|  | /* | 
|  | * Copyright 2013 The Android Open Source Project | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions are met: | 
|  | *     * Redistributions of source code must retain the above copyright | 
|  | *       notice, this list of conditions and the following disclaimer. | 
|  | *     * Redistributions in binary form must reproduce the above copyright | 
|  | *       notice, this list of conditions and the following disclaimer in the | 
|  | *       documentation and/or other materials provided with the distribution. | 
|  | *     * Neither the name of Google Inc. nor the names of its contributors may | 
|  | *       be used to endorse or promote products derived from this software | 
|  | *       without specific prior written permission. | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED BY Google Inc. ``AS IS'' AND ANY EXPRESS OR | 
|  | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF | 
|  | * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO | 
|  | * EVENT SHALL Google Inc. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
|  | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | 
|  | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; | 
|  | * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, | 
|  | * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR | 
|  | * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF | 
|  | * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  | */ | 
|  |  | 
|  | // This is an implementation of the P256 elliptic curve group. It's written to | 
|  | // be portable 32-bit, although it's still constant-time. | 
|  | // | 
|  | // WARNING: Implementing these functions in a constant-time manner is far from | 
|  | //          obvious. Be careful when touching this code. | 
|  | // | 
|  | // See http://www.imperialviolet.org/2010/12/04/ecc.html ([1]) for background. | 
|  |  | 
|  | #include <assert.h> | 
|  | #include <stdint.h> | 
|  | #include <string.h> | 
|  | #include <stdio.h> | 
|  |  | 
|  | #include "mincrypt/p256.h" | 
|  |  | 
|  | const p256_int SECP256r1_n =  // curve order | 
|  | {{0xfc632551, 0xf3b9cac2, 0xa7179e84, 0xbce6faad, -1, -1, 0, -1}}; | 
|  |  | 
|  | const p256_int SECP256r1_p =  // curve field size | 
|  | {{-1, -1, -1, 0, 0, 0, 1, -1 }}; | 
|  |  | 
|  | const p256_int SECP256r1_b =  // curve b | 
|  | {{0x27d2604b, 0x3bce3c3e, 0xcc53b0f6, 0x651d06b0, | 
|  | 0x769886bc, 0xb3ebbd55, 0xaa3a93e7, 0x5ac635d8}}; | 
|  |  | 
|  | void p256_init(p256_int* a) { | 
|  | memset(a, 0, sizeof(*a)); | 
|  | } | 
|  |  | 
|  | void p256_clear(p256_int* a) { p256_init(a); } | 
|  |  | 
|  | int p256_get_bit(const p256_int* scalar, int bit) { | 
|  | return (P256_DIGIT(scalar, bit / P256_BITSPERDIGIT) | 
|  | >> (bit & (P256_BITSPERDIGIT - 1))) & 1; | 
|  | } | 
|  |  | 
|  | int p256_is_zero(const p256_int* a) { | 
|  | int i, result = 0; | 
|  | for (i = 0; i < P256_NDIGITS; ++i) result |= P256_DIGIT(a, i); | 
|  | return !result; | 
|  | } | 
|  |  | 
|  | // top, c[] += a[] * b | 
|  | // Returns new top | 
|  | static p256_digit mulAdd(const p256_int* a, | 
|  | p256_digit b, | 
|  | p256_digit top, | 
|  | p256_digit* c) { | 
|  | int i; | 
|  | p256_ddigit carry = 0; | 
|  |  | 
|  | for (i = 0; i < P256_NDIGITS; ++i) { | 
|  | carry += *c; | 
|  | carry += (p256_ddigit)P256_DIGIT(a, i) * b; | 
|  | *c++ = (p256_digit)carry; | 
|  | carry >>= P256_BITSPERDIGIT; | 
|  | } | 
|  | return top + (p256_digit)carry; | 
|  | } | 
|  |  | 
|  | // top, c[] -= top_a, a[] | 
|  | static p256_digit subTop(p256_digit top_a, | 
|  | const p256_digit* a, | 
|  | p256_digit top_c, | 
|  | p256_digit* c) { | 
|  | int i; | 
|  | p256_sddigit borrow = 0; | 
|  |  | 
|  | for (i = 0; i < P256_NDIGITS; ++i) { | 
|  | borrow += *c; | 
|  | borrow -= *a++; | 
|  | *c++ = (p256_digit)borrow; | 
|  | borrow >>= P256_BITSPERDIGIT; | 
