|  | /* | 
|  | * Copyright (C) 2008 The Android Open Source Project | 
|  | * | 
|  | * Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | * you may not use this file except in compliance with the License. | 
|  | * You may obtain a copy of the License at | 
|  | * | 
|  | *      http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | * Unless required by applicable law or agreed to in writing, software | 
|  | * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | * See the License for the specific language governing permissions and | 
|  | * limitations under the License. | 
|  | */ | 
|  |  | 
|  | #include <errno.h> | 
|  | #include <fcntl.h> | 
|  | #include <libgen.h> | 
|  | #include <poll.h> | 
|  | #include <pthread.h> | 
|  | #include <stdbool.h> | 
|  | #include <stdio.h> | 
|  | #include <stdlib.h> | 
|  | #include <string.h> | 
|  | #include <sys/socket.h> | 
|  | #include <sys/types.h> | 
|  | #include <sys/wait.h> | 
|  | #include <unistd.h> | 
|  |  | 
|  | #include <cutils/klog.h> | 
|  | #include <log/log.h> | 
|  | #include <logwrap/logwrap.h> | 
|  | #include <private/android_filesystem_config.h> | 
|  |  | 
|  | #define ARRAY_SIZE(x)   (sizeof(x) / sizeof(*(x))) | 
|  | #define MIN(a,b) (((a)<(b))?(a):(b)) | 
|  |  | 
|  | static pthread_mutex_t fd_mutex = PTHREAD_MUTEX_INITIALIZER; | 
|  |  | 
|  | #define ERROR(fmt, args...)                                                   \ | 
|  | do {                                                                          \ | 
|  | fprintf(stderr, fmt, ## args);                                            \ | 
|  | ALOG(LOG_ERROR, "logwrapper", fmt, ## args);                              \ | 
|  | } while(0) | 
|  |  | 
|  | #define FATAL_CHILD(fmt, args...)                                             \ | 
|  | do {                                                                          \ | 
|  | ERROR(fmt, ## args);                                                      \ | 
|  | _exit(-1);                                                                \ | 
|  | } while(0) | 
|  |  | 
|  | #define MAX_KLOG_TAG 16 | 
|  |  | 
|  | /* This is a simple buffer that holds up to the first beginning_buf->buf_size | 
|  | * bytes of output from a command. | 
|  | */ | 
|  | #define BEGINNING_BUF_SIZE 0x1000 | 
|  | struct beginning_buf { | 
|  | char *buf; | 
|  | size_t alloc_len; | 
|  | /* buf_size is the usable space, which is one less than the allocated size */ | 
|  | size_t buf_size; | 
|  | size_t used_len; | 
|  | }; | 
|  |  | 
|  | /* This is a circular buf that holds up to the last ending_buf->buf_size bytes | 
|  | * of output from a command after the first beginning_buf->buf_size bytes | 
|  | * (which are held in beginning_buf above). | 
|  | */ | 
|  | #define ENDING_BUF_SIZE 0x1000 | 
|  | struct ending_buf { | 
|  | char *buf; | 
|  | ssize_t alloc_len; | 
|  | /* buf_size is the usable space, which is one less than the allocated size */ | 
|  | ssize_t buf_size; | 
|  | ssize_t used_len; | 
|  | /* read and write offsets into the circular buffer */ | 
|  | int read; | 
|  | int write; | 
|  | }; | 
|  |  | 
|  | /* A structure to hold all the abbreviated buf data */ | 
|  | struct abbr_buf { | 
|  | struct beginning_buf b_buf; | 
