|  | /* | 
|  | * Copyright 2008, The Android Open Source Project | 
|  | * | 
|  | * Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | * you may not use this file except in compliance with the License. | 
|  | * You may obtain a copy of the License at | 
|  | * | 
|  | *     http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | * Unless required by applicable law or agreed to in writing, software | 
|  | * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | * See the License for the specific language governing permissions and | 
|  | * limitations under the License. | 
|  | */ | 
|  |  | 
|  | #define LOG_TAG "DEBUG" | 
|  |  | 
|  | #include "libdebuggerd/utility.h" | 
|  |  | 
|  | #include <errno.h> | 
|  | #include <signal.h> | 
|  | #include <string.h> | 
|  | #include <sys/capability.h> | 
|  | #include <sys/prctl.h> | 
|  | #include <sys/ptrace.h> | 
|  | #include <sys/uio.h> | 
|  | #include <sys/wait.h> | 
|  | #include <unistd.h> | 
|  |  | 
|  | #include <set> | 
|  | #include <string> | 
|  |  | 
|  | #include <android-base/properties.h> | 
|  | #include <android-base/stringprintf.h> | 
|  | #include <android-base/strings.h> | 
|  | #include <android-base/unique_fd.h> | 
|  | #include <async_safe/log.h> | 
|  | #include <bionic/reserved_signals.h> | 
|  | #include <debuggerd/handler.h> | 
|  | #include <log/log.h> | 
|  | #include <unwindstack/AndroidUnwinder.h> | 
|  | #include <unwindstack/Memory.h> | 
|  | #include <unwindstack/Unwinder.h> | 
|  |  | 
|  | using android::base::StringPrintf; | 
|  | using android::base::unique_fd; | 
|  |  | 
|  | bool is_allowed_in_logcat(enum logtype ltype) { | 
|  | return (ltype == HEADER) || (ltype == REGISTERS) || (ltype == BACKTRACE); | 
|  | } | 
|  |  | 
|  | static bool should_write_to_kmsg() { | 
|  | // Write to kmsg if tombstoned isn't up, and we're able to do so. | 
|  | if (!android::base::GetBoolProperty("ro.debuggable", false)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (android::base::GetProperty("init.svc.tombstoned", "") == "running") { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | __attribute__((__weak__, visibility("default"))) | 
|  | void _LOG(log_t* log, enum logtype ltype, const char* fmt, ...) { | 
|  | va_list ap; | 
|  | va_start(ap, fmt); | 
|  | _VLOG(log, ltype, fmt, ap); | 
|  | va_end(ap); | 
|  | } | 
|  |  | 
|  | __attribute__((__weak__, visibility("default"))) | 
|  | void _VLOG(log_t* log, enum logtype ltype, const char* fmt, va_list ap) { | 
|  | bool write_to_tombstone = (log->tfd != -1); | 
|  | bool write_to_logcat = is_allowed_in_logcat(ltype) | 
|  | && log->crashed_tid != -1 | 
|  | && log->current_tid != -1 | 
|  | && (log->crashed_tid == log->current_tid); | 
|  | static bool write_to_kmsg = should_write_to_kmsg(); | 
|  |  | 
|  | std::string msg; | 
|  | android::base::StringAppendV(&msg, fmt, ap); | 
|  |  | 
|  | if (msg.empty()) return; | 
|  |  | 
|  | if (write_to_tombstone) { | 
|  | TEMP_FAILURE_RETRY(write(log->tfd, msg.c_str(), msg.size())); | 
