_sepolicy, O_CLOEXEC)); | 
|  | if (compiled_sepolicy_fd < 0) { | 
|  | PLOG(ERROR) << "Failed to create temporary file " << compiled_sepolicy; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Determine which mapping file to include | 
|  | std::string vend_plat_vers; | 
|  | if (!GetVendorMappingVersion(&vend_plat_vers)) { | 
|  | return false; | 
|  | } | 
|  | std::string plat_mapping_file("/system/etc/selinux/mapping/" + vend_plat_vers + ".cil"); | 
|  |  | 
|  | std::string plat_compat_cil_file("/system/etc/selinux/mapping/" + vend_plat_vers + | 
|  | ".compat.cil"); | 
|  | if (access(plat_compat_cil_file.c_str(), F_OK) == -1) { | 
|  | plat_compat_cil_file.clear(); | 
|  | } | 
|  |  | 
|  | std::string system_ext_policy_cil_file("/system_ext/etc/selinux/system_ext_sepolicy.cil"); | 
|  | if (access(system_ext_policy_cil_file.c_str(), F_OK) == -1) { | 
|  | system_ext_policy_cil_file.clear(); | 
|  | } | 
|  |  | 
|  | std::string system_ext_mapping_file("/system_ext/etc/selinux/mapping/" + vend_plat_vers + | 
|  | ".cil"); | 
|  | if (access(system_ext_mapping_file.c_str(), F_OK) == -1) { | 
|  | system_ext_mapping_file.clear(); | 
|  | } | 
|  |  | 
|  | std::string system_ext_compat_cil_file("/system_ext/etc/selinux/mapping/" + vend_plat_vers + | 
|  | ".compat.cil"); | 
|  | if (access(system_ext_compat_cil_file.c_str(), F_OK) == -1) { | 
|  | system_ext_compat_cil_file.clear(); | 
|  | } | 
|  |  | 
|  | std::string product_policy_cil_file("/product/etc/selinux/product_sepolicy.cil"); | 
|  | if (access(product_policy_cil_file.c_str(), F_OK) == -1) { | 
|  | product_policy_cil_file.clear(); | 
|  | } | 
|  |  | 
|  | std::string product_mapping_file("/product/etc/selinux/mapping/" + vend_plat_vers + ".cil"); | 
|  | if (access(product_mapping_file.c_str(), F_OK) == -1) { | 
|  | product_mapping_file.clear(); | 
|  | } | 
|  |  | 
|  | std::string vendor_policy_cil_file("/vendor/etc/selinux/vendor_sepolicy.cil"); | 
|  | if (access(vendor_policy_cil_file.c_str(), F_OK) == -1) { | 
|  | LOG(ERROR) << "Missing " << vendor_policy_cil_file; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | std::string plat_pub_versioned_cil_file("/vendor/etc/selinux/plat_pub_versioned.cil"); | 
|  | if (access(plat_pub_versioned_cil_file.c_str(), F_OK) == -1) { | 
|  | LOG(ERROR) << "Missing " << plat_pub_versioned_cil_file; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // odm_sepolicy.cil is default but optional. | 
|  | std::string odm_policy_cil_file("/odm/etc/selinux/odm_sepolicy.cil"); | 
|  | if (access(odm_policy_cil_file.c_str(), F_OK) == -1) { | 
|  | odm_policy_cil_file.clear(); | 
|  | } | 
|  |  | 
|  | // apex_sepolicy.cil is default but optional. | 
|  | std::string apex_policy_cil_file("/dev/selinux/apex_sepolicy.cil"); | 
|  | if (access(apex_policy_cil_file.c_str(), F_OK) == -1) { | 
|  | apex_policy_cil_file.clear(); | 
|  | } | 
|  | const std::string version_as_string = std::to_string(SEPOLICY_VERSION); | 
|  |  | 
|  | // clang-format off | 
|  | std::vector<const char*> compile_args { | 
|  | "/system/bin/secilc", | 
|  | use_userdebug_policy ? *userdebug_plat_sepolicy : plat_policy_cil_file, | 
|  | "-m", "-M", "true", "-G", "-N", | 
|  | "-c", version_as_string.c_str(), | 
|  | plat_mapping_file.c_str(), | 
|  | "-o", compiled_sepolicy, | 
|  | // We don't care about file_contexts output by the compiler | 
