|  | // | 
|  | // Copyright 2010 The Android Open Source Project | 
|  | // | 
|  |  | 
|  | #include <utils/Looper.h> | 
|  | #include <utils/Timers.h> | 
|  | #include <utils/StopWatch.h> | 
|  | #include <gtest/gtest.h> | 
|  | #include <unistd.h> | 
|  | #include <time.h> | 
|  |  | 
|  | #include <utils/threads.h> | 
|  |  | 
|  | // # of milliseconds to fudge stopwatch measurements | 
|  | #define TIMING_TOLERANCE_MS 25 | 
|  |  | 
|  | namespace android { | 
|  |  | 
|  | enum { | 
|  | MSG_TEST1 = 1, | 
|  | MSG_TEST2 = 2, | 
|  | MSG_TEST3 = 3, | 
|  | MSG_TEST4 = 4, | 
|  | }; | 
|  |  | 
|  | class Pipe { | 
|  | public: | 
|  | int sendFd; | 
|  | int receiveFd; | 
|  |  | 
|  | Pipe() { | 
|  | int fds[2]; | 
|  | ::pipe(fds); | 
|  |  | 
|  | receiveFd = fds[0]; | 
|  | sendFd = fds[1]; | 
|  | } | 
|  |  | 
|  | ~Pipe() { | 
|  | if (sendFd != -1) { | 
|  | ::close(sendFd); | 
|  | } | 
|  |  | 
|  | if (receiveFd != -1) { | 
|  | ::close(receiveFd); | 
|  | } | 
|  | } | 
|  |  | 
|  | status_t writeSignal() { | 
|  | ssize_t nWritten = ::write(sendFd, "*", 1); | 
|  | return nWritten == 1 ? 0 : -errno; | 
|  | } | 
|  |  | 
|  | status_t readSignal() { | 
|  | char buf[1]; | 
|  | ssize_t nRead = ::read(receiveFd, buf, 1); | 
|  | return nRead == 1 ? 0 : nRead == 0 ? -EPIPE : -errno; | 
|  | } | 
|  | }; | 
|  |  | 
|  | class DelayedTask : public Thread { | 
|  | int mDelayMillis; | 
|  |  | 
|  | public: | 
|  | explicit DelayedTask(int delayMillis) : mDelayMillis(delayMillis) { } | 
|  |  | 
|  | protected: | 
|  | virtual ~DelayedTask() { } | 
|  |  | 
|  | virtual void doTask() = 0; | 
|  |  | 
|  | virtual bool threadLoop() { | 
|  | usleep(mDelayMillis * 1000); | 
|  | doTask(); | 
|  | return false; | 
|  | } | 
|  | }; | 
|  |  | 
|  | class DelayedWake : public DelayedTask { | 
|  | sp<Looper> mLooper; | 
|  |  | 
|  | public: | 
|  | DelayedWake(int delayMillis, const sp<Looper> looper) : | 
|  | DelayedTask(delayMillis), mLooper(looper) { | 
|  | } | 
|  |  | 
|  | protected: | 
|  | virtual void doTask() { | 
|  | mLooper->wake(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | class DelayedWriteSignal : public DelayedTask { | 
|  | Pipe* mPipe; | 
|  |  | 
|  | public: | 
|  | DelayedWriteSignal(int delayMillis, Pipe* pipe) : | 
|  | DelayedTask(delayMillis), mPipe(pipe) { | 
|  | } | 
|  |  | 
|  | protected: | 
|  | virtual void doTask() { | 
|  | mPipe->writeSignal(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | class CallbackHandler { | 
|  | public: | 
|  | void setCallback(const sp<Looper>& looper, int fd, int events) { | 
|  | looper->addFd(fd, 0, events, staticHandler, this); | 
|  | } | 
|  |  | 
|  | protected: | 
|  | virtual ~CallbackHandler() { } | 
|  |  | 
|  | virtual int handler(int fd, int events) = 0; | 
|  |  | 
|  | private: | 
|  | static int staticHandler(int fd, int events, void* data) { | 
|  | return static_cast<CallbackHandler*>(data)->handler(fd, events); | 
|  | } | 
|  | }; | 
|  |  | 
|  | class StubCallbackHandler : public CallbackHandler { | 
|  | public: | 
|  | int nextResult; | 
|  | int callbackCount; | 
|  |  | 
|  | int fd; | 
|  | int events; | 
|  |  | 
|  | explicit StubCallbackHandler(int nextResult) : nextResult(nextResult), | 
|  | callbackCount(0), fd(-1), events(-1) { | 
|  | } | 
|  |  | 
|  | protected: | 
|  | virtual int handler(int fd, int events) { | 
|  | callbackCount += 1; | 
|  | this->fd = fd; | 
|  | this->events = events; | 
|  | return nextResult; | 
|  | } | 
|  | }; | 
|  |  | 
|  | class StubMessageHandler : public MessageHandler { | 
|  | public: | 
|  | Vector<Message> messages; | 
|  |  | 
|  | virtual void handleMessage(const Message& message) { | 
|  | messages.push(message); | 
|  | } | 
|  | }; | 
|  |  | 
|  | class LooperTest : public testing::Test { | 