|  | } | 
|  |  | 
|  | if (write_to_logcat) { | 
|  | __android_log_buf_write(LOG_ID_CRASH, ANDROID_LOG_FATAL, LOG_TAG, msg.c_str()); | 
|  | if (log->amfd_data != nullptr) { | 
|  | *log->amfd_data += msg; | 
|  | } | 
|  |  | 
|  | if (write_to_kmsg) { | 
|  | unique_fd kmsg_fd(open("/dev/kmsg_debug", O_WRONLY | O_APPEND | O_CLOEXEC)); | 
|  | if (kmsg_fd.get() >= 0) { | 
|  | // Our output might contain newlines which would otherwise be handled by the android logger. | 
|  | // Split the lines up ourselves before sending to the kernel logger. | 
|  | if (msg.back() == '\n') { | 
|  | msg.back() = '\0'; | 
|  | } | 
|  |  | 
|  | std::vector<std::string> fragments = android::base::Split(msg, "\n"); | 
|  | for (const std::string& fragment : fragments) { | 
|  | static constexpr char prefix[] = "<3>DEBUG: "; | 
|  | struct iovec iov[3]; | 
|  | iov[0].iov_base = const_cast<char*>(prefix); | 
|  | iov[0].iov_len = strlen(prefix); | 
|  | iov[1].iov_base = const_cast<char*>(fragment.c_str()); | 
|  | iov[1].iov_len = fragment.length(); | 
|  | iov[2].iov_base = const_cast<char*>("\n"); | 
|  | iov[2].iov_len = 1; | 
|  | TEMP_FAILURE_RETRY(writev(kmsg_fd.get(), iov, 3)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #define MEMORY_BYTES_TO_DUMP 256 | 
|  | #define MEMORY_BYTES_PER_LINE 16 | 
|  | static_assert(MEMORY_BYTES_PER_LINE == kTagGranuleSize); | 
|  |  | 
|  | ssize_t dump_memory(void* out, size_t len, uint8_t* tags, size_t tags_len, uint64_t* addr, | 
|  | unwindstack::Memory* memory) { | 
|  | // Align the address to the number of bytes per line to avoid confusing memory tag output if | 
|  | // memory is tagged and we start from a misaligned address. Start 32 bytes before the address. | 
|  | *addr &= ~(MEMORY_BYTES_PER_LINE - 1); | 
|  | if (*addr >= 4128) { | 
|  | *addr -= 32; | 
|  | } | 
|  |  | 
|  | // We don't want the address tag to appear in the addresses in the memory dump. | 
|  | *addr = untag_address(*addr); | 
|  |  | 
|  | // Don't bother if the address would overflow, taking tag bits into account. Note that | 
|  | // untag_address truncates to 32 bits on 32-bit platforms as a side effect of returning a | 
|  | // uintptr_t, so this also checks for 32-bit overflow. | 
|  | if (untag_address(*addr + MEMORY_BYTES_TO_DUMP - 1) < *addr) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | memset(out, 0, len); | 
|  |  | 
|  | size_t bytes = memory->Read(*addr, reinterpret_cast<uint8_t*>(out), len); | 
|  | if (bytes % sizeof(uintptr_t) != 0) { | 
|  | // This should never happen, but just in case. | 
|  | ALOGE("Bytes read %zu, is not a multiple of %zu", bytes, sizeof(uintptr_t)); | 
|  | bytes &= ~(sizeof(uintptr_t) - 1); | 
|  | } | 
|  |  | 
|  | bool skip_2nd_read = false; | 
|  | if (bytes == 0) { | 
|  | // In this case, we might want to try another read at the beginning of | 
|  | // the next page only if it's within the amount of memory we would have | 
|  | // read. | 
|  | size_t page_size = sysconf(_SC_PAGE_SIZE); | 