|  | "-f", "/sys/fs/selinux/null",  // /dev/null is not yet available | 
|  | }; | 
|  | // clang-format on | 
|  |  | 
|  | if (!plat_compat_cil_file.empty()) { | 
|  | compile_args.push_back(plat_compat_cil_file.c_str()); | 
|  | } | 
|  | if (!system_ext_policy_cil_file.empty()) { | 
|  | compile_args.push_back(system_ext_policy_cil_file.c_str()); | 
|  | } | 
|  | if (!system_ext_mapping_file.empty()) { | 
|  | compile_args.push_back(system_ext_mapping_file.c_str()); | 
|  | } | 
|  | if (!system_ext_compat_cil_file.empty()) { | 
|  | compile_args.push_back(system_ext_compat_cil_file.c_str()); | 
|  | } | 
|  | if (!product_policy_cil_file.empty()) { | 
|  | compile_args.push_back(product_policy_cil_file.c_str()); | 
|  | } | 
|  | if (!product_mapping_file.empty()) { | 
|  | compile_args.push_back(product_mapping_file.c_str()); | 
|  | } | 
|  | if (!plat_pub_versioned_cil_file.empty()) { | 
|  | compile_args.push_back(plat_pub_versioned_cil_file.c_str()); | 
|  | } | 
|  | if (!vendor_policy_cil_file.empty()) { | 
|  | compile_args.push_back(vendor_policy_cil_file.c_str()); | 
|  | } | 
|  | if (!odm_policy_cil_file.empty()) { | 
|  | compile_args.push_back(odm_policy_cil_file.c_str()); | 
|  | } | 
|  | if (!apex_policy_cil_file.empty()) { | 
|  | compile_args.push_back(apex_policy_cil_file.c_str()); | 
|  | } | 
|  | compile_args.push_back(nullptr); | 
|  |  | 
|  | if (!ForkExecveAndWaitForCompletion(compile_args[0], (char**)compile_args.data())) { | 
|  | unlink(compiled_sepolicy); | 
|  | return false; | 
|  | } | 
|  | unlink(compiled_sepolicy); | 
|  |  | 
|  | policy_file->fd = std::move(compiled_sepolicy_fd); | 
|  | policy_file->path = compiled_sepolicy; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool OpenMonolithicPolicy(PolicyFile* policy_file) { | 
|  | static constexpr char kSepolicyFile[] = "/sepolicy"; | 
|  |  | 
|  | LOG(VERBOSE) << "Opening SELinux policy from monolithic file"; | 
|  | policy_file->fd.reset(open(kSepolicyFile, O_RDONLY | O_CLOEXEC | O_NOFOLLOW)); | 
|  | if (policy_file->fd < 0) { | 
|  | PLOG(ERROR) << "Failed to open monolithic SELinux policy"; | 
|  | return false; | 
|  | } | 
|  | policy_file->path = kSepolicyFile; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | constexpr const char* kSigningCertRelease = | 
|  | "/system/etc/selinux/com.android.sepolicy.cert-release.der"; | 
|  | constexpr const char* kFsVerityProcPath = "/proc/sys/fs/verity"; | 
|  | const std::string kSepolicyApexMetadataDir = "/metadata/sepolicy/"; | 
|  | const std::string kSepolicyApexSystemDir = "/system/etc/selinux/apex/"; | 
|  | const std::string kSepolicyZip = "SEPolicy.zip"; | 
|  | const std::string kSepolicySignature = "SEPolicy.zip.sig"; | 
|  |  | 
|  | const std::string kTmpfsDir = "/dev/selinux/"; | 
|  |  | 
|  | // Files that are deleted after policy is compiled/loaded. | 
|  | const std::vector<std::string> kApexSepolicyTmp{"apex_sepolicy.cil", "apex_sepolicy.sha256"}; | 
|  | // Files that need to persist because they are used by userspace processes. | 
|  | const std::vector<std::string> kApexSepolicy{"apex_file_contexts", "apex_property_contexts", | 
|  | "apex_service_contexts", "apex_seapp_contexts", | 
|  | "apex_test"}; | 
|  |  | 
|  | Result<void> CreateTmpfsDir() { | 
|  | mode_t mode = 0744; | 
|  | struct stat stat_data; | 