|  | struct ending_buf e_buf; | 
|  | int beginning_buf_full; | 
|  | }; | 
|  |  | 
|  | /* Collect all the various bits of info needed for logging in one place. */ | 
|  | struct log_info { | 
|  | int log_target; | 
|  | char klog_fmt[MAX_KLOG_TAG * 2]; | 
|  | char *btag; | 
|  | bool abbreviated; | 
|  | FILE *fp; | 
|  | struct abbr_buf a_buf; | 
|  | }; | 
|  |  | 
|  | /* Forware declaration */ | 
|  | static void add_line_to_abbr_buf(struct abbr_buf *a_buf, char *linebuf, int linelen); | 
|  |  | 
|  | /* Return 0 on success, and 1 when full */ | 
|  | static int add_line_to_linear_buf(struct beginning_buf *b_buf, | 
|  | char *line, ssize_t line_len) | 
|  | { | 
|  | int full = 0; | 
|  |  | 
|  | if ((line_len + b_buf->used_len) > b_buf->buf_size) { | 
|  | full = 1; | 
|  | } else { | 
|  | /* Add to the end of the buf */ | 
|  | memcpy(b_buf->buf + b_buf->used_len, line, line_len); | 
|  | b_buf->used_len += line_len; | 
|  | } | 
|  |  | 
|  | return full; | 
|  | } | 
|  |  | 
|  | static void add_line_to_circular_buf(struct ending_buf *e_buf, | 
|  | char *line, ssize_t line_len) | 
|  | { | 
|  | ssize_t free_len; | 
|  | ssize_t needed_space; | 
|  | int cnt; | 
|  |  | 
|  | if (e_buf->buf == NULL) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (line_len > e_buf->buf_size) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | free_len = e_buf->buf_size - e_buf->used_len; | 
|  |  | 
|  | if (line_len > free_len) { | 
|  | /* remove oldest entries at read, and move read to make | 
|  | * room for the new string */ | 
|  | needed_space = line_len - free_len; | 
|  | e_buf->read = (e_buf->read + needed_space) % e_buf->buf_size; | 
|  | e_buf->used_len -= needed_space; | 
|  | } | 
|  |  | 
|  | /* Copy the line into the circular buffer, dealing with possible | 
|  | * wraparound. | 
|  | */ | 
|  | cnt = MIN(line_len, e_buf->buf_size - e_buf->write); | 
|  | memcpy(e_buf->buf + e_buf->write, line, cnt); | 
|  | if (cnt < line_len) { | 
|  | memcpy(e_buf->buf, line + cnt, line_len - cnt); | 
|  | } | 
|  | e_buf->used_len += line_len; | 
|  | e_buf->write = (e_buf->write + line_len) % e_buf->buf_size; | 
|  | } | 
|  |  | 
|  | /* Log directly to the specified log */ | 
|  | static void do_log_line(struct log_info *log_info, char *line) { | 
|  | if (log_info->log_target & LOG_KLOG) { | 
|  | klog_write(6, log_info->klog_fmt, line); | 
|  | } | 
|  | if (log_info->log_target & LOG_ALOG) { | 
|  | ALOG(LOG_INFO, log_info->btag, "%s", line); | 
|  | } | 
|  | if (log_info->log_target & LOG_FILE) { | 
|  | fprintf(log_info->fp, "%s\n", line); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Log to either the abbreviated buf, or directly to the specified log | 
|  | * via do_log_line() above. | 
|  | */ | 
|  | static void log_line(struct log_info *log_info, char *line, int len) { | 
|  | if (log_info->abbreviated) { | 
|  | add_line_to_abbr_buf(&log_info->a_buf, line, len); | 
|  | } else { | 
|  | do_log_line(log_info, line); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The kernel will take a maximum of 1024 bytes in any single write to | 
|  | * the kernel logging device file, so find and print each line one at | 
|  | * a time.  The allocated size for buf should be at least 1 byte larger | 