|  | uint64_t next_page = (*addr + (page_size - 1)) & ~(page_size - 1); | 
|  | if (next_page == *addr || next_page >= *addr + len) { | 
|  | skip_2nd_read = true; | 
|  | } | 
|  | *addr = next_page; | 
|  | } | 
|  |  | 
|  | if (bytes < len && !skip_2nd_read) { | 
|  | // Try to do one more read. This could happen if a read crosses a map, | 
|  | // but the maps do not have any break between them. Or it could happen | 
|  | // if reading from an unreadable map, but the read would cross back | 
|  | // into a readable map. Only requires one extra read because a map has | 
|  | // to contain at least one page, and the total number of bytes to dump | 
|  | // is smaller than a page. | 
|  | size_t bytes2 = memory->Read(*addr + bytes, static_cast<uint8_t*>(out) + bytes, len - bytes); | 
|  | bytes += bytes2; | 
|  | if (bytes2 > 0 && bytes % sizeof(uintptr_t) != 0) { | 
|  | // This should never happen, but we'll try and continue any way. | 
|  | ALOGE("Bytes after second read %zu, is not a multiple of %zu", bytes, sizeof(uintptr_t)); | 
|  | bytes &= ~(sizeof(uintptr_t) - 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we were unable to read anything, it probably means that the register doesn't contain a | 
|  | // valid pointer. | 
|  | if (bytes == 0) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | for (uint64_t tag_granule = 0; tag_granule < bytes / kTagGranuleSize; ++tag_granule) { | 
|  | long tag = memory->ReadTag(*addr + kTagGranuleSize * tag_granule); | 
|  | if (tag_granule < tags_len) { | 
|  | tags[tag_granule] = tag >= 0 ? tag : 0; | 
|  | } else { | 
|  | ALOGE("Insufficient space for tags"); | 
|  | } | 
|  | } | 
|  |  | 
|  | return bytes; | 
|  | } | 
|  |  | 
|  | void dump_memory(log_t* log, unwindstack::Memory* memory, uint64_t addr, const std::string& label) { | 
|  | // Dump 256 bytes | 
|  | uintptr_t data[MEMORY_BYTES_TO_DUMP / sizeof(uintptr_t)]; | 
|  | uint8_t tags[MEMORY_BYTES_TO_DUMP / kTagGranuleSize]; | 
|  |  | 
|  | ssize_t bytes = dump_memory(data, sizeof(data), tags, sizeof(tags), &addr, memory); | 
|  | if (bytes == -1) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | _LOG(log, logtype::MEMORY, "\n%s:\n", label.c_str()); | 
|  |  | 
|  | // Dump the code around memory as: | 
|  | //  addr             contents                           ascii | 
|  | //  0000000000008d34 ef000000e8bd0090 e1b00000512fff1e  ............../Q | 
|  | //  0000000000008d44 ea00b1f9e92d0090 e3a070fcef000000  ......-..p...... | 
|  | // On 32-bit machines, there are still 16 bytes per line but addresses and | 
|  | // words are of course presented differently. | 
|  | uintptr_t* data_ptr = data; | 
|  | uint8_t* tags_ptr = tags; | 
|  | for (size_t line = 0; line < static_cast<size_t>(bytes) / MEMORY_BYTES_PER_LINE; line++) { | 
|  | uint64_t tagged_addr = addr | static_cast<uint64_t>(*tags_ptr++) << 56; | 
|  | std::string logline; | 
|  | android::base::StringAppendF(&logline, "    %" PRIPTR, tagged_addr); | 