|  | protected: | 
|  | sp<Looper> mLooper; | 
|  |  | 
|  | virtual void SetUp() { | 
|  | mLooper = new Looper(true); | 
|  | } | 
|  |  | 
|  | virtual void TearDown() { | 
|  | mLooper.clear(); | 
|  | } | 
|  | }; | 
|  |  | 
|  |  | 
|  | TEST_F(LooperTest, PollOnce_WhenNonZeroTimeoutAndNotAwoken_WaitsForTimeout) { | 
|  | StopWatch stopWatch("pollOnce"); | 
|  | int result = mLooper->pollOnce(100); | 
|  | int32_t elapsedMillis = ns2ms(stopWatch.elapsedTime()); | 
|  |  | 
|  | EXPECT_NEAR(100, elapsedMillis, TIMING_TOLERANCE_MS) | 
|  | << "elapsed time should approx. equal timeout"; | 
|  | EXPECT_EQ(Looper::POLL_TIMEOUT, result) | 
|  | << "pollOnce result should be LOOPER_POLL_TIMEOUT"; | 
|  | } | 
|  |  | 
|  | TEST_F(LooperTest, PollOnce_WhenNonZeroTimeoutAndAwokenBeforeWaiting_ImmediatelyReturns) { | 
|  | mLooper->wake(); | 
|  |  | 
|  | StopWatch stopWatch("pollOnce"); | 
|  | int result = mLooper->pollOnce(1000); | 
|  | int32_t elapsedMillis = ns2ms(stopWatch.elapsedTime()); | 
|  |  | 
|  | EXPECT_NEAR(0, elapsedMillis, TIMING_TOLERANCE_MS) | 
|  | << "elapsed time should approx. zero because wake() was called before waiting"; | 
|  | EXPECT_EQ(Looper::POLL_WAKE, result) | 
|  | << "pollOnce result should be Looper::POLL_CALLBACK because loop was awoken"; | 
|  | } | 
|  |  | 
|  | TEST_F(LooperTest, PollOnce_WhenNonZeroTimeoutAndAwokenWhileWaiting_PromptlyReturns) { | 
|  | sp<DelayedWake> delayedWake = new DelayedWake(100, mLooper); | 
|  | delayedWake->run("LooperTest"); | 
|  |  | 
|  | StopWatch stopWatch("pollOnce"); | 
|  | int result = mLooper->pollOnce(1000); | 
|  | int32_t elapsedMillis = ns2ms(stopWatch.elapsedTime()); | 
|  |  | 
|  | EXPECT_NEAR(100, elapsedMillis, TIMING_TOLERANCE_MS) | 
|  | << "elapsed time should approx. equal wake delay"; | 
|  | EXPECT_EQ(Looper::POLL_WAKE, result) | 
|  | << "pollOnce result should be Looper::POLL_CALLBACK because loop was awoken"; | 
|  | } | 
|  |  | 
|  | TEST_F(LooperTest, PollOnce_WhenZeroTimeoutAndNoRegisteredFDs_ImmediatelyReturns) { | 
|  | StopWatch stopWatch("pollOnce"); | 
|  | int result = mLooper->pollOnce(0); | 
|  | int32_t elapsedMillis = ns2ms(stopWatch.elapsedTime()); | 
|  |  | 
|  | EXPECT_NEAR(0, elapsedMillis, TIMING_TOLERANCE_MS) | 
|  | << "elapsed time should be approx. zero"; | 
|  | EXPECT_EQ(Looper::POLL_TIMEOUT, result) | 
|  | << "pollOnce result should be Looper::POLL_TIMEOUT"; | 
|  | } | 
|  |  | 
|  | TEST_F(LooperTest, PollOnce_WhenZeroTimeoutAndNoSignalledFDs_ImmediatelyReturns) { | 
|  | Pipe pipe; | 
|  | StubCallbackHandler handler(true); | 
|  |  | 
|  | handler.setCallback(mLooper, pipe.receiveFd, Looper::EVENT_INPUT); | 
|  |  | 
|  | StopWatch stopWatch("pollOnce"); | 
|  | int result = mLooper->pollOnce(0); | 
|  | int32_t elapsedMillis = ns2ms(stopWatch.elapsedTime()); | 
|  |  | 
|  | EXPECT_NEAR(0, elapsedMillis, TIMING_TOLERANCE_MS) | 
|  | << "elapsed time should be approx. zero"; | 
|  | EXPECT_EQ(Looper::POLL_TIMEOUT, result) | 
|  | << "pollOnce result should be Looper::POLL_TIMEOUT"; | 
|  | EXPECT_EQ(0, handler.callbackCount) | 
|  | << "callback should not have been invoked because FD was not signalled"; | 
|  | } | 
|  |  | 
|  | TEST_F(LooperTest, PollOnce_WhenZeroTimeoutAndSignalledFD_ImmediatelyInvokesCallbackAndReturns) { | 
|  | Pipe pipe; | 
|  | StubCallbackHandler handler(true); | 
|  |  | 
|  | ASSERT_EQ(OK, pipe.writeSignal()); | 
|  | handler.setCallback(mLooper, pipe.receiveFd, Looper::EVENT_INPUT); | 
|  |  | 
|  | StopWatch stopWatch("pollOnce"); | 
|  | int result = mLooper->pollOnce(0); | 
|  | int32_t elapsedMillis = ns2ms(stopWatch.elapsedTime()); | 
|  |  | 
|  | EXPECT_NEAR(0, elapsedMillis, TIMING_TOLERANCE_MS) | 
|  | << "elapsed time should be approx. zero"; | 
|  | EXPECT_EQ(Looper::POLL_CALLBACK, result) | 