|  | * than buf_size (the usable size of the buffer) to make sure there is | 
|  | * room to temporarily stuff a null byte to terminate a line for logging. | 
|  | */ | 
|  | static void print_buf_lines(struct log_info *log_info, char *buf, int buf_size) | 
|  | { | 
|  | char *line_start; | 
|  | char c; | 
|  | int i; | 
|  |  | 
|  | line_start = buf; | 
|  | for (i = 0; i < buf_size; i++) { | 
|  | if (*(buf + i) == '\n') { | 
|  | /* Found a line ending, print the line and compute new line_start */ | 
|  | /* Save the next char and replace with \0 */ | 
|  | c = *(buf + i + 1); | 
|  | *(buf + i + 1) = '\0'; | 
|  | do_log_line(log_info, line_start); | 
|  | /* Restore the saved char */ | 
|  | *(buf + i + 1) = c; | 
|  | line_start = buf + i + 1; | 
|  | } else if (*(buf + i) == '\0') { | 
|  | /* The end of the buffer, print the last bit */ | 
|  | do_log_line(log_info, line_start); | 
|  | break; | 
|  | } | 
|  | } | 
|  | /* If the buffer was completely full, and didn't end with a newline, just | 
|  | * ignore the partial last line. | 
|  | */ | 
|  | } | 
|  |  | 
|  | static void init_abbr_buf(struct abbr_buf *a_buf) { | 
|  | char *new_buf; | 
|  |  | 
|  | memset(a_buf, 0, sizeof(struct abbr_buf)); | 
|  | new_buf = malloc(BEGINNING_BUF_SIZE); | 
|  | if (new_buf) { | 
|  | a_buf->b_buf.buf = new_buf; | 
|  | a_buf->b_buf.alloc_len = BEGINNING_BUF_SIZE; | 
|  | a_buf->b_buf.buf_size = BEGINNING_BUF_SIZE - 1; | 
|  | } | 
|  | new_buf = malloc(ENDING_BUF_SIZE); | 
|  | if (new_buf) { | 
|  | a_buf->e_buf.buf = new_buf; | 
|  | a_buf->e_buf.alloc_len = ENDING_BUF_SIZE; | 
|  | a_buf->e_buf.buf_size = ENDING_BUF_SIZE - 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void free_abbr_buf(struct abbr_buf *a_buf) { | 
|  | free(a_buf->b_buf.buf); | 
|  | free(a_buf->e_buf.buf); | 
|  | } | 
|  |  | 
|  | static void add_line_to_abbr_buf(struct abbr_buf *a_buf, char *linebuf, int linelen) { | 
|  | if (!a_buf->beginning_buf_full) { | 
|  | a_buf->beginning_buf_full = | 
|  | add_line_to_linear_buf(&a_buf->b_buf, linebuf, linelen); | 
|  | } | 
|  | if (a_buf->beginning_buf_full) { | 
|  | add_line_to_circular_buf(&a_buf->e_buf, linebuf, linelen); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void print_abbr_buf(struct log_info *log_info) { | 
|  | struct abbr_buf *a_buf = &log_info->a_buf; | 
|  |  | 
|  | /* Add the abbreviated output to the kernel log */ | 
|  | if (a_buf->b_buf.alloc_len) { | 
|  | print_buf_lines(log_info, a_buf->b_buf.buf, a_buf->b_buf.used_len); | 
|  | } | 
|  |  | 
|  | /* Print an ellipsis to indicate that the buffer has wrapped or | 
|  | * is full, and some data was not logged. | 
|  | */ | 
|  | if (a_buf->e_buf.used_len == a_buf->e_buf.buf_size) { | 
|  | do_log_line(log_info, "...\n"); | 
|  | } | 
|  |  | 
|  | if (a_buf->e_buf.used_len == 0) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Simplest way to print the circular buffer is allocate a second buf | 
|  | * of the same size, and memcpy it so it's a simple linear buffer, | 
|  | * and then cal print_buf_lines on it */ | 
|  | if (a_buf->e_buf.read < a_buf->e_buf.write) { | 
|  | /* no wrap around, just print it */ | 
|  | print_buf_lines(log_info, a_buf->e_buf.buf + a_buf->e_buf.read, | 
|  | a_buf->e_buf.used_len); | 
|  | } else { | 
