| /* | 
 |  * Copyright (C) 2011 The Android Open Source Project | 
 |  * | 
 |  * Licensed under the Apache License, Version 2.0 (the "License"); | 
 |  * you may not use this file except in compliance with the License. | 
 |  * You may obtain a copy of the License at | 
 |  * | 
 |  *      http://www.apache.org/licenses/LICENSE-2.0 | 
 |  * | 
 |  * Unless required by applicable law or agreed to in writing, software | 
 |  * distributed under the License is distributed on an "AS IS" BASIS, | 
 |  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 |  * See the License for the specific language governing permissions and | 
 |  * limitations under the License. | 
 |  */ | 
 |  | 
 | #define __STDC_LIMIT_MACROS | 
 |  | 
 | #include <assert.h> | 
 | #include <stdint.h> | 
 |  | 
 | #include <utils/LinearTransform.h> | 
 |  | 
 | namespace android { | 
 |  | 
 | template<class T> static inline T ABS(T x) { return (x < 0) ? -x : x; } | 
 |  | 
 | // Static math methods involving linear transformations | 
 | static bool scale_u64_to_u64( | 
 |         uint64_t val, | 
 |         uint32_t N, | 
 |         uint32_t D, | 
 |         uint64_t* res, | 
 |         bool round_up_not_down) { | 
 |     uint64_t tmp1, tmp2; | 
 |     uint32_t r; | 
 |  | 
 |     assert(res); | 
 |     assert(D); | 
 |  | 
 |     // Let U32(X) denote a uint32_t containing the upper 32 bits of a 64 bit | 
 |     // integer X. | 
 |     // Let L32(X) denote a uint32_t containing the lower 32 bits of a 64 bit | 
 |     // integer X. | 
 |     // Let X[A, B] with A <= B denote bits A through B of the integer X. | 
 |     // Let (A | B) denote the concatination of two 32 bit ints, A and B. | 
 |     // IOW X = (A | B) => U32(X) == A && L32(X) == B | 
 |     // | 
 |     // compute M = val * N (a 96 bit int) | 
 |     // --------------------------------- | 
 |     // tmp2 = U32(val) * N (a 64 bit int) | 
 |     // tmp1 = L32(val) * N (a 64 bit int) | 
 |     // which means | 
 |     // M = val * N = (tmp2 << 32) + tmp1 | 
 |     tmp2 = (val >> 32) * N; | 
 |     tmp1 = (val & UINT32_MAX) * N; | 
 |  | 
 |     // compute M[32, 95] | 
 |     // tmp2 = tmp2 + U32(tmp1) | 
 |     //      = (U32(val) * N) + U32(L32(val) * N) | 
 |     //      = M[32, 95] | 
 |     tmp2 += tmp1 >> 32; | 
 |  | 
 |     // if M[64, 95] >= D, then M/D has bits > 63 set and we have | 
 |     // an overflow. | 
 |     if ((tmp2 >> 32) >= D) { | 
 |         *res = UINT64_MAX; | 
 |         return false; | 
 |     } | 
 |  | 
 |     // Divide.  Going in we know | 
 |     // tmp2 = M[32, 95] | 
 |     // U32(tmp2) < D | 
 |     r = tmp2 % D; | 
 |     tmp2 /= D; | 
 |  | 
 |     // At this point | 
 |     // tmp1      = L32(val) * N | 
 |     // tmp2      = M[32, 95] / D | 
 |     //           = (M / D)[32, 95] | 
 |     // r         = M[32, 95] % D | 
 |     // U32(tmp2) = 0 | 
 |     // | 
 |     // compute tmp1 = (r | M[0, 31]) | 
 |     tmp1 = (tmp1 & UINT32_MAX) | ((uint64_t)r << 32); | 
 |  | 
 |     // Divide again.  Keep the remainder around in order to round properly. | 
 |     r = tmp1 % D; | 
 |     tmp1 /= D; | 
 |  | 
 |     // At this point | 
 |     // tmp2      = (M / D)[32, 95] | 
 |     // tmp1      = (M / D)[ 0, 31] | 
 |     // r         =  M % D | 
 |     // U32(tmp1) = 0 | 
 |     // U32(tmp2) = 0 | 
 |  | 
 |     // Pack the result and deal with the round-up case (As well as the | 
 |     // remote possiblility over overflow in such a case). | 
 |     *res = (tmp2 << 32) | tmp1; | 
 |     if (r && round_up_not_down) { | 
 |         ++(*res); | 
 |         if (!(*res)) { | 
 |             *res = UINT64_MAX; | 
 |             return false; | 
 |         } | 
 |     } | 
 |  | 
 |     return true; | 
 | } | 
 |  | 
 | static bool linear_transform_s64_to_s64( | 
 |         int64_t  val, | 
 |         int64_t  basis1, | 
 |         int32_t  N, | 
 |         uint32_t D, | 
 |         bool     invert_frac, | 
 |         int64_t  basis2, | 
 |         int64_t* out) { | 
 |     uint64_t scaled, res; | 
 |     uint64_t abs_val; | 
 |     bool is_neg; | 
 |  | 
 |     if (!out) | 
 |         return false; | 
 |  | 
 |     // Compute abs(val - basis_64). Keep track of whether or not this delta | 
 |     // will be negative after the scale opertaion. | 
 |     if (val < basis1) { | 
 |         is_neg = true; | 
 |         abs_val = basis1 - val; | 
 |     } else { | 
 |         is_neg = false; | 
 |         abs_val = val - basis1; | 
 |     } | 
 |  | 
 |     if (N < 0) | 
 |         is_neg = !is_neg; | 