|  | if (stat(kTmpfsDir.c_str(), &stat_data) != 0) { | 
|  | if (errno != ENOENT) { | 
|  | return ErrnoError() << "Could not stat " << kTmpfsDir; | 
|  | } | 
|  | if (mkdir(kTmpfsDir.c_str(), mode) != 0) { | 
|  | return ErrnoError() << "Could not mkdir " << kTmpfsDir; | 
|  | } | 
|  | } else { | 
|  | if (!S_ISDIR(stat_data.st_mode)) { | 
|  | return Error() << kTmpfsDir << " exists and is not a directory."; | 
|  | } | 
|  | LOG(WARNING) << "Directory " << kTmpfsDir << " already exists"; | 
|  | } | 
|  |  | 
|  | // Need to manually call chmod because mkdir will create a folder with | 
|  | // permissions mode & ~umask. | 
|  | if (chmod(kTmpfsDir.c_str(), mode) != 0) { | 
|  | return ErrnoError() << "Could not chmod " << kTmpfsDir; | 
|  | } | 
|  |  | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | Result<void> PutFileInTmpfs(ZipArchiveHandle archive, const std::string& fileName) { | 
|  | ZipEntry entry; | 
|  | std::string dstPath = kTmpfsDir + fileName; | 
|  |  | 
|  | int ret = FindEntry(archive, fileName, &entry); | 
|  | if (ret != 0) { | 
|  | // All files are optional. If a file doesn't exist, return without error. | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | unique_fd fd(TEMP_FAILURE_RETRY( | 
|  | open(dstPath.c_str(), O_WRONLY | O_CREAT | O_TRUNC | O_CLOEXEC, S_IRUSR | S_IWUSR))); | 
|  | if (fd == -1) { | 
|  | return ErrnoError() << "Failed to open " << dstPath; | 
|  | } | 
|  |  | 
|  | ret = ExtractEntryToFile(archive, &entry, fd); | 
|  | if (ret != 0) { | 
|  | return Error() << "Failed to extract entry \"" << fileName << "\" (" | 
|  | << entry.uncompressed_length << " bytes) to \"" << dstPath | 
|  | << "\": " << ErrorCodeString(ret); | 
|  | } | 
|  |  | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | Result<void> GetPolicyFromApex(const std::string& dir) { | 
|  | LOG(INFO) << "Loading APEX Sepolicy from " << dir + kSepolicyZip; | 
|  | unique_fd fd(open((dir + kSepolicyZip).c_str(), O_RDONLY | O_BINARY | O_CLOEXEC)); | 
|  | if (fd < 0) { | 
|  | return ErrnoError() << "Failed to open package " << dir + kSepolicyZip; | 
|  | } | 
|  |  | 
|  | ZipArchiveHandle handle; | 
|  | int ret = OpenArchiveFd(fd.get(), (dir + kSepolicyZip).c_str(), &handle, | 
|  | /*assume_ownership=*/false); | 
|  | if (ret < 0) { | 
|  | return Error() << "Failed to open package " << dir + kSepolicyZip << ": " | 
|  | << ErrorCodeString(ret); | 
|  | } | 
|  |  | 
|  | auto handle_guard = android::base::make_scope_guard([&handle] { CloseArchive(handle); }); | 
|  |  | 
|  | auto create = CreateTmpfsDir(); | 
|  | if (!create.ok()) { | 
|  | return create.error(); | 
|  | } | 
|  |  | 
|  | for (const auto& file : kApexSepolicy) { | 
|  | auto extract = PutFileInTmpfs(handle, file); | 
|  | if (!extract.ok()) { | 
|  | return extract.error(); | 
|  | } | 
|  | } | 
|  | for (const auto& file : kApexSepolicyTmp) { | 
|  | auto extract = PutFileInTmpfs(handle, file); | 
|  | if (!extract.ok()) { | 
|  | return extract.error(); | 
|  | } | 
|  | } | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | Result<void> LoadSepolicyApexCerts() { | 
|  | key_serial_t keyring_id = android::GetKeyringId(".fs-verity"); | 
|  | if (keyring_id < 0) { | 
|  | return Error() << "Failed to find .fs-verity keyring id"; | 
|  | } | 
|  |  | 
|  | // TODO(b/199914227) the release key should always exist. Once it's checked in, start | 