|  | << "pollOnce result should be Looper::POLL_CALLBACK because FD was signalled"; | 
|  | EXPECT_EQ(1, handler.callbackCount) | 
|  | << "callback should be invoked exactly once"; | 
|  | EXPECT_EQ(pipe.receiveFd, handler.fd) | 
|  | << "callback should have received pipe fd as parameter"; | 
|  | EXPECT_EQ(Looper::EVENT_INPUT, handler.events) | 
|  | << "callback should have received Looper::EVENT_INPUT as events"; | 
|  | } | 
|  |  | 
|  | TEST_F(LooperTest, PollOnce_WhenNonZeroTimeoutAndNoSignalledFDs_WaitsForTimeoutAndReturns) { | 
|  | Pipe pipe; | 
|  | StubCallbackHandler handler(true); | 
|  |  | 
|  | handler.setCallback(mLooper, pipe.receiveFd, Looper::EVENT_INPUT); | 
|  |  | 
|  | StopWatch stopWatch("pollOnce"); | 
|  | int result = mLooper->pollOnce(100); | 
|  | int32_t elapsedMillis = ns2ms(stopWatch.elapsedTime()); | 
|  |  | 
|  | EXPECT_NEAR(100, elapsedMillis, TIMING_TOLERANCE_MS) | 
|  | << "elapsed time should approx. equal timeout"; | 
|  | EXPECT_EQ(Looper::POLL_TIMEOUT, result) | 
|  | << "pollOnce result should be Looper::POLL_TIMEOUT"; | 
|  | EXPECT_EQ(0, handler.callbackCount) | 
|  | << "callback should not have been invoked because FD was not signalled"; | 
|  | } | 
|  |  | 
|  | TEST_F(LooperTest, PollOnce_WhenNonZeroTimeoutAndSignalledFDBeforeWaiting_ImmediatelyInvokesCallbackAndReturns) { | 
|  | Pipe pipe; | 
|  | StubCallbackHandler handler(true); | 
|  |  | 
|  | pipe.writeSignal(); | 
|  | handler.setCallback(mLooper, pipe.receiveFd, Looper::EVENT_INPUT); | 
|  |  | 
|  | StopWatch stopWatch("pollOnce"); | 
|  | int result = mLooper->pollOnce(100); | 
|  | int32_t elapsedMillis = ns2ms(stopWatch.elapsedTime()); | 
|  |  | 
|  | ASSERT_EQ(OK, pipe.readSignal()) | 
|  | << "signal should actually have been written"; | 
|  | EXPECT_NEAR(0, elapsedMillis, TIMING_TOLERANCE_MS) | 
|  | << "elapsed time should be approx. zero"; | 
|  | EXPECT_EQ(Looper::POLL_CALLBACK, result) | 
|  | << "pollOnce result should be Looper::POLL_CALLBACK because FD was signalled"; | 
|  | EXPECT_EQ(1, handler.callbackCount) | 
|  | << "callback should be invoked exactly once"; | 
|  | EXPECT_EQ(pipe.receiveFd, handler.fd) | 
|  | << "callback should have received pipe fd as parameter"; | 
|  | EXPECT_EQ(Looper::EVENT_INPUT, handler.events) | 
|  | << "callback should have received Looper::EVENT_INPUT as events"; | 
|  | } | 
|  |  | 
|  | TEST_F(LooperTest, PollOnce_WhenNonZeroTimeoutAndSignalledFDWhileWaiting_PromptlyInvokesCallbackAndReturns) { | 
|  | Pipe pipe; | 
|  | StubCallbackHandler handler(true); | 
|  | sp<DelayedWriteSignal> delayedWriteSignal = new DelayedWriteSignal(100, & pipe); | 
|  |  | 
|  | handler.setCallback(mLooper, pipe.receiveFd, Looper::EVENT_INPUT); | 
|  | delayedWriteSignal->run("LooperTest"); | 
|  |  | 
|  | StopWatch stopWatch("pollOnce"); | 
|  | int result = mLooper->pollOnce(1000); | 
|  | int32_t elapsedMillis = ns2ms(stopWatch.elapsedTime()); | 
|  |  | 
|  | ASSERT_EQ(OK, pipe.readSignal()) | 
|  | << "signal should actually have been written"; | 
|  | EXPECT_NEAR(100, elapsedMillis, TIMING_TOLERANCE_MS) | 
|  | << "elapsed time should approx. equal signal delay"; | 
|  | EXPECT_EQ(Looper::POLL_CALLBACK, result) | 
|  | << "pollOnce result should be Looper::POLL_CALLBACK because FD was signalled"; | 
|  | EXPECT_EQ(1, handler.callbackCount) | 
|  | << "callback should be invoked exactly once"; | 
|  | EXPECT_EQ(pipe.receiveFd, handler.fd) | 
|  | << "callback should have received pipe fd as parameter"; | 
|  | EXPECT_EQ(Looper::EVENT_INPUT, handler.events) | 
|  | << "callback should have received Looper::EVENT_INPUT as events"; | 
|  | } | 
|  |  | 
|  | TEST_F(LooperTest, PollOnce_WhenCallbackAddedThenRemoved_CallbackShouldNotBeInvoked) { | 
|  | Pipe pipe; | 
|  | StubCallbackHandler handler(true); | 
|  |  | 
