|  | /* | 
|  | * Copyright (C) 2016 The Android Open Source Project | 
|  | * | 
|  | * Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | * you may not use this file except in compliance with the License. | 
|  | * You may obtain a copy of the License at | 
|  | * | 
|  | *      http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | * Unless required by applicable law or agreed to in writing, software | 
|  | * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | * See the License for the specific language governing permissions and | 
|  | * limitations under the License. | 
|  | */ | 
|  |  | 
|  | #include <errno.h> | 
|  | #include <fcntl.h> | 
|  | #include <string.h> | 
|  | #include <sys/mman.h> | 
|  | #include <sys/ptrace.h> | 
|  | #include <sys/stat.h> | 
|  | #include <sys/types.h> | 
|  | #include <sys/uio.h> | 
|  | #include <unistd.h> | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <memory> | 
|  |  | 
|  | #include <android-base/unique_fd.h> | 
|  |  | 
|  | #include <unwindstack/Memory.h> | 
|  |  | 
|  | #include "Check.h" | 
|  | #include "MemoryBuffer.h" | 
|  | #include "MemoryCache.h" | 
|  | #include "MemoryFileAtOffset.h" | 
|  | #include "MemoryLocal.h" | 
|  | #include "MemoryOffline.h" | 
|  | #include "MemoryOfflineBuffer.h" | 
|  | #include "MemoryRange.h" | 
|  | #include "MemoryRemote.h" | 
|  |  | 
|  | namespace unwindstack { | 
|  |  | 
|  | static size_t ProcessVmRead(pid_t pid, uint64_t remote_src, void* dst, size_t len) { | 
|  |  | 
|  | // Split up the remote read across page boundaries. | 
|  | // From the manpage: | 
|  | //   A partial read/write may result if one of the remote_iov elements points to an invalid | 
|  | //   memory region in the remote process. | 
|  | // | 
|  | //   Partial transfers apply at the granularity of iovec elements.  These system calls won't | 
|  | //   perform a partial transfer that splits a single iovec element. | 
|  | constexpr size_t kMaxIovecs = 64; | 
|  | struct iovec src_iovs[kMaxIovecs]; | 
|  |  | 
|  | uint64_t cur = remote_src; | 
|  | size_t total_read = 0; | 
|  | while (len > 0) { | 
|  | struct iovec dst_iov = { | 
|  | .iov_base = &reinterpret_cast<uint8_t*>(dst)[total_read], .iov_len = len, | 
|  | }; | 
|  |  | 
|  | size_t iovecs_used = 0; | 
|  | while (len > 0) { | 
|  | if (iovecs_used == kMaxIovecs) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | // struct iovec uses void* for iov_base. | 
|  | if (cur >= UINTPTR_MAX) { | 
|  | errno = EFAULT; | 
|  | return total_read; | 
|  | } | 
|  |  | 
|  | src_iovs[iovecs_used].iov_base = reinterpret_cast<void*>(cur); | 
|  |  | 
|  | uintptr_t misalignment = cur & (getpagesize() - 1); | 
|  | size_t iov_len = getpagesize() - misalignment; | 
|  | iov_len = std::min(iov_len, len); | 
|  |  | 
|  | len -= iov_len; | 
|  | if (__builtin_add_overflow(cur, iov_len, &cur)) { | 
|  | errno = EFAULT; | 
|  | return total_read; | 
|  | } | 
|  |  | 
|  | src_iovs[iovecs_used].iov_len = iov_len; | 
|  | ++iovecs_used; | 
|  | } | 
|  |  | 
|  | ssize_t rc = process_vm_readv(pid, &dst_iov, 1, src_iovs, iovecs_used, 0); | 
|  | if (rc == -1) { | 
|  | return total_read; | 
|  | } | 
|  | total_read += rc; | 
|  | } | 
|  | return total_read; | 
|  | } | 
|  |  | 
|  | static bool PtraceReadLong(pid_t pid, uint64_t addr, long* value) { | 
|  | // ptrace() returns -1 and sets errno when the operation fails. | 
|  | // To disambiguate -1 from a valid result, we clear errno beforehand. | 
|  | errno = 0; | 
|  | *value = ptrace(PTRACE_PEEKTEXT, pid, reinterpret_cast<void*>(addr), nullptr); | 
|  | if (*value == -1 && errno) { | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static size_t PtraceRead(pid_t pid, uint64_t addr, void* dst, size_t bytes) { | 
|  | // Make sure that there is no overflow. | 
|  | uint64_t max_size; | 
|  | if (__builtin_add_overflow(addr, bytes, &max_size)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | size_t bytes_read = 0; | 
|  | long data; | 
|  | size_t align_bytes = addr & (sizeof(long) - 1); | 