|  | // throwing an error here if it doesn't exist. | 
|  | if (access(kSigningCertRelease, F_OK) == 0) { | 
|  | LoadKeyFromFile(keyring_id, "fsv_sepolicy_apex_release", kSigningCertRelease); | 
|  | } | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | Result<void> SepolicyFsVerityCheck() { | 
|  | return Error() << "TODO implementent support for fsverity SEPolicy."; | 
|  | } | 
|  |  | 
|  | Result<void> SepolicyCheckSignature(const std::string& dir) { | 
|  | std::string signature; | 
|  | if (!android::base::ReadFileToString(dir + kSepolicySignature, &signature)) { | 
|  | return ErrnoError() << "Failed to read " << kSepolicySignature; | 
|  | } | 
|  |  | 
|  | std::fstream sepolicyZip(dir + kSepolicyZip, std::ios::in | std::ios::binary); | 
|  | if (!sepolicyZip) { | 
|  | return Error() << "Failed to open " << kSepolicyZip; | 
|  | } | 
|  | sepolicyZip.seekg(0); | 
|  | std::string sepolicyStr((std::istreambuf_iterator<char>(sepolicyZip)), | 
|  | std::istreambuf_iterator<char>()); | 
|  |  | 
|  | auto releaseKey = extractPublicKeyFromX509(kSigningCertRelease); | 
|  | if (!releaseKey.ok()) { | 
|  | return releaseKey.error(); | 
|  | } | 
|  |  | 
|  | return verifySignature(sepolicyStr, signature, *releaseKey); | 
|  | } | 
|  |  | 
|  | Result<void> SepolicyVerify(const std::string& dir, bool supportsFsVerity) { | 
|  | if (supportsFsVerity) { | 
|  | auto fsVerityCheck = SepolicyFsVerityCheck(); | 
|  | if (fsVerityCheck.ok()) { | 
|  | return fsVerityCheck; | 
|  | } | 
|  | // TODO(b/199914227) If the device supports fsverity, but we fail here, we should fail to | 
|  | // boot and not carry on. For now, fallback to a signature checkuntil the fsverity | 
|  | // logic is implemented. | 
|  | LOG(INFO) << "Falling back to standard signature check. " << fsVerityCheck.error(); | 
|  | } | 
|  |  | 
|  | auto sepolicySignature = SepolicyCheckSignature(dir); | 
|  | if (!sepolicySignature.ok()) { | 
|  | return Error() << "Apex SEPolicy failed signature check"; | 
|  | } | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | void CleanupApexSepolicy() { | 
|  | for (const auto& file : kApexSepolicyTmp) { | 
|  | std::string path = kTmpfsDir + file; | 
|  | unlink(path.c_str()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Updatable sepolicy is shipped within an zip within an APEX. Because | 
|  | // it needs to be available before Apexes are mounted, apexd copies | 
|  | // the zip from the APEX and stores it in /metadata/sepolicy. If there is | 
|  | // no updatable sepolicy in /metadata/sepolicy, then the updatable policy is | 
|  | // loaded from /system/etc/selinux/apex. Init performs the following | 
|  | // steps on boot: | 
|  | // | 
|  | // 1. Validates the zip by checking its signature against a public key that is | 
|  | // stored in /system/etc/selinux. | 
|  | // 2. Extracts files from zip and stores them in /dev/selinux. | 
|  | // 3. Checks if the apex_sepolicy.sha256 matches the sha256 of precompiled_sepolicy. | 
|  | // if so, the precompiled sepolicy is used. Otherwise, an on-device compile of the policy | 
|  | // is used. This is the same flow as on-device compilation of policy for Treble. | 
|  | // 4. Cleans up files in /dev/selinux which are no longer needed. | 
|  | // 5. Restorecons the remaining files in /dev/selinux. | 
|  | // 6. Sets selinux into enforcing mode and continues normal booting. | 