|  |  | 
|  | addr += MEMORY_BYTES_PER_LINE; | 
|  | std::string ascii; | 
|  | for (size_t i = 0; i < MEMORY_BYTES_PER_LINE / sizeof(uintptr_t); i++) { | 
|  | android::base::StringAppendF(&logline, " %" PRIPTR, static_cast<uint64_t>(*data_ptr)); | 
|  |  | 
|  | // Fill out the ascii string from the data. | 
|  | uint8_t* ptr = reinterpret_cast<uint8_t*>(data_ptr); | 
|  | for (size_t val = 0; val < sizeof(uintptr_t); val++, ptr++) { | 
|  | if (*ptr >= 0x20 && *ptr < 0x7f) { | 
|  | ascii += *ptr; | 
|  | } else { | 
|  | ascii += '.'; | 
|  | } | 
|  | } | 
|  | data_ptr++; | 
|  | } | 
|  | _LOG(log, logtype::MEMORY, "%s  %s\n", logline.c_str(), ascii.c_str()); | 
|  | } | 
|  | } | 
|  |  | 
|  | void drop_capabilities() { | 
|  | __user_cap_header_struct capheader; | 
|  | memset(&capheader, 0, sizeof(capheader)); | 
|  | capheader.version = _LINUX_CAPABILITY_VERSION_3; | 
|  | capheader.pid = 0; | 
|  |  | 
|  | __user_cap_data_struct capdata[2]; | 
|  | memset(&capdata, 0, sizeof(capdata)); | 
|  |  | 
|  | if (capset(&capheader, &capdata[0]) == -1) { | 
|  | async_safe_fatal("failed to drop capabilities: %s", strerror(errno)); | 
|  | } | 
|  |  | 
|  | if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0) != 0) { | 
|  | async_safe_fatal("failed to set PR_SET_NO_NEW_PRIVS: %s", strerror(errno)); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool signal_has_si_addr(const siginfo_t* si) { | 
|  | // Manually sent signals won't have si_addr. | 
|  | if (si->si_code == SI_USER || si->si_code == SI_QUEUE || si->si_code == SI_TKILL) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | switch (si->si_signo) { | 
|  | case SIGBUS: | 
|  | case SIGFPE: | 
|  | case SIGILL: | 
|  | case SIGTRAP: | 
|  | return true; | 
|  | case SIGSEGV: | 
|  | return si->si_code != SEGV_MTEAERR; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool signal_has_sender(const siginfo_t* si, pid_t caller_pid) { | 
|  | return SI_FROMUSER(si) && (si->si_pid != 0) && (si->si_pid != caller_pid); | 
|  | } | 
|  |  | 
|  | void get_signal_sender(char* buf, size_t n, const siginfo_t* si) { | 
|  | snprintf(buf, n, " from pid %d, uid %d", si->si_pid, si->si_uid); | 
|  | } | 
|  |  | 
|  | const char* get_signame(const siginfo_t* si) { | 
|  | switch (si->si_signo) { | 
|  | case SIGABRT: return "SIGABRT"; | 
|  | case SIGBUS: return "SIGBUS"; | 
|  | case SIGFPE: return "SIGFPE"; | 
|  | case SIGILL: return "SIGILL"; | 
|  | case SIGSEGV: return "SIGSEGV"; | 
|  | case SIGSTKFLT: return "SIGSTKFLT"; | 
|  | case SIGSTOP: return "SIGSTOP"; | 
|  | case SIGSYS: return "SIGSYS"; | 
|  | case SIGTRAP: return "SIGTRAP"; | 
|  | case BIONIC_SIGNAL_DEBUGGER: | 
|  | return "<debuggerd signal>"; | 
|  | default: return "?"; | 
|  | } | 
|  | } | 
|  |  | 
|  | const char* get_sigcode(const siginfo_t* si) { | 
|  | // Try the signal-specific codes... | 
|  | switch (si->si_signo) { | 
|  | case SIGILL: | 
|  | switch (si->si_code) { | 
|  | case ILL_ILLOPC: return "ILL_ILLOPC"; | 