|  | if (align_bytes != 0) { | 
|  | if (!PtraceReadLong(pid, addr & ~(sizeof(long) - 1), &data)) { | 
|  | return 0; | 
|  | } | 
|  | size_t copy_bytes = std::min(sizeof(long) - align_bytes, bytes); | 
|  | memcpy(dst, reinterpret_cast<uint8_t*>(&data) + align_bytes, copy_bytes); | 
|  | addr += copy_bytes; | 
|  | dst = reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(dst) + copy_bytes); | 
|  | bytes -= copy_bytes; | 
|  | bytes_read += copy_bytes; | 
|  | } | 
|  |  | 
|  | for (size_t i = 0; i < bytes / sizeof(long); i++) { | 
|  | if (!PtraceReadLong(pid, addr, &data)) { | 
|  | return bytes_read; | 
|  | } | 
|  | memcpy(dst, &data, sizeof(long)); | 
|  | dst = reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(dst) + sizeof(long)); | 
|  | addr += sizeof(long); | 
|  | bytes_read += sizeof(long); | 
|  | } | 
|  |  | 
|  | size_t left_over = bytes & (sizeof(long) - 1); | 
|  | if (left_over) { | 
|  | if (!PtraceReadLong(pid, addr, &data)) { | 
|  | return bytes_read; | 
|  | } | 
|  | memcpy(dst, &data, left_over); | 
|  | bytes_read += left_over; | 
|  | } | 
|  | return bytes_read; | 
|  | } | 
|  |  | 
|  | bool Memory::ReadFully(uint64_t addr, void* dst, size_t size) { | 
|  | size_t rc = Read(addr, dst, size); | 
|  | return rc == size; | 
|  | } | 
|  |  | 
|  | bool Memory::ReadString(uint64_t addr, std::string* string, uint64_t max_read) { | 
|  | string->clear(); | 
|  | uint64_t bytes_read = 0; | 
|  | while (bytes_read < max_read) { | 
|  | uint8_t value; | 
|  | if (!ReadFully(addr, &value, sizeof(value))) { | 
|  | return false; | 
|  | } | 
|  | if (value == '\0') { | 
|  | return true; | 
|  | } | 
|  | string->push_back(value); | 
|  | addr++; | 
|  | bytes_read++; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | std::unique_ptr<Memory> Memory::CreateFileMemory(const std::string& path, uint64_t offset) { | 
|  | auto memory = std::make_unique<MemoryFileAtOffset>(); | 
|  |  | 
|  | if (memory->Init(path, offset)) { | 
|  | return memory; | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | std::shared_ptr<Memory> Memory::CreateProcessMemory(pid_t pid) { | 
|  | if (pid == getpid()) { | 
|  | return std::shared_ptr<Memory>(new MemoryLocal()); | 
|  | } | 
|  | return std::shared_ptr<Memory>(new MemoryRemote(pid)); | 
|  | } | 
|  |  | 
|  | std::shared_ptr<Memory> Memory::CreateProcessMemoryCached(pid_t pid) { | 
|  | if (pid == getpid()) { | 
|  | return std::shared_ptr<Memory>(new MemoryCache(new MemoryLocal())); | 
|  | } | 
|  | return std::shared_ptr<Memory>(new MemoryCache(new MemoryRemote(pid))); | 
|  | } | 
|  |  | 
|  | std::shared_ptr<Memory> Memory::CreateOfflineMemory(const uint8_t* data, uint64_t start, | 
|  | uint64_t end) { | 
|  | return std::shared_ptr<Memory>(new MemoryOfflineBuffer(data, start, end)); | 
|  | } | 
|  |  | 
|  | size_t MemoryBuffer::Read(uint64_t addr, void* dst, size_t size) { | 
|  | if (addr >= raw_.size()) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | size_t bytes_left = raw_.size() - static_cast<size_t>(addr); | 
|  | const unsigned char* actual_base = static_cast<const unsigned char*>(raw_.data()) + addr; | 
|  | size_t actual_len = std::min(bytes_left, size); | 
|  |  | 
|  | memcpy(dst, actual_base, actual_len); | 
|  | return actual_len; | 
|  | } | 
|  |  | 
|  | uint8_t* MemoryBuffer::GetPtr(size_t offset) { | 
|  | if (offset < raw_.size()) { | 
|  | return &raw_[offset]; | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | MemoryFileAtOffset::~MemoryFileAtOffset() { | 
|  | Clear(); | 
|  | } | 
|  |  | 
|  | void MemoryFileAtOffset::Clear() { | 
|  | if (data_) { | 
|  | munmap(&data_[-offset_], size_ + offset_); | 
|  | data_ = nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool MemoryFileAtOffset::Init(const std::string& file, uint64_t offset, uint64_t size) { | 
|  | // Clear out any previous data if it exists. | 
|  | Clear(); | 
|  |  | 
|  | android::base::unique_fd fd(TEMP_FAILURE_RETRY(open(file.c_str(), O_RDONLY | O_CLOEXEC))); | 