|  | handler.setCallback(mLooper, pipe.receiveFd, Looper::EVENT_INPUT); | 
|  | pipe.writeSignal(); // would cause FD to be considered signalled | 
|  | mLooper->removeFd(pipe.receiveFd); | 
|  |  | 
|  | StopWatch stopWatch("pollOnce"); | 
|  | int result = mLooper->pollOnce(100); | 
|  | int32_t elapsedMillis = ns2ms(stopWatch.elapsedTime()); | 
|  |  | 
|  | ASSERT_EQ(OK, pipe.readSignal()) | 
|  | << "signal should actually have been written"; | 
|  | EXPECT_NEAR(100, elapsedMillis, TIMING_TOLERANCE_MS) | 
|  | << "elapsed time should approx. equal timeout because FD was no longer registered"; | 
|  | EXPECT_EQ(Looper::POLL_TIMEOUT, result) | 
|  | << "pollOnce result should be Looper::POLL_TIMEOUT"; | 
|  | EXPECT_EQ(0, handler.callbackCount) | 
|  | << "callback should not be invoked"; | 
|  | } | 
|  |  | 
|  | TEST_F(LooperTest, PollOnce_WhenCallbackReturnsFalse_CallbackShouldNotBeInvokedAgainLater) { | 
|  | Pipe pipe; | 
|  | StubCallbackHandler handler(false); | 
|  |  | 
|  | handler.setCallback(mLooper, pipe.receiveFd, Looper::EVENT_INPUT); | 
|  |  | 
|  | // First loop: Callback is registered and FD is signalled. | 
|  | pipe.writeSignal(); | 
|  |  | 
|  | StopWatch stopWatch("pollOnce"); | 
|  | int result = mLooper->pollOnce(0); | 
|  | int32_t elapsedMillis = ns2ms(stopWatch.elapsedTime()); | 
|  |  | 
|  | ASSERT_EQ(OK, pipe.readSignal()) | 
|  | << "signal should actually have been written"; | 
|  | EXPECT_NEAR(0, elapsedMillis, TIMING_TOLERANCE_MS) | 
|  | << "elapsed time should approx. equal zero because FD was already signalled"; | 
|  | EXPECT_EQ(Looper::POLL_CALLBACK, result) | 
|  | << "pollOnce result should be Looper::POLL_CALLBACK because FD was signalled"; | 
|  | EXPECT_EQ(1, handler.callbackCount) | 
|  | << "callback should be invoked"; | 
|  |  | 
|  | // Second loop: Callback is no longer registered and FD is signalled. | 
|  | pipe.writeSignal(); | 
|  |  | 
|  | stopWatch.reset(); | 
|  | result = mLooper->pollOnce(0); | 
|  | elapsedMillis = ns2ms(stopWatch.elapsedTime()); | 
|  |  | 
|  | ASSERT_EQ(OK, pipe.readSignal()) | 
|  | << "signal should actually have been written"; | 
|  | EXPECT_NEAR(0, elapsedMillis, TIMING_TOLERANCE_MS) | 
|  | << "elapsed time should approx. equal zero because timeout was zero"; | 
|  | EXPECT_EQ(Looper::POLL_TIMEOUT, result) | 
|  | << "pollOnce result should be Looper::POLL_TIMEOUT"; | 
|  | EXPECT_EQ(1, handler.callbackCount) | 
|  | << "callback should not be invoked this time"; | 
|  | } | 
|  |  | 
|  | TEST_F(LooperTest, PollOnce_WhenNonCallbackFdIsSignalled_ReturnsIdent) { | 
|  | const int expectedIdent = 5; | 
|  | void* expectedData = this; | 
|  |  | 
|  | Pipe pipe; | 
|  |  | 
|  | pipe.writeSignal(); | 
|  | mLooper->addFd(pipe.receiveFd, expectedIdent, Looper::EVENT_INPUT, nullptr, expectedData); | 
|  |  | 
|  | StopWatch stopWatch("pollOnce"); | 
|  | int fd; | 
|  | int events; | 
|  | void* data; | 
|  | int result = mLooper->pollOnce(100, &fd, &events, &data); | 
|  | int32_t elapsedMillis = ns2ms(stopWatch.elapsedTime()); | 
|  |  | 
|  | ASSERT_EQ(OK, pipe.readSignal()) | 
|  | << "signal should actually have been written"; | 
|  | EXPECT_NEAR(0, elapsedMillis, TIMING_TOLERANCE_MS) | 
|  | << "elapsed time should be approx. zero"; | 
|  | EXPECT_EQ(expectedIdent, result) | 
|  | << "pollOnce result should be the ident of the FD that was signalled"; | 
|  | EXPECT_EQ(pipe.receiveFd, fd) | 
|  | << "pollOnce should have returned the received pipe fd"; | 
|  | EXPECT_EQ(Looper::EVENT_INPUT, events) | 
|  | << "pollOnce should have returned Looper::EVENT_INPUT as events"; | 
|  | EXPECT_EQ(expectedData, data) | 
|  | << "pollOnce should have returned the data"; | 
|  | } | 
|  |  | 
|  | TEST_F(LooperTest, AddFd_WhenCallbackAdded_ReturnsOne) { | 
|  | Pipe pipe; | 