|  | // | 
|  | void PrepareApexSepolicy() { | 
|  | bool supportsFsVerity = access(kFsVerityProcPath, F_OK) == 0; | 
|  | if (supportsFsVerity) { | 
|  | auto loadSepolicyApexCerts = LoadSepolicyApexCerts(); | 
|  | if (!loadSepolicyApexCerts.ok()) { | 
|  | // TODO(b/199914227) If the device supports fsverity, but we fail here, we should fail | 
|  | // to boot and not carry on. For now, fallback to a signature checkuntil the fsverity | 
|  | // logic is implemented. | 
|  | LOG(INFO) << loadSepolicyApexCerts.error(); | 
|  | } | 
|  | } | 
|  | // If apex sepolicy zip exists in /metadata/sepolicy, use that, otherwise use version on | 
|  | // /system. | 
|  | auto dir = (access((kSepolicyApexMetadataDir + kSepolicyZip).c_str(), F_OK) == 0) | 
|  | ? kSepolicyApexMetadataDir | 
|  | : kSepolicyApexSystemDir; | 
|  |  | 
|  | auto sepolicyVerify = SepolicyVerify(dir, supportsFsVerity); | 
|  | if (!sepolicyVerify.ok()) { | 
|  | LOG(INFO) << "Error: " << sepolicyVerify.error(); | 
|  | // If signature verification fails, fall back to version on /system. | 
|  | // This file doesn't need to be verified because it lives on the system partition which | 
|  | // is signed and protected by verified boot. | 
|  | dir = kSepolicyApexSystemDir; | 
|  | } | 
|  |  | 
|  | auto apex = GetPolicyFromApex(dir); | 
|  | if (!apex.ok()) { | 
|  | // TODO(b/199914227) Make failure fatal. For now continue booting with non-apex sepolicy. | 
|  | LOG(ERROR) << apex.error(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void ReadPolicy(std::string* policy) { | 
|  | PolicyFile policy_file; | 
|  |  | 
|  | bool ok = IsSplitPolicyDevice() ? OpenSplitPolicy(&policy_file) | 
|  | : OpenMonolithicPolicy(&policy_file); | 
|  | if (!ok) { | 
|  | LOG(FATAL) << "Unable to open SELinux policy"; | 
|  | } | 
|  |  | 
|  | if (!android::base::ReadFdToString(policy_file.fd, policy)) { | 
|  | PLOG(FATAL) << "Failed to read policy file: " << policy_file.path; | 
|  | } | 
|  | } | 
|  |  | 
|  | void SelinuxSetEnforcement() { | 
|  | bool kernel_enforcing = (security_getenforce() == 1); | 
|  | bool is_enforcing = IsEnforcing(); | 
|  | if (kernel_enforcing != is_enforcing) { | 
|  | if (security_setenforce(is_enforcing)) { | 
|  | PLOG(FATAL) << "security_setenforce(" << (is_enforcing ? "true" : "false") | 
|  | << ") failed"; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (auto result = WriteFile("/sys/fs/selinux/checkreqprot", "0"); !result.ok()) { | 
|  | LOG(FATAL) << "Unable to write to /sys/fs/selinux/checkreqprot: " << result.error(); | 
|  | } | 
|  | } | 
|  |  | 
|  | constexpr size_t kKlogMessageSize = 1024; | 
|  |  | 
|  | void SelinuxAvcLog(char* buf, size_t buf_len) { | 
|  | CHECK_GT(buf_len, 0u); | 
|  |  | 
|  | size_t str_len = strnlen(buf, buf_len); | 
|  | // trim newline at end of string | 
|  | if (buf[str_len - 1] == '\n') { | 
|  | buf[str_len - 1] = '\0'; | 
|  | } | 
|  |  | 
|  | struct NetlinkMessage { | 
|  | nlmsghdr hdr; | 
|  | char buf[kKlogMessageSize]; | 
|  | } request = {}; | 
|  |  | 
|  | request.hdr.nlmsg_flags = NLM_F_REQUEST; | 
|  | request.hdr.nlmsg_type = AUDIT_USER_AVC; | 
|  | request.hdr.nlmsg_len = sizeof(request); | 
|  | strlcpy(request.buf, buf, sizeof(request.buf)); | 
|  |  | 
|  | auto fd = unique_fd{socket(PF_NETLINK, SOCK_RAW | SOCK_CLOEXEC, NETLINK_AUDIT)}; | 