|  | if (fd == -1) { | 
|  | return false; | 
|  | } | 
|  | struct stat buf; | 
|  | if (fstat(fd, &buf) == -1) { | 
|  | return false; | 
|  | } | 
|  | if (offset >= static_cast<uint64_t>(buf.st_size)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | offset_ = offset & (getpagesize() - 1); | 
|  | uint64_t aligned_offset = offset & ~(getpagesize() - 1); | 
|  | if (aligned_offset > static_cast<uint64_t>(buf.st_size) || | 
|  | offset > static_cast<uint64_t>(buf.st_size)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | size_ = buf.st_size - aligned_offset; | 
|  | uint64_t max_size; | 
|  | if (!__builtin_add_overflow(size, offset_, &max_size) && max_size < size_) { | 
|  | // Truncate the mapped size. | 
|  | size_ = max_size; | 
|  | } | 
|  | void* map = mmap(nullptr, size_, PROT_READ, MAP_PRIVATE, fd, aligned_offset); | 
|  | if (map == MAP_FAILED) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | data_ = &reinterpret_cast<uint8_t*>(map)[offset_]; | 
|  | size_ -= offset_; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | size_t MemoryFileAtOffset::Read(uint64_t addr, void* dst, size_t size) { | 
|  | if (addr >= size_) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | size_t bytes_left = size_ - static_cast<size_t>(addr); | 
|  | const unsigned char* actual_base = static_cast<const unsigned char*>(data_) + addr; | 
|  | size_t actual_len = std::min(bytes_left, size); | 
|  |  | 
|  | memcpy(dst, actual_base, actual_len); | 
|  | return actual_len; | 
|  | } | 
|  |  | 
|  | size_t MemoryRemote::Read(uint64_t addr, void* dst, size_t size) { | 
|  | #if !defined(__LP64__) | 
|  | // Cannot read an address greater than 32 bits in a 32 bit context. | 
|  | if (addr > UINT32_MAX) { | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | size_t (*read_func)(pid_t, uint64_t, void*, size_t) = | 
|  | reinterpret_cast<size_t (*)(pid_t, uint64_t, void*, size_t)>(read_redirect_func_.load()); | 
|  | if (read_func != nullptr) { | 
|  | return read_func(pid_, addr, dst, size); | 
|  | } else { | 
|  | // Prefer process_vm_read, try it first. If it doesn't work, use the | 
|  | // ptrace function. If at least one of them returns at least some data, | 
|  | // set that as the permanent function to use. | 
|  | // This assumes that if process_vm_read works once, it will continue | 
|  | // to work. | 
|  | size_t bytes = ProcessVmRead(pid_, addr, dst, size); | 
|  | if (bytes > 0) { | 
|  | read_redirect_func_ = reinterpret_cast<uintptr_t>(ProcessVmRead); | 
|  | return bytes; | 
|  | } | 
|  | bytes = PtraceRead(pid_, addr, dst, size); | 
|  | if (bytes > 0) { | 
|  | read_redirect_func_ = reinterpret_cast<uintptr_t>(PtraceRead); | 
|  | } | 
|  | return bytes; | 
|  | } | 
|  | } | 
|  |  | 
|  | size_t MemoryLocal::Read(uint64_t addr, void* dst, size_t size) { | 
|  | return ProcessVmRead(getpid(), addr, dst, size); | 
|  | } | 
|  |  | 
|  | MemoryRange::MemoryRange(const std::shared_ptr<Memory>& memory, uint64_t begin, uint64_t length, | 
|  | uint64_t offset) | 
|  | : memory_(memory), begin_(begin), length_(length), offset_(offset) {} | 
|  |  | 
|  | size_t MemoryRange::Read(uint64_t addr, void* dst, size_t size) { | 
|  | if (addr < offset_) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | uint64_t read_offset = addr - offset_; | 
|  | if (read_offset >= length_) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | uint64_t read_length = std::min(static_cast<uint64_t>(size), length_ - read_offset); | 
|  | uint64_t read_addr; | 
|  | if (__builtin_add_overflow(read_offset, begin_, &read_addr)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return memory_->Read(read_addr, dst, read_length); | 
|  | } | 
|  |  | 
|  | void MemoryRanges::Insert(MemoryRange* memory) { | 
|  | maps_.emplace(memory->offset() + memory->length(), memory); | 
|  | } | 
|  |  | 
|  | size_t MemoryRanges::Read(uint64_t addr, void* dst, size_t size) { | 
|  | auto entry = maps_.upper_bound(addr); | 
|  | if (entry != maps_.end()) { | 