|  | int result = mLooper->addFd(pipe.receiveFd, 0, Looper::EVENT_INPUT, nullptr, nullptr); | 
|  |  | 
|  | EXPECT_EQ(1, result) | 
|  | << "addFd should return 1 because FD was added"; | 
|  | } | 
|  |  | 
|  | TEST_F(LooperTest, AddFd_WhenIdentIsNegativeAndCallbackIsNull_ReturnsError) { | 
|  | Pipe pipe; | 
|  | int result = mLooper->addFd(pipe.receiveFd, -1, Looper::EVENT_INPUT, nullptr, nullptr); | 
|  |  | 
|  | EXPECT_EQ(-1, result) | 
|  | << "addFd should return -1 because arguments were invalid"; | 
|  | } | 
|  |  | 
|  | TEST_F(LooperTest, AddFd_WhenNoCallbackAndAllowNonCallbacksIsFalse_ReturnsError) { | 
|  | Pipe pipe; | 
|  | sp<Looper> looper = new Looper(false /*allowNonCallbacks*/); | 
|  | int result = looper->addFd(pipe.receiveFd, 0, 0, nullptr, nullptr); | 
|  |  | 
|  | EXPECT_EQ(-1, result) | 
|  | << "addFd should return -1 because arguments were invalid"; | 
|  | } | 
|  |  | 
|  | TEST_F(LooperTest, RemoveFd_WhenCallbackNotAdded_ReturnsZero) { | 
|  | int result = mLooper->removeFd(1); | 
|  |  | 
|  | EXPECT_EQ(0, result) | 
|  | << "removeFd should return 0 because FD not registered"; | 
|  | } | 
|  |  | 
|  | TEST_F(LooperTest, RemoveFd_WhenCallbackAddedThenRemovedTwice_ReturnsOnceFirstTimeAndReturnsZeroSecondTime) { | 
|  | Pipe pipe; | 
|  | StubCallbackHandler handler(false); | 
|  | handler.setCallback(mLooper, pipe.receiveFd, Looper::EVENT_INPUT); | 
|  |  | 
|  | // First time. | 
|  | int result = mLooper->removeFd(pipe.receiveFd); | 
|  |  | 
|  | EXPECT_EQ(1, result) | 
|  | << "removeFd should return 1 first time because FD was registered"; | 
|  |  | 
|  | // Second time. | 
|  | result = mLooper->removeFd(pipe.receiveFd); | 
|  |  | 
|  | EXPECT_EQ(0, result) | 
|  | << "removeFd should return 0 second time because FD was no longer registered"; | 
|  | } | 
|  |  | 
|  | TEST_F(LooperTest, PollOnce_WhenCallbackAddedTwice_OnlySecondCallbackShouldBeInvoked) { | 
|  | Pipe pipe; | 
|  | StubCallbackHandler handler1(true); | 
|  | StubCallbackHandler handler2(true); | 
|  |  | 
|  | handler1.setCallback(mLooper, pipe.receiveFd, Looper::EVENT_INPUT); | 
|  | handler2.setCallback(mLooper, pipe.receiveFd, Looper::EVENT_INPUT); // replace it | 
|  | pipe.writeSignal(); // would cause FD to be considered signalled | 
|  |  | 
|  | StopWatch stopWatch("pollOnce"); | 
|  | int result = mLooper->pollOnce(100); | 
|  | int32_t elapsedMillis = ns2ms(stopWatch.elapsedTime()); | 
|  |  | 
|  | ASSERT_EQ(OK, pipe.readSignal()) | 
|  | << "signal should actually have been written"; | 
|  | EXPECT_NEAR(0, elapsedMillis, TIMING_TOLERANCE_MS) | 
|  | << "elapsed time should approx. zero because FD was already signalled"; | 
|  | EXPECT_EQ(Looper::POLL_CALLBACK, result) | 
|  | << "pollOnce result should be Looper::POLL_CALLBACK because FD was signalled"; | 
|  | EXPECT_EQ(0, handler1.callbackCount) | 
|  | << "original handler callback should not be invoked because it was replaced"; | 
|  | EXPECT_EQ(1, handler2.callbackCount) | 
|  | << "replacement handler callback should be invoked"; | 
|  | } | 
|  |  | 
|  | TEST_F(LooperTest, SendMessage_WhenOneMessageIsEnqueue_ShouldInvokeHandlerDuringNextPoll) { | 
|  | sp<StubMessageHandler> handler = new StubMessageHandler(); | 
|  | mLooper->sendMessage(handler, Message(MSG_TEST1)); | 
|  |  | 
|  | StopWatch stopWatch("pollOnce"); | 
|  | int result = mLooper->pollOnce(100); | 
|  | int32_t elapsedMillis = ns2ms(stopWatch.elapsedTime()); | 
|  |  | 
|  | EXPECT_NEAR(0, elapsedMillis, TIMING_TOLERANCE_MS) | 
|  | << "elapsed time should approx. zero because message was already sent"; | 
|  | EXPECT_EQ(Looper::POLL_CALLBACK, result) | 
|  | << "pollOnce result should be Looper::POLL_CALLBACK because message was sent"; | 
|  | EXPECT_EQ(size_t(1), handler->messages.size()) | 
|  | << "handled message"; | 
|  | EXPECT_EQ(MSG_TEST1, handler->messages[0].what) | 