|  | if (!fd.ok()) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | TEMP_FAILURE_RETRY(send(fd, &request, sizeof(request), 0)); | 
|  | } | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | void SelinuxRestoreContext() { | 
|  | LOG(INFO) << "Running restorecon..."; | 
|  | selinux_android_restorecon("/dev", 0); | 
|  | selinux_android_restorecon("/dev/console", 0); | 
|  | selinux_android_restorecon("/dev/kmsg", 0); | 
|  | if constexpr (WORLD_WRITABLE_KMSG) { | 
|  | selinux_android_restorecon("/dev/kmsg_debug", 0); | 
|  | } | 
|  | selinux_android_restorecon("/dev/null", 0); | 
|  | selinux_android_restorecon("/dev/ptmx", 0); | 
|  | selinux_android_restorecon("/dev/socket", 0); | 
|  | selinux_android_restorecon("/dev/random", 0); | 
|  | selinux_android_restorecon("/dev/urandom", 0); | 
|  | selinux_android_restorecon("/dev/__properties__", 0); | 
|  |  | 
|  | selinux_android_restorecon("/dev/block", SELINUX_ANDROID_RESTORECON_RECURSE); | 
|  | selinux_android_restorecon("/dev/dm-user", SELINUX_ANDROID_RESTORECON_RECURSE); | 
|  | selinux_android_restorecon("/dev/device-mapper", 0); | 
|  |  | 
|  | selinux_android_restorecon("/apex", 0); | 
|  |  | 
|  | selinux_android_restorecon("/linkerconfig", 0); | 
|  |  | 
|  | // adb remount, snapshot-based updates, and DSUs all create files during | 
|  | // first-stage init. | 
|  | selinux_android_restorecon(SnapshotManager::GetGlobalRollbackIndicatorPath().c_str(), 0); | 
|  | selinux_android_restorecon("/metadata/gsi", SELINUX_ANDROID_RESTORECON_RECURSE | | 
|  | SELINUX_ANDROID_RESTORECON_SKIP_SEHASH); | 
|  | } | 
|  |  | 
|  | int SelinuxKlogCallback(int type, const char* fmt, ...) { | 
|  | android::base::LogSeverity severity = android::base::ERROR; | 
|  | if (type == SELINUX_WARNING) { | 
|  | severity = android::base::WARNING; | 
|  | } else if (type == SELINUX_INFO) { | 
|  | severity = android::base::INFO; | 
|  | } | 
|  | char buf[kKlogMessageSize]; | 
|  | va_list ap; | 
|  | va_start(ap, fmt); | 
|  | int length_written = vsnprintf(buf, sizeof(buf), fmt, ap); | 
|  | va_end(ap); | 
|  | if (length_written <= 0) { | 
|  | return 0; | 
|  | } | 
|  | if (type == SELINUX_AVC) { | 
|  | SelinuxAvcLog(buf, sizeof(buf)); | 
|  | } else { | 
|  | android::base::KernelLogger(android::base::MAIN, severity, "selinux", nullptr, 0, buf); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void SelinuxSetupKernelLogging() { | 
|  | selinux_callback cb; | 
|  | cb.func_log = SelinuxKlogCallback; | 
|  | selinux_set_callback(SELINUX_CB_LOG, cb); | 
|  | } | 
|  |  | 
|  | int SelinuxGetVendorAndroidVersion() { | 
|  | static int vendor_android_version = [] { | 
|  | if (!IsSplitPolicyDevice()) { | 
|  | // If this device does not split sepolicy files, it's not a Treble device and therefore, | 
|  | // we assume it's always on the latest platform. | 
|  | return __ANDROID_API_FUTURE__; | 
|  | } | 
|  |  | 
|  | std::string version; | 
|  | if (!GetVendorMappingVersion(&version)) { | 
|  | LOG(FATAL) << "Could not read vendor SELinux version"; | 
|  | } | 
|  |  | 
|  | int major_version; | 
|  | std::string major_version_str(version, 0, version.find('.')); | 
|  | if (!ParseInt(major_version_str, &major_version)) { | 
|  | PLOG(FATAL) << "Failed to parse the vendor sepolicy major version " | 
|  | << major_version_str; | 
|  | } | 
|  |  | 
|  | return major_version; | 