|  | case ILL_ILLOPN: return "ILL_ILLOPN"; | 
|  | case ILL_ILLADR: return "ILL_ILLADR"; | 
|  | case ILL_ILLTRP: return "ILL_ILLTRP"; | 
|  | case ILL_PRVOPC: return "ILL_PRVOPC"; | 
|  | case ILL_PRVREG: return "ILL_PRVREG"; | 
|  | case ILL_COPROC: return "ILL_COPROC"; | 
|  | case ILL_BADSTK: return "ILL_BADSTK"; | 
|  | case ILL_BADIADDR: | 
|  | return "ILL_BADIADDR"; | 
|  | case __ILL_BREAK: | 
|  | return "ILL_BREAK"; | 
|  | case __ILL_BNDMOD: | 
|  | return "ILL_BNDMOD"; | 
|  | } | 
|  | static_assert(NSIGILL == __ILL_BNDMOD, "missing ILL_* si_code"); | 
|  | break; | 
|  | case SIGBUS: | 
|  | switch (si->si_code) { | 
|  | case BUS_ADRALN: return "BUS_ADRALN"; | 
|  | case BUS_ADRERR: return "BUS_ADRERR"; | 
|  | case BUS_OBJERR: return "BUS_OBJERR"; | 
|  | case BUS_MCEERR_AR: return "BUS_MCEERR_AR"; | 
|  | case BUS_MCEERR_AO: return "BUS_MCEERR_AO"; | 
|  | } | 
|  | static_assert(NSIGBUS == BUS_MCEERR_AO, "missing BUS_* si_code"); | 
|  | break; | 
|  | case SIGFPE: | 
|  | switch (si->si_code) { | 
|  | case FPE_INTDIV: return "FPE_INTDIV"; | 
|  | case FPE_INTOVF: return "FPE_INTOVF"; | 
|  | case FPE_FLTDIV: return "FPE_FLTDIV"; | 
|  | case FPE_FLTOVF: return "FPE_FLTOVF"; | 
|  | case FPE_FLTUND: return "FPE_FLTUND"; | 
|  | case FPE_FLTRES: return "FPE_FLTRES"; | 
|  | case FPE_FLTINV: return "FPE_FLTINV"; | 
|  | case FPE_FLTSUB: return "FPE_FLTSUB"; | 
|  | case __FPE_DECOVF: | 
|  | return "FPE_DECOVF"; | 
|  | case __FPE_DECDIV: | 
|  | return "FPE_DECDIV"; | 
|  | case __FPE_DECERR: | 
|  | return "FPE_DECERR"; | 
|  | case __FPE_INVASC: | 
|  | return "FPE_INVASC"; | 
|  | case __FPE_INVDEC: | 
|  | return "FPE_INVDEC"; | 
|  | case FPE_FLTUNK: | 
|  | return "FPE_FLTUNK"; | 
|  | case FPE_CONDTRAP: | 
|  | return "FPE_CONDTRAP"; | 
|  | } | 
|  | static_assert(NSIGFPE == FPE_CONDTRAP, "missing FPE_* si_code"); | 
|  | break; | 
|  | case SIGSEGV: | 
|  | switch (si->si_code) { | 
|  | case SEGV_MAPERR: return "SEGV_MAPERR"; | 
|  | case SEGV_ACCERR: return "SEGV_ACCERR"; | 
|  | case SEGV_BNDERR: return "SEGV_BNDERR"; | 
|  | case SEGV_PKUERR: return "SEGV_PKUERR"; | 
|  | case SEGV_ACCADI: | 
|  | return "SEGV_ACCADI"; | 
|  | case SEGV_ADIDERR: | 
|  | return "SEGV_ADIDERR"; | 
|  | case SEGV_ADIPERR: | 
|  | return "SEGV_ADIPERR"; | 
|  | case SEGV_MTEAERR: | 
|  | return "SEGV_MTEAERR"; | 
|  | case SEGV_MTESERR: | 
|  | return "SEGV_MTESERR"; | 
|  | case SEGV_CPERR: | 
|  | return "SEGV_CPERR"; | 
|  | } | 
|  | static_assert(NSIGSEGV == SEGV_CPERR, "missing SEGV_* si_code"); | 
|  | break; | 
|  | case SIGSYS: | 
|  | switch (si->si_code) { | 
|  | case SYS_SECCOMP: return "SYS_SECCOMP"; | 
|  | case SYS_USER_DISPATCH: | 
|  | return "SYS_USER_DISPATCH"; | 
|  | } | 
|  | static_assert(NSIGSYS == SYS_USER_DISPATCH, "missing SYS_* si_code"); | 
|  | break; | 
|  | case SIGTRAP: | 
|  | switch (si->si_code) { | 
|  | case TRAP_BRKPT: return "TRAP_BRKPT"; | 
|  | case TRAP_TRACE: return "TRAP_TRACE"; | 