|  | << "handled message"; | 
|  | } | 
|  |  | 
|  | TEST_F(LooperTest, SendMessage_WhenMultipleMessagesAreEnqueued_ShouldInvokeHandlersInOrderDuringNextPoll) { | 
|  | sp<StubMessageHandler> handler1 = new StubMessageHandler(); | 
|  | sp<StubMessageHandler> handler2 = new StubMessageHandler(); | 
|  | mLooper->sendMessage(handler1, Message(MSG_TEST1)); | 
|  | mLooper->sendMessage(handler2, Message(MSG_TEST2)); | 
|  | mLooper->sendMessage(handler1, Message(MSG_TEST3)); | 
|  | mLooper->sendMessage(handler1, Message(MSG_TEST4)); | 
|  |  | 
|  | StopWatch stopWatch("pollOnce"); | 
|  | int result = mLooper->pollOnce(1000); | 
|  | int32_t elapsedMillis = ns2ms(stopWatch.elapsedTime()); | 
|  |  | 
|  | EXPECT_NEAR(0, elapsedMillis, TIMING_TOLERANCE_MS) | 
|  | << "elapsed time should approx. zero because message was already sent"; | 
|  | EXPECT_EQ(Looper::POLL_CALLBACK, result) | 
|  | << "pollOnce result should be Looper::POLL_CALLBACK because message was sent"; | 
|  | EXPECT_EQ(size_t(3), handler1->messages.size()) | 
|  | << "handled message"; | 
|  | EXPECT_EQ(MSG_TEST1, handler1->messages[0].what) | 
|  | << "handled message"; | 
|  | EXPECT_EQ(MSG_TEST3, handler1->messages[1].what) | 
|  | << "handled message"; | 
|  | EXPECT_EQ(MSG_TEST4, handler1->messages[2].what) | 
|  | << "handled message"; | 
|  | EXPECT_EQ(size_t(1), handler2->messages.size()) | 
|  | << "handled message"; | 
|  | EXPECT_EQ(MSG_TEST2, handler2->messages[0].what) | 
|  | << "handled message"; | 
|  | } | 
|  |  | 
|  | TEST_F(LooperTest, SendMessageDelayed_WhenSentToTheFuture_ShouldInvokeHandlerAfterDelayTime) { | 
|  | sp<StubMessageHandler> handler = new StubMessageHandler(); | 
|  | mLooper->sendMessageDelayed(ms2ns(100), handler, Message(MSG_TEST1)); | 
|  |  | 
|  | StopWatch stopWatch("pollOnce"); | 
|  | int result = mLooper->pollOnce(1000); | 
|  | int32_t elapsedMillis = ns2ms(stopWatch.elapsedTime()); | 
|  |  | 
|  | EXPECT_NEAR(0, elapsedMillis, TIMING_TOLERANCE_MS) | 
|  | << "first poll should end quickly because next message timeout was computed"; | 
|  | EXPECT_EQ(Looper::POLL_WAKE, result) | 
|  | << "pollOnce result should be Looper::POLL_WAKE due to wakeup"; | 
|  | EXPECT_EQ(size_t(0), handler->messages.size()) | 
|  | << "no message handled yet"; | 
|  |  | 
|  | result = mLooper->pollOnce(1000); | 
|  | elapsedMillis = ns2ms(stopWatch.elapsedTime()); | 
|  |  | 
|  | EXPECT_EQ(size_t(1), handler->messages.size()) | 
|  | << "handled message"; | 
|  | EXPECT_EQ(MSG_TEST1, handler->messages[0].what) | 
|  | << "handled message"; | 
|  | EXPECT_NEAR(100, elapsedMillis, TIMING_TOLERANCE_MS) | 
|  | << "second poll should end around the time of the delayed message dispatch"; | 
|  | EXPECT_EQ(Looper::POLL_CALLBACK, result) | 
|  | << "pollOnce result should be Looper::POLL_CALLBACK because message was sent"; | 
|  |  | 
|  | result = mLooper->pollOnce(100); | 
|  | elapsedMillis = ns2ms(stopWatch.elapsedTime()); | 
|  |  | 
|  | EXPECT_NEAR(100 + 100, elapsedMillis, TIMING_TOLERANCE_MS) | 
|  | << "third poll should timeout"; | 
|  | EXPECT_EQ(Looper::POLL_TIMEOUT, result) | 
|  | << "pollOnce result should be Looper::POLL_TIMEOUT because there were no messages left"; | 
|  | } | 
|  |  | 
|  | TEST_F(LooperTest, SendMessageDelayed_WhenSentToThePast_ShouldInvokeHandlerDuringNextPoll) { | 
|  | sp<StubMessageHandler> handler = new StubMessageHandler(); | 
|  | mLooper->sendMessageDelayed(ms2ns(-1000), handler, Message(MSG_TEST1)); | 
|  |  | 
|  | StopWatch stopWatch("pollOnce"); | 
|  | int result = mLooper->pollOnce(100); | 
|  | int32_t elapsedMillis = ns2ms(stopWatch.elapsedTime()); | 
|  |  | 
|  | EXPECT_NEAR(0, elapsedMillis, TIMING_TOLERANCE_MS) | 
|  | << "elapsed time should approx. zero because message was already sent"; | 