|  | }(); | 
|  | return vendor_android_version; | 
|  | } | 
|  |  | 
|  | // This is for R system.img/system_ext.img to work on old vendor.img as system_ext.img | 
|  | // is introduced in R. We mount system_ext in second stage init because the first-stage | 
|  | // init in boot.img won't be updated in the system-only OTA scenario. | 
|  | void MountMissingSystemPartitions() { | 
|  | android::fs_mgr::Fstab fstab; | 
|  | if (!ReadDefaultFstab(&fstab)) { | 
|  | LOG(ERROR) << "Could not read default fstab"; | 
|  | } | 
|  |  | 
|  | android::fs_mgr::Fstab mounts; | 
|  | if (!ReadFstabFromFile("/proc/mounts", &mounts)) { | 
|  | LOG(ERROR) << "Could not read /proc/mounts"; | 
|  | } | 
|  |  | 
|  | static const std::vector<std::string> kPartitionNames = {"system_ext", "product"}; | 
|  |  | 
|  | android::fs_mgr::Fstab extra_fstab; | 
|  | for (const auto& name : kPartitionNames) { | 
|  | if (GetEntryForMountPoint(&mounts, "/"s + name)) { | 
|  | // The partition is already mounted. | 
|  | continue; | 
|  | } | 
|  |  | 
|  | auto system_entry = GetEntryForMountPoint(&fstab, "/system"); | 
|  | if (!system_entry) { | 
|  | LOG(ERROR) << "Could not find mount entry for /system"; | 
|  | break; | 
|  | } | 
|  | if (!system_entry->fs_mgr_flags.logical) { | 
|  | LOG(INFO) << "Skipping mount of " << name << ", system is not dynamic."; | 
|  | break; | 
|  | } | 
|  |  | 
|  | auto entry = *system_entry; | 
|  | auto partition_name = name + fs_mgr_get_slot_suffix(); | 
|  | auto replace_name = "system"s + fs_mgr_get_slot_suffix(); | 
|  |  | 
|  | entry.mount_point = "/"s + name; | 
|  | entry.blk_device = | 
|  | android::base::StringReplace(entry.blk_device, replace_name, partition_name, false); | 
|  | if (!fs_mgr_update_logical_partition(&entry)) { | 
|  | LOG(ERROR) << "Could not update logical partition"; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | extra_fstab.emplace_back(std::move(entry)); | 
|  | } | 
|  |  | 
|  | SkipMountingPartitions(&extra_fstab, true /* verbose */); | 
|  | if (extra_fstab.empty()) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | BlockDevInitializer block_dev_init; | 
|  | for (auto& entry : extra_fstab) { | 
|  | if (access(entry.blk_device.c_str(), F_OK) != 0) { | 
|  | auto block_dev = android::base::Basename(entry.blk_device); | 
|  | if (!block_dev_init.InitDmDevice(block_dev)) { | 
|  | LOG(ERROR) << "Failed to find device-mapper node: " << block_dev; | 
|  | continue; | 
|  | } | 
|  | } | 
|  | if (fs_mgr_do_mount_one(entry)) { | 
|  | LOG(ERROR) << "Could not mount " << entry.mount_point; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void LoadSelinuxPolicy(std::string& policy) { | 
|  | LOG(INFO) << "Loading SELinux policy"; | 
|  |  | 
|  | set_selinuxmnt("/sys/fs/selinux"); | 
|  | if (security_load_policy(policy.data(), policy.size()) < 0) { | 
|  | PLOG(FATAL) << "SELinux:  Could not load policy"; | 
|  | } | 
|  | } | 
|  |  | 
|  | // The SELinux setup process is carefully orchestrated around snapuserd. Policy | 
|  | // must be loaded off dynamic partitions, and during an OTA, those partitions | 
|  | // cannot be read without snapuserd. But, with kernel-privileged snapuserd | 
|  | // running, loading the policy will immediately trigger audits. | 
|  | // | 
|  | // We use a five-step process to address this: | 