 |  | 
 |     if (!scale_u64_to_u64(abs_val, | 
 |                           invert_frac ? D : ABS(N), | 
 |                           invert_frac ? ABS(N) : D, | 
 |                           &scaled, | 
 |                           is_neg)) | 
 |         return false; // overflow/undeflow | 
 |  | 
 |     // if scaled is >= 0x8000<etc>, then we are going to overflow or | 
 |     // underflow unless ABS(basis2) is large enough to pull us back into the | 
 |     // non-overflow/underflow region. | 
 |     if (scaled & INT64_MIN) { | 
 |         if (is_neg && (basis2 < 0)) | 
 |             return false; // certain underflow | 
 |  | 
 |         if (!is_neg && (basis2 >= 0)) | 
 |             return false; // certain overflow | 
 |  | 
 |         if (ABS(basis2) <= static_cast<int64_t>(scaled & INT64_MAX)) | 
 |             return false; // not enough | 
 |  | 
 |         // Looks like we are OK | 
 |         *out = (is_neg ? (-scaled) : scaled) + basis2; | 
 |     } else { | 
 |         // Scaled fits within signed bounds, so we just need to check for | 
 |         // over/underflow for two signed integers.  Basically, if both scaled | 
 |         // and basis2 have the same sign bit, and the result has a different | 
 |         // sign bit, then we have under/overflow.  An easy way to compute this | 
 |         // is | 
 |         // (scaled_signbit XNOR basis_signbit) && | 
 |         // (scaled_signbit XOR res_signbit) | 
 |         // == | 
 |         // (scaled_signbit XOR basis_signbit XOR 1) && | 
 |         // (scaled_signbit XOR res_signbit) | 
 |  | 
 |         if (is_neg) | 
 |             scaled = -scaled; | 
 |         res = scaled + basis2; | 
 |  | 
 |         if ((scaled ^ basis2 ^ INT64_MIN) & (scaled ^ res) & INT64_MIN) | 
 |             return false; | 
 |  | 
 |         *out = res; | 
 |     } | 
 |  | 
 |     return true; | 
 | } | 
 |  | 
 | bool LinearTransform::doForwardTransform(int64_t a_in, int64_t* b_out) const { | 
 |     if (0 == a_to_b_denom) | 
 |         return false; | 
 |  | 
 |     return linear_transform_s64_to_s64(a_in, | 
 |                                        a_zero, | 
 |                                        a_to_b_numer, | 
 |                                        a_to_b_denom, | 
 |                                        false, | 
 |                                        b_zero, | 
 |                                        b_out); | 
 | } | 
 |  | 
 | bool LinearTransform::doReverseTransform(int64_t b_in, int64_t* a_out) const { | 
 |     if (0 == a_to_b_numer) | 
 |         return false; | 
 |  | 
 |     return linear_transform_s64_to_s64(b_in, | 
 |                                        b_zero, | 
 |                                        a_to_b_numer, | 
 |                                        a_to_b_denom, | 
 |                                        true, | 
 |                                        a_zero, | 
 |                                        a_out); | 
 | } | 
 |  | 
 | template <class T> void LinearTransform::reduce(T* N, T* D) { | 
 |     T a, b; | 
 |     if (!N || !D || !(*D)) { | 
 |         assert(false); | 
 |         return; | 
 |     } | 
 |  | 
 |     a = *N; | 
 |     b = *D; | 
 |  | 
 |     if (a == 0) { | 
 |         *D = 1; | 
 |         return; | 
 |     } | 
 |  | 
 |     // This implements Euclid's method to find GCD. | 
 |     if (a < b) { | 
 |         T tmp = a; | 
 |         a = b; | 
 |         b = tmp; | 
 |     } | 
 |  | 
 |     while (1) { | 
 |         // a is now the greater of the two. | 
 |         const T remainder = a % b; | 
 |         if (remainder == 0) { | 
 |             *N /= b; | 
 |             *D /= b; | 
 |             return; | 
 |         } | 
 |         // by swapping remainder and b, we are guaranteeing that a is | 
 |         // still the greater of the two upon entrance to the loop. | 
 |         a = b; | 
 |         b = remainder; | 
 |     } | 
 | }; | 
 |  | 
 | template void LinearTransform::reduce<uint64_t>(uint64_t* N, uint64_t* D); | 
 | template void LinearTransform::reduce<uint32_t>(uint32_t* N, uint32_t* D); | 
 |  | 
 | void LinearTransform::reduce(int32_t* N, uint32_t* D) { | 
 |     if (N && D && *D) { | 
 |         if (*N < 0) { | 
 |             *N = -(*N); | 
 |             reduce(reinterpret_cast<uint32_t*>(N), D); | 
 |             *N = -(*N); | 
 |         } else { | 
 |             reduce(reinterpret_cast<uint32_t*>(N), D); | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | }  // namespace android |