|  | EXPECT_EQ(Looper::POLL_CALLBACK, result) | 
|  | << "pollOnce result should be Looper::POLL_CALLBACK because message was sent"; | 
|  | EXPECT_EQ(size_t(1), handler->messages.size()) | 
|  | << "handled message"; | 
|  | EXPECT_EQ(MSG_TEST1, handler->messages[0].what) | 
|  | << "handled message"; | 
|  | } | 
|  |  | 
|  | TEST_F(LooperTest, SendMessageDelayed_WhenSentToThePresent_ShouldInvokeHandlerDuringNextPoll) { | 
|  | sp<StubMessageHandler> handler = new StubMessageHandler(); | 
|  | mLooper->sendMessageDelayed(0, handler, Message(MSG_TEST1)); | 
|  |  | 
|  | StopWatch stopWatch("pollOnce"); | 
|  | int result = mLooper->pollOnce(100); | 
|  | int32_t elapsedMillis = ns2ms(stopWatch.elapsedTime()); | 
|  |  | 
|  | EXPECT_NEAR(0, elapsedMillis, TIMING_TOLERANCE_MS) | 
|  | << "elapsed time should approx. zero because message was already sent"; | 
|  | EXPECT_EQ(Looper::POLL_CALLBACK, result) | 
|  | << "pollOnce result should be Looper::POLL_CALLBACK because message was sent"; | 
|  | EXPECT_EQ(size_t(1), handler->messages.size()) | 
|  | << "handled message"; | 
|  | EXPECT_EQ(MSG_TEST1, handler->messages[0].what) | 
|  | << "handled message"; | 
|  | } | 
|  |  | 
|  | TEST_F(LooperTest, SendMessageAtTime_WhenSentToTheFuture_ShouldInvokeHandlerAfterDelayTime) { | 
|  | nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC); | 
|  | sp<StubMessageHandler> handler = new StubMessageHandler(); | 
|  | mLooper->sendMessageAtTime(now + ms2ns(100), handler, Message(MSG_TEST1)); | 
|  |  | 
|  | StopWatch stopWatch("pollOnce"); | 
|  | int result = mLooper->pollOnce(1000); | 
|  | int32_t elapsedMillis = ns2ms(stopWatch.elapsedTime()); | 
|  |  | 
|  | EXPECT_NEAR(0, elapsedMillis, TIMING_TOLERANCE_MS) | 
|  | << "first poll should end quickly because next message timeout was computed"; | 
|  | EXPECT_EQ(Looper::POLL_WAKE, result) | 
|  | << "pollOnce result should be Looper::POLL_WAKE due to wakeup"; | 
|  | EXPECT_EQ(size_t(0), handler->messages.size()) | 
|  | << "no message handled yet"; | 
|  |  | 
|  | result = mLooper->pollOnce(1000); | 
|  | elapsedMillis = ns2ms(stopWatch.elapsedTime()); | 
|  |  | 
|  | EXPECT_EQ(size_t(1), handler->messages.size()) | 
|  | << "handled message"; | 
|  | EXPECT_EQ(MSG_TEST1, handler->messages[0].what) | 
|  | << "handled message"; | 
|  | EXPECT_NEAR(100, elapsedMillis, TIMING_TOLERANCE_MS) | 
|  | << "second poll should end around the time of the delayed message dispatch"; | 
|  | EXPECT_EQ(Looper::POLL_CALLBACK, result) | 
|  | << "pollOnce result should be Looper::POLL_CALLBACK because message was sent"; | 
|  |  | 
|  | result = mLooper->pollOnce(100); | 
|  | elapsedMillis = ns2ms(stopWatch.elapsedTime()); | 
|  |  | 
|  | EXPECT_NEAR(100 + 100, elapsedMillis, TIMING_TOLERANCE_MS) | 
|  | << "third poll should timeout"; | 
|  | EXPECT_EQ(Looper::POLL_TIMEOUT, result) | 
|  | << "pollOnce result should be Looper::POLL_TIMEOUT because there were no messages left"; | 
|  | } | 
|  |  | 
|  | TEST_F(LooperTest, SendMessageAtTime_WhenSentToThePast_ShouldInvokeHandlerDuringNextPoll) { | 
|  | nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC); | 
|  | sp<StubMessageHandler> handler = new StubMessageHandler(); | 
|  | mLooper->sendMessageAtTime(now - ms2ns(1000), handler, Message(MSG_TEST1)); | 
|  |  | 
|  | StopWatch stopWatch("pollOnce"); | 
|  | int result = mLooper->pollOnce(100); | 
|  | int32_t elapsedMillis = ns2ms(stopWatch.elapsedTime()); | 
|  |  | 
|  | EXPECT_NEAR(0, elapsedMillis, TIMING_TOLERANCE_MS) | 
|  | << "elapsed time should approx. zero because message was already sent"; | 
|  | EXPECT_EQ(Looper::POLL_CALLBACK, result) | 
|  | << "pollOnce result should be Looper::POLL_CALLBACK because message was sent"; | 
|  | EXPECT_EQ(size_t(1), handler->messages.size()) | 
|  | << "handled message"; | 