|  | //  (1) Read the policy into a string, with snapuserd running. | 
|  | //  (2) Rewrite the snapshot device-mapper tables, to generate new dm-user | 
|  | //      devices and to flush I/O. | 
|  | //  (3) Kill snapuserd, which no longer has any dm-user devices to attach to. | 
|  | //  (4) Load the sepolicy and issue critical restorecons in /dev, carefully | 
|  | //      avoiding anything that would read from /system. | 
|  | //  (5) Re-launch snapuserd and attach it to the dm-user devices from step (2). | 
|  | // | 
|  | // After this sequence, it is safe to enable enforcing mode and continue booting. | 
|  | int SetupSelinux(char** argv) { | 
|  | SetStdioToDevNull(argv); | 
|  | InitKernelLogging(argv); | 
|  |  | 
|  | if (REBOOT_BOOTLOADER_ON_PANIC) { | 
|  | InstallRebootSignalHandlers(); | 
|  | } | 
|  |  | 
|  | boot_clock::time_point start_time = boot_clock::now(); | 
|  |  | 
|  | MountMissingSystemPartitions(); | 
|  |  | 
|  | SelinuxSetupKernelLogging(); | 
|  |  | 
|  | LOG(INFO) << "Opening SELinux policy"; | 
|  |  | 
|  | PrepareApexSepolicy(); | 
|  |  | 
|  | // Read the policy before potentially killing snapuserd. | 
|  | std::string policy; | 
|  | ReadPolicy(&policy); | 
|  | CleanupApexSepolicy(); | 
|  |  | 
|  | auto snapuserd_helper = SnapuserdSelinuxHelper::CreateIfNeeded(); | 
|  | if (snapuserd_helper) { | 
|  | // Kill the old snapused to avoid audit messages. After this we cannot | 
|  | // read from /system (or other dynamic partitions) until we call | 
|  | // FinishTransition(). | 
|  | snapuserd_helper->StartTransition(); | 
|  | } | 
|  |  | 
|  | LoadSelinuxPolicy(policy); | 
|  |  | 
|  | if (snapuserd_helper) { | 
|  | // Before enforcing, finish the pending snapuserd transition. | 
|  | snapuserd_helper->FinishTransition(); | 
|  | snapuserd_helper = nullptr; | 
|  | } | 
|  |  | 
|  | // This restorecon is intentionally done before SelinuxSetEnforcement because the permissions | 
|  | // needed to transition files from tmpfs to *_contexts_file context should not be granted to | 
|  | // any process after selinux is set into enforcing mode. | 
|  | if (selinux_android_restorecon("/dev/selinux/", SELINUX_ANDROID_RESTORECON_RECURSE) == -1) { | 
|  | PLOG(FATAL) << "restorecon failed of /dev/selinux failed"; | 
|  | } | 
|  |  | 
|  | SelinuxSetEnforcement(); | 
|  |  | 
|  | // We're in the kernel domain and want to transition to the init domain.  File systems that | 
|  | // store SELabels in their xattrs, such as ext4 do not need an explicit restorecon here, | 
|  | // but other file systems do.  In particular, this is needed for ramdisks such as the | 
|  | // recovery image for A/B devices. | 
|  | if (selinux_android_restorecon("/system/bin/init", 0) == -1) { | 
|  | PLOG(FATAL) << "restorecon failed of /system/bin/init failed"; | 
|  | } | 
|  |  | 
|  | setenv(kEnvSelinuxStartedAt, std::to_string(start_time.time_since_epoch().count()).c_str(), 1); | 
|  |  | 
|  | const char* path = "/system/bin/init"; | 
|  | const char* args[] = {path, "second_stage", nullptr}; | 
|  | execv(path, const_cast<char**>(args)); | 
|  |  | 
|  | // execv() only returns if an error happened, in which case we | 
|  | // panic and never return from this function. | 
|  | PLOG(FATAL) << "execv(\"" << path << "\") failed"; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | }  // namespace init | 
|  | }  // namespace android |