|  | /* The circular buffer will always have at least 1 byte unused, | 
|  | * so by allocating alloc_len here we will have at least | 
|  | * 1 byte of space available as required by print_buf_lines(). | 
|  | */ | 
|  | char * nbuf = malloc(a_buf->e_buf.alloc_len); | 
|  | if (!nbuf) { | 
|  | return; | 
|  | } | 
|  | int first_chunk_len = a_buf->e_buf.buf_size - a_buf->e_buf.read; | 
|  | memcpy(nbuf, a_buf->e_buf.buf + a_buf->e_buf.read, first_chunk_len); | 
|  | /* copy second chunk */ | 
|  | memcpy(nbuf + first_chunk_len, a_buf->e_buf.buf, a_buf->e_buf.write); | 
|  | print_buf_lines(log_info, nbuf, first_chunk_len + a_buf->e_buf.write); | 
|  | free(nbuf); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int parent(const char *tag, int parent_read, pid_t pid, | 
|  | int *chld_sts, int log_target, bool abbreviated, char *file_path, | 
|  | const struct AndroidForkExecvpOption* opts, size_t opts_len) { | 
|  | int status = 0; | 
|  | char buffer[4096]; | 
|  | struct pollfd poll_fds[] = { | 
|  | [0] = { | 
|  | .fd = parent_read, | 
|  | .events = POLLIN, | 
|  | }, | 
|  | }; | 
|  | int rc = 0; | 
|  | int fd; | 
|  |  | 
|  | struct log_info log_info; | 
|  |  | 
|  | int a = 0;  // start index of unprocessed data | 
|  | int b = 0;  // end index of unprocessed data | 
|  | int sz; | 
|  | bool found_child = false; | 
|  | char tmpbuf[256]; | 
|  |  | 
|  | log_info.btag = basename(tag); | 
|  | if (!log_info.btag) { | 
|  | log_info.btag = (char*) tag; | 
|  | } | 
|  |  | 
|  | if (abbreviated && (log_target == LOG_NONE)) { | 
|  | abbreviated = 0; | 
|  | } | 
|  | if (abbreviated) { | 
|  | init_abbr_buf(&log_info.a_buf); | 
|  | } | 
|  |  | 
|  | if (log_target & LOG_KLOG) { | 
|  | snprintf(log_info.klog_fmt, sizeof(log_info.klog_fmt), | 
|  | "<6>%.*s: %%s\n", MAX_KLOG_TAG, log_info.btag); | 
|  | } | 
|  |  | 
|  | if ((log_target & LOG_FILE) && !file_path) { | 
|  | /* No file_path specified, clear the LOG_FILE bit */ | 
|  | log_target &= ~LOG_FILE; | 
|  | } | 
|  |  | 
|  | if (log_target & LOG_FILE) { | 
|  | fd = open(file_path, O_WRONLY | O_CREAT, 0664); | 
|  | if (fd < 0) { | 
|  | ERROR("Cannot log to file %s\n", file_path); | 
|  | log_target &= ~LOG_FILE; | 
|  | } else { | 
|  | lseek(fd, 0, SEEK_END); | 
|  | log_info.fp = fdopen(fd, "a"); | 
|  | } | 
|  | } | 
|  |  | 
|  | log_info.log_target = log_target; | 
|  | log_info.abbreviated = abbreviated; | 
|  |  | 
|  | while (!found_child) { | 
|  | if (TEMP_FAILURE_RETRY(poll(poll_fds, ARRAY_SIZE(poll_fds), -1)) < 0) { | 
|  | ERROR("poll failed\n"); | 
|  | rc = -1; | 
|  | goto err_poll; | 
|  | } | 
|  |  | 
|  | if (poll_fds[0].revents & POLLIN) { | 
|  | sz = TEMP_FAILURE_RETRY( | 
|  | read(parent_read, &buffer[b], sizeof(buffer) - 1 - b)); | 
|  |  | 
|  | for (size_t i = 0; sz > 0 && i < opts_len; ++i) { | 
|  | if (opts[i].opt_type == FORK_EXECVP_OPTION_CAPTURE_OUTPUT) { | 
|  | opts[i].opt_capture_output.on_output( | 
|  | (uint8_t*)&buffer[b], sz, opts[i].opt_capture_output.user_pointer); | 
|  | } | 
|  | } | 
|  |  | 
|  | sz += b; | 
|  | // Log one line at a time | 
|  | for (b = 0; b < sz; b++) { | 
|  | if (buffer[b] == '\r') { | 
|  | if (abbreviated) { | 
|  | /* The abbreviated logging code uses newline as | 