|  | EXPECT_EQ(MSG_TEST1, handler->messages[0].what) | 
|  | << "handled message"; | 
|  | } | 
|  |  | 
|  | TEST_F(LooperTest, SendMessageAtTime_WhenSentToThePresent_ShouldInvokeHandlerDuringNextPoll) { | 
|  | nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC); | 
|  | sp<StubMessageHandler> handler = new StubMessageHandler(); | 
|  | mLooper->sendMessageAtTime(now, handler, Message(MSG_TEST1)); | 
|  |  | 
|  | StopWatch stopWatch("pollOnce"); | 
|  | int result = mLooper->pollOnce(100); | 
|  | int32_t elapsedMillis = ns2ms(stopWatch.elapsedTime()); | 
|  |  | 
|  | EXPECT_NEAR(0, elapsedMillis, TIMING_TOLERANCE_MS) | 
|  | << "elapsed time should approx. zero because message was already sent"; | 
|  | EXPECT_EQ(Looper::POLL_CALLBACK, result) | 
|  | << "pollOnce result should be Looper::POLL_CALLBACK because message was sent"; | 
|  | EXPECT_EQ(size_t(1), handler->messages.size()) | 
|  | << "handled message"; | 
|  | EXPECT_EQ(MSG_TEST1, handler->messages[0].what) | 
|  | << "handled message"; | 
|  | } | 
|  |  | 
|  | TEST_F(LooperTest, RemoveMessage_WhenRemovingAllMessagesForHandler_ShouldRemoveThoseMessage) { | 
|  | sp<StubMessageHandler> handler = new StubMessageHandler(); | 
|  | mLooper->sendMessage(handler, Message(MSG_TEST1)); | 
|  | mLooper->sendMessage(handler, Message(MSG_TEST2)); | 
|  | mLooper->sendMessage(handler, Message(MSG_TEST3)); | 
|  | mLooper->removeMessages(handler); | 
|  |  | 
|  | StopWatch stopWatch("pollOnce"); | 
|  | int result = mLooper->pollOnce(0); | 
|  | int32_t elapsedMillis = ns2ms(stopWatch.elapsedTime()); | 
|  |  | 
|  | EXPECT_NEAR(0, elapsedMillis, TIMING_TOLERANCE_MS) | 
|  | << "elapsed time should approx. zero because message was sent so looper was awoken"; | 
|  | EXPECT_EQ(Looper::POLL_WAKE, result) | 
|  | << "pollOnce result should be Looper::POLL_WAKE because looper was awoken"; | 
|  | EXPECT_EQ(size_t(0), handler->messages.size()) | 
|  | << "no messages to handle"; | 
|  |  | 
|  | result = mLooper->pollOnce(0); | 
|  |  | 
|  | EXPECT_EQ(Looper::POLL_TIMEOUT, result) | 
|  | << "pollOnce result should be Looper::POLL_TIMEOUT because there was nothing to do"; | 
|  | EXPECT_EQ(size_t(0), handler->messages.size()) | 
|  | << "no messages to handle"; | 
|  | } | 
|  |  | 
|  | TEST_F(LooperTest, RemoveMessage_WhenRemovingSomeMessagesForHandler_ShouldRemoveThoseMessage) { | 
|  | sp<StubMessageHandler> handler = new StubMessageHandler(); | 
|  | mLooper->sendMessage(handler, Message(MSG_TEST1)); | 
|  | mLooper->sendMessage(handler, Message(MSG_TEST2)); | 
|  | mLooper->sendMessage(handler, Message(MSG_TEST3)); | 
|  | mLooper->sendMessage(handler, Message(MSG_TEST4)); | 
|  | mLooper->removeMessages(handler, MSG_TEST3); | 
|  | mLooper->removeMessages(handler, MSG_TEST1); | 
|  |  | 
|  | StopWatch stopWatch("pollOnce"); | 
|  | int result = mLooper->pollOnce(0); | 
|  | int32_t elapsedMillis = ns2ms(stopWatch.elapsedTime()); | 
|  |  | 
|  | EXPECT_NEAR(0, elapsedMillis, TIMING_TOLERANCE_MS) | 
|  | << "elapsed time should approx. zero because message was sent so looper was awoken"; | 
|  | EXPECT_EQ(Looper::POLL_CALLBACK, result) | 
|  | << "pollOnce result should be Looper::POLL_CALLBACK because two messages were sent"; | 
|  | EXPECT_EQ(size_t(2), handler->messages.size()) | 
|  | << "no messages to handle"; | 
|  | EXPECT_EQ(MSG_TEST2, handler->messages[0].what) | 
|  | << "handled message"; | 
|  | EXPECT_EQ(MSG_TEST4, handler->messages[1].what) | 
|  | << "handled message"; | 
|  |  | 
|  | result = mLooper->pollOnce(0); | 
|  |  | 
|  | EXPECT_EQ(Looper::POLL_TIMEOUT, result) | 
|  | << "pollOnce result should be Looper::POLL_TIMEOUT because there was nothing to do"; | 
|  | EXPECT_EQ(size_t(2), handler->messages.size()) | 
|  | << "no more messages to handle"; | 
|  | } | 
|  |  | 
|  | } // namespace android |