|  | } | 
|  | borrow += top_c; | 
|  | borrow -= top_a; | 
|  | top_c = (p256_digit)borrow; | 
|  | assert((borrow >> P256_BITSPERDIGIT) == 0); | 
|  | return top_c; | 
|  | } | 
|  |  | 
|  | // top, c[] -= MOD[] & mask (0 or -1) | 
|  | // returns new top. | 
|  | static p256_digit subM(const p256_int* MOD, | 
|  | p256_digit top, | 
|  | p256_digit* c, | 
|  | p256_digit mask) { | 
|  | int i; | 
|  | p256_sddigit borrow = 0; | 
|  | for (i = 0; i < P256_NDIGITS; ++i) { | 
|  | borrow += *c; | 
|  | borrow -= P256_DIGIT(MOD, i) & mask; | 
|  | *c++ = (p256_digit)borrow; | 
|  | borrow >>= P256_BITSPERDIGIT; | 
|  | } | 
|  | return top + (p256_digit)borrow; | 
|  | } | 
|  |  | 
|  | // top, c[] += MOD[] & mask (0 or -1) | 
|  | // returns new top. | 
|  | static p256_digit addM(const p256_int* MOD, | 
|  | p256_digit top, | 
|  | p256_digit* c, | 
|  | p256_digit mask) { | 
|  | int i; | 
|  | p256_ddigit carry = 0; | 
|  | for (i = 0; i < P256_NDIGITS; ++i) { | 
|  | carry += *c; | 
|  | carry += P256_DIGIT(MOD, i) & mask; | 
|  | *c++ = (p256_digit)carry; | 
|  | carry >>= P256_BITSPERDIGIT; | 
|  | } | 
|  | return top + (p256_digit)carry; | 
|  | } | 
|  |  | 
|  | // c = a * b mod MOD. c can be a and/or b. | 
|  | void p256_modmul(const p256_int* MOD, | 
|  | const p256_int* a, | 
|  | const p256_digit top_b, | 
|  | const p256_int* b, | 
|  | p256_int* c) { | 
|  | p256_digit tmp[P256_NDIGITS * 2 + 1] = { 0 }; | 
|  | p256_digit top = 0; | 
|  | int i; | 
|  |  | 
|  | // Multiply/add into tmp. | 
|  | for (i = 0; i < P256_NDIGITS; ++i) { | 
|  | if (i) tmp[i + P256_NDIGITS - 1] = top; | 
|  | top = mulAdd(a, P256_DIGIT(b, i), 0, tmp + i); | 
|  | } | 
|  |  | 
|  | // Multiply/add top digit | 
|  | tmp[i + P256_NDIGITS - 1] = top; | 
|  | top = mulAdd(a, top_b, 0, tmp + i); | 
|  |  | 
|  | // Reduce tmp, digit by digit. | 
|  | for (; i >= 0; --i) { | 
|  | p256_digit reducer[P256_NDIGITS] = { 0 }; | 
|  | p256_digit top_reducer; | 
|  |  | 
|  | // top can be any value at this point. | 
|  | // Guestimate reducer as top * MOD, since msw of MOD is -1. | 
|  | top_reducer = mulAdd(MOD, top, 0, reducer); | 
|  |  | 
|  | // Subtract reducer from top | tmp. | 
|  | top = subTop(top_reducer, reducer, top, tmp + i); | 
|  |  | 
|  | // top is now either 0 or 1. Make it 0, fixed-timing. | 
|  | assert(top <= 1); | 
|  |  | 
|  | top = subM(MOD, top, tmp + i, ~(top - 1)); | 
|  |  | 
|  | assert(top == 0); | 
|  |  | 
|  | // We have now reduced the top digit off tmp. Fetch new top digit. | 
|  | top = tmp[i + P256_NDIGITS - 1]; | 
|  | } | 
|  |  | 
|  | // tmp might still be larger than MOD, yet same bit length. | 
|  | // Make sure it is less, fixed-timing. | 
|  | addM(MOD, 0, tmp, subM(MOD, 0, tmp, -1)); | 
|  |  | 
|  | memcpy(c, tmp, P256_NBYTES); | 
|  | } | 
|  | int p256_is_odd(const p256_int* a) { return P256_DIGIT(a, 0) & 1; } | 
|  | int p256_is_even(const p256_int* a) { return !(P256_DIGIT(a, 0) & 1); } | 
|  |  | 
|  | p256_digit p256_shl(const p256_int* a, int n, p256_int* b) { | 
|  | int i; | 
|  | p256_digit top = P256_DIGIT(a, P256_NDIGITS - 1); | 
|  |  | 
|  | n %= P256_BITSPERDIGIT; | 
|  | for (i = P256_NDIGITS - 1; i > 0; --i) { | 
|  | p256_digit accu = (P256_DIGIT(a, i) << n); | 
|  | accu |= (P256_DIGIT(a, i - 1) >> (P256_BITSPERDIGIT - n)); | 
|  | P256_DIGIT(b, i) = accu; | 
|  | } | 
|  | P256_DIGIT(b, i) = (P256_DIGIT(a, i) << n); | 
|  |  | 
|  | top = (p256_digit)((((p256_ddigit)top) << n) >> P256_BITSPERDIGIT); | 
|  |  | 
|  | return top; | 
|  | } | 
|  |  | 
|  | void p256_shr(const p256_int* a, int n, p256_int* b) { | 
|  | int i; | 
|  |  | 
|  | n %= P256_BITSPERDIGIT; | 
|  | for (i = 0; i < P256_NDIGITS - 1; ++i) { | 
|  | p256_digit accu = (P256_DIGIT(a, i) >> n); | 
|  | accu |= (P256_DIGIT(a, i + 1) << (P256_BITSPERDIGIT - n)); | 
|  | P256_DIGIT(b, i) = accu; | 
|  | } | 
|  