|  | * the line separator.  Lucikly, the pty layer | 
|  | * helpfully cooks the output of the command | 
|  | * being run and inserts a CR before NL.  So | 
|  | * I just change it to NL here when doing | 
|  | * abbreviated logging. | 
|  | */ | 
|  | buffer[b] = '\n'; | 
|  | } else { | 
|  | buffer[b] = '\0'; | 
|  | } | 
|  | } else if (buffer[b] == '\n') { | 
|  | buffer[b] = '\0'; | 
|  | log_line(&log_info, &buffer[a], b - a); | 
|  | a = b + 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (a == 0 && b == sizeof(buffer) - 1) { | 
|  | // buffer is full, flush | 
|  | buffer[b] = '\0'; | 
|  | log_line(&log_info, &buffer[a], b - a); | 
|  | b = 0; | 
|  | } else if (a != b) { | 
|  | // Keep left-overs | 
|  | b -= a; | 
|  | memmove(buffer, &buffer[a], b); | 
|  | a = 0; | 
|  | } else { | 
|  | a = 0; | 
|  | b = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (poll_fds[0].revents & POLLHUP) { | 
|  | int ret; | 
|  |  | 
|  | ret = TEMP_FAILURE_RETRY(waitpid(pid, &status, 0)); | 
|  | if (ret < 0) { | 
|  | rc = errno; | 
|  | ALOG(LOG_ERROR, "logwrap", "waitpid failed with %s\n", strerror(errno)); | 
|  | goto err_waitpid; | 
|  | } | 
|  | if (ret > 0) { | 
|  | found_child = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (chld_sts != NULL) { | 
|  | *chld_sts = status; | 
|  | } else { | 
|  | if (WIFEXITED(status)) | 
|  | rc = WEXITSTATUS(status); | 
|  | else | 
|  | rc = -ECHILD; | 
|  | } | 
|  |  | 
|  | // Flush remaining data | 
|  | if (a != b) { | 
|  | buffer[b] = '\0'; | 
|  | log_line(&log_info, &buffer[a], b - a); | 
|  | } | 
|  |  | 
|  | /* All the output has been processed, time to dump the abbreviated output */ | 
|  | if (abbreviated) { | 
|  | print_abbr_buf(&log_info); | 
|  | } | 
|  |  | 
|  | if (WIFEXITED(status)) { | 
|  | if (WEXITSTATUS(status)) { | 
|  | snprintf(tmpbuf, sizeof(tmpbuf), | 
|  | "%s terminated by exit(%d)\n", log_info.btag, WEXITSTATUS(status)); | 
|  | do_log_line(&log_info, tmpbuf); | 
|  | } | 
|  | } else { | 
|  | if (WIFSIGNALED(status)) { | 
|  | snprintf(tmpbuf, sizeof(tmpbuf), | 
|  | "%s terminated by signal %d\n", log_info.btag, WTERMSIG(status)); | 
|  | do_log_line(&log_info, tmpbuf); | 
|  | } else if (WIFSTOPPED(status)) { | 
|  | snprintf(tmpbuf, sizeof(tmpbuf), | 
|  | "%s stopped by signal %d\n", log_info.btag, WSTOPSIG(status)); | 
|  | do_log_line(&log_info, tmpbuf); | 
|  | } | 
|  | } | 
|  |  | 
|  | err_waitpid: | 
|  | err_poll: | 
|  | if (log_target & LOG_FILE) { | 
|  | fclose(log_info.fp); /* Also closes underlying fd */ | 
|  | } | 
|  | if (abbreviated) { | 
|  | free_abbr_buf(&log_info.a_buf); | 
|  | } | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static void child(int argc, char* argv[]) { | 
|  | // create null terminated argv_child array | 
|  | char* argv_child[argc + 1]; | 
|  | memcpy(argv_child, argv, argc * sizeof(char *)); | 
|  | argv_child[argc] = NULL; | 
|  |  | 
|  | if (execvp(argv_child[0], argv_child)) { | 
|  | FATAL_CHILD("executing %s failed: %s\n", argv_child[0], | 
|  | strerror(errno)); | 
|  | } | 
|  | } | 
|  |  | 
|  | int android_fork_execvp_ext(int argc, char* argv[], int *status, bool ignore_int_quit, | 
|  | int log_target, bool abbreviated, char *file_path, | 