|  | case TRAP_BRANCH: return "TRAP_BRANCH"; | 
|  | case TRAP_HWBKPT: return "TRAP_HWBKPT"; | 
|  | case TRAP_UNK: | 
|  | return "TRAP_UNDIAGNOSED"; | 
|  | case TRAP_PERF: | 
|  | return "TRAP_PERF"; | 
|  | } | 
|  | if ((si->si_code & 0xff) == SIGTRAP) { | 
|  | switch ((si->si_code >> 8) & 0xff) { | 
|  | case PTRACE_EVENT_FORK: | 
|  | return "PTRACE_EVENT_FORK"; | 
|  | case PTRACE_EVENT_VFORK: | 
|  | return "PTRACE_EVENT_VFORK"; | 
|  | case PTRACE_EVENT_CLONE: | 
|  | return "PTRACE_EVENT_CLONE"; | 
|  | case PTRACE_EVENT_EXEC: | 
|  | return "PTRACE_EVENT_EXEC"; | 
|  | case PTRACE_EVENT_VFORK_DONE: | 
|  | return "PTRACE_EVENT_VFORK_DONE"; | 
|  | case PTRACE_EVENT_EXIT: | 
|  | return "PTRACE_EVENT_EXIT"; | 
|  | case PTRACE_EVENT_SECCOMP: | 
|  | return "PTRACE_EVENT_SECCOMP"; | 
|  | case PTRACE_EVENT_STOP: | 
|  | return "PTRACE_EVENT_STOP"; | 
|  | } | 
|  | } | 
|  | static_assert(NSIGTRAP == TRAP_PERF, "missing TRAP_* si_code"); | 
|  | break; | 
|  | } | 
|  | // Then the other codes... | 
|  | switch (si->si_code) { | 
|  | case SI_USER: return "SI_USER"; | 
|  | case SI_KERNEL: return "SI_KERNEL"; | 
|  | case SI_QUEUE: return "SI_QUEUE"; | 
|  | case SI_TIMER: return "SI_TIMER"; | 
|  | case SI_MESGQ: return "SI_MESGQ"; | 
|  | case SI_ASYNCIO: return "SI_ASYNCIO"; | 
|  | case SI_SIGIO: return "SI_SIGIO"; | 
|  | case SI_TKILL: return "SI_TKILL"; | 
|  | case SI_DETHREAD: return "SI_DETHREAD"; | 
|  | } | 
|  | // Then give up... | 
|  | return "?"; | 
|  | } | 
|  |  | 
|  | void log_backtrace(log_t* log, unwindstack::AndroidUnwinder* unwinder, | 
|  | unwindstack::AndroidUnwinderData& data, const char* prefix) { | 
|  | std::set<std::string> unreadable_elf_files; | 
|  | for (const auto& frame : data.frames) { | 
|  | if (frame.map_info != nullptr && frame.map_info->ElfFileNotReadable()) { | 
|  | unreadable_elf_files.emplace(frame.map_info->name()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Put the preamble ahead of the backtrace. | 
|  | if (!unreadable_elf_files.empty()) { | 
|  | _LOG(log, logtype::BACKTRACE, | 
|  | "%sNOTE: Function names and BuildId information is missing for some frames due\n", prefix); | 
|  | _LOG(log, logtype::BACKTRACE, | 
|  | "%sNOTE: to unreadable libraries. For unwinds of apps, only shared libraries\n", prefix); | 
|  | _LOG(log, logtype::BACKTRACE, "%sNOTE: found under the lib/ directory are readable.\n", prefix); | 
|  | #if defined(ROOT_POSSIBLE) | 
|  | _LOG(log, logtype::BACKTRACE, | 
|  | "%sNOTE: On this device, run setenforce 0 to make the libraries readable.\n", prefix); | 
|  | #endif | 
|  | _LOG(log, logtype::BACKTRACE, "%sNOTE: Unreadable libraries:\n", prefix); | 
|  | for (auto& name : unreadable_elf_files) { | 
|  | _LOG(log, logtype::BACKTRACE, "%sNOTE:   %s\n", prefix, name.c_str()); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (const auto& frame : data.frames) { | 
|  | _LOG(log, logtype::BACKTRACE, "%s%s\n", prefix, unwinder->FormatFrame(frame).c_str()); | 
|  | } | 
|  | } |