|  | return entry->second->Read(addr, dst, size); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | bool MemoryOffline::Init(const std::string& file, uint64_t offset) { | 
|  | auto memory_file = std::make_shared<MemoryFileAtOffset>(); | 
|  | if (!memory_file->Init(file, offset)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // The first uint64_t value is the start of memory. | 
|  | uint64_t start; | 
|  | if (!memory_file->ReadFully(0, &start, sizeof(start))) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | uint64_t size = memory_file->Size(); | 
|  | if (__builtin_sub_overflow(size, sizeof(start), &size)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | memory_ = std::make_unique<MemoryRange>(memory_file, sizeof(start), size, start); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | size_t MemoryOffline::Read(uint64_t addr, void* dst, size_t size) { | 
|  | if (!memory_) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return memory_->Read(addr, dst, size); | 
|  | } | 
|  |  | 
|  | MemoryOfflineBuffer::MemoryOfflineBuffer(const uint8_t* data, uint64_t start, uint64_t end) | 
|  | : data_(data), start_(start), end_(end) {} | 
|  |  | 
|  | void MemoryOfflineBuffer::Reset(const uint8_t* data, uint64_t start, uint64_t end) { | 
|  | data_ = data; | 
|  | start_ = start; | 
|  | end_ = end; | 
|  | } | 
|  |  | 
|  | size_t MemoryOfflineBuffer::Read(uint64_t addr, void* dst, size_t size) { | 
|  | if (addr < start_ || addr >= end_) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | size_t read_length = std::min(size, static_cast<size_t>(end_ - addr)); | 
|  | memcpy(dst, &data_[addr - start_], read_length); | 
|  | return read_length; | 
|  | } | 
|  |  | 
|  | MemoryOfflineParts::~MemoryOfflineParts() { | 
|  | for (auto memory : memories_) { | 
|  | delete memory; | 
|  | } | 
|  | } | 
|  |  | 
|  | size_t MemoryOfflineParts::Read(uint64_t addr, void* dst, size_t size) { | 
|  | if (memories_.empty()) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Do a read on each memory object, no support for reading across the | 
|  | // different memory objects. | 
|  | for (MemoryOffline* memory : memories_) { | 
|  | size_t bytes = memory->Read(addr, dst, size); | 
|  | if (bytes != 0) { | 
|  | return bytes; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | size_t MemoryCache::Read(uint64_t addr, void* dst, size_t size) { | 
|  | // Only bother caching and looking at the cache if this is a small read for now. | 
|  | if (size > 64) { | 
|  | return impl_->Read(addr, dst, size); | 
|  | } | 
|  |  | 
|  | uint64_t addr_page = addr >> kCacheBits; | 
|  | auto entry = cache_.find(addr_page); | 
|  | uint8_t* cache_dst; | 
|  | if (entry != cache_.end()) { | 
|  | cache_dst = entry->second; | 
|  | } else { | 
|  | cache_dst = cache_[addr_page]; | 
|  | if (!impl_->ReadFully(addr_page << kCacheBits, cache_dst, kCacheSize)) { | 
|  | // Erase the entry. | 
|  | cache_.erase(addr_page); | 
|  | return impl_->Read(addr, dst, size); | 
|  | } | 
|  | } | 
|  | size_t max_read = ((addr_page + 1) << kCacheBits) - addr; | 
|  | if (size <= max_read) { | 
|  | memcpy(dst, &cache_dst[addr & kCacheMask], size); | 
|  | return size; | 
|  | } | 
|  |  | 
|  | // The read crossed into another cached entry, since a read can only cross | 
|  | // into one extra cached page, duplicate the code rather than looping. | 
|  | memcpy(dst, &cache_dst[addr & kCacheMask], max_read); | 
|  | dst = &reinterpret_cast<uint8_t*>(dst)[max_read]; | 
|  | addr_page++; | 
|  |  | 
|  | entry = cache_.find(addr_page); | 
|  | if (entry != cache_.end()) { | 
|  | cache_dst = entry->second; | 
|  | } else { | 
|  | cache_dst = cache_[addr_page]; | 
|  | if (!impl_->ReadFully(addr_page << kCacheBits, cache_dst, kCacheSize)) { | 
|  | // Erase the entry. | 
|  | cache_.erase(addr_page); | 
|  | return impl_->Read(addr_page << kCacheBits, dst, size - max_read) + max_read; | 
|  | } | 
|  | } | 
|  | memcpy(dst, cache_dst, size - max_read); | 
|  | return size; | 
|  | } | 
|  |  | 
|  | }  // namespace unwindstack |