|  | const struct AndroidForkExecvpOption* opts, size_t opts_len) { | 
|  | pid_t pid; | 
|  | int parent_ptty; | 
|  | int child_ptty; | 
|  | struct sigaction intact; | 
|  | struct sigaction quitact; | 
|  | sigset_t blockset; | 
|  | sigset_t oldset; | 
|  | int rc = 0; | 
|  |  | 
|  | rc = pthread_mutex_lock(&fd_mutex); | 
|  | if (rc) { | 
|  | ERROR("failed to lock signal_fd mutex\n"); | 
|  | goto err_lock; | 
|  | } | 
|  |  | 
|  | /* Use ptty instead of socketpair so that STDOUT is not buffered */ | 
|  | parent_ptty = TEMP_FAILURE_RETRY(open("/dev/ptmx", O_RDWR)); | 
|  | if (parent_ptty < 0) { | 
|  | ERROR("Cannot create parent ptty\n"); | 
|  | rc = -1; | 
|  | goto err_open; | 
|  | } | 
|  |  | 
|  | char child_devname[64]; | 
|  | if (grantpt(parent_ptty) || unlockpt(parent_ptty) || | 
|  | ptsname_r(parent_ptty, child_devname, sizeof(child_devname)) != 0) { | 
|  | ERROR("Problem with /dev/ptmx\n"); | 
|  | rc = -1; | 
|  | goto err_ptty; | 
|  | } | 
|  |  | 
|  | child_ptty = TEMP_FAILURE_RETRY(open(child_devname, O_RDWR)); | 
|  | if (child_ptty < 0) { | 
|  | ERROR("Cannot open child_ptty\n"); | 
|  | rc = -1; | 
|  | goto err_child_ptty; | 
|  | } | 
|  |  | 
|  | sigemptyset(&blockset); | 
|  | sigaddset(&blockset, SIGINT); | 
|  | sigaddset(&blockset, SIGQUIT); | 
|  | pthread_sigmask(SIG_BLOCK, &blockset, &oldset); | 
|  |  | 
|  | pid = fork(); | 
|  | if (pid < 0) { | 
|  | close(child_ptty); | 
|  | ERROR("Failed to fork\n"); | 
|  | rc = -1; | 
|  | goto err_fork; | 
|  | } else if (pid == 0) { | 
|  | pthread_mutex_unlock(&fd_mutex); | 
|  | pthread_sigmask(SIG_SETMASK, &oldset, NULL); | 
|  | close(parent_ptty); | 
|  |  | 
|  | // redirect stdin, stdout and stderr | 
|  | for (size_t i = 0; i < opts_len; ++i) { | 
|  | if (opts[i].opt_type == FORK_EXECVP_OPTION_INPUT) { | 
|  | dup2(child_ptty, 0); | 
|  | break; | 
|  | } | 
|  | } | 
|  | dup2(child_ptty, 1); | 
|  | dup2(child_ptty, 2); | 
|  | close(child_ptty); | 
|  |  | 
|  | child(argc, argv); | 
|  | } else { | 
|  | close(child_ptty); | 
|  | if (ignore_int_quit) { | 
|  | struct sigaction ignact; | 
|  |  | 
|  | memset(&ignact, 0, sizeof(ignact)); | 
|  | ignact.sa_handler = SIG_IGN; | 
|  | sigaction(SIGINT, &ignact, &intact); | 
|  | sigaction(SIGQUIT, &ignact, &quitact); | 
|  | } | 
|  |  | 
|  | for (size_t i = 0; i < opts_len; ++i) { | 
|  | if (opts[i].opt_type == FORK_EXECVP_OPTION_INPUT) { | 
|  | size_t left = opts[i].opt_input.input_len; | 
|  | const uint8_t* input = opts[i].opt_input.input; | 
|  | while (left > 0) { | 
|  | ssize_t res = | 
|  | TEMP_FAILURE_RETRY(write(parent_ptty, input, left)); | 
|  | if (res < 0) { | 
|  | break; | 
|  | } | 
|  | left -= res; | 
|  | input += res; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | rc = parent(argv[0], parent_ptty, pid, status, log_target, | 
|  | abbreviated, file_path, opts, opts_len); | 
|  | } | 
|  |  | 
|  | if (ignore_int_quit) { | 
|  | sigaction(SIGINT, &intact, NULL); | 
|  | sigaction(SIGQUIT, &quitact, NULL); | 
|  | } | 
|  | err_fork: | 
|  | pthread_sigmask(SIG_SETMASK, &oldset, NULL); | 
|  | err_child_ptty: | 
|  | err_ptty: | 
|  | close(parent_ptty); | 
|  | err_open: | 
|  | pthread_mutex_unlock(&fd_mutex); | 
|  | err_lock: | 
|  | return rc; | 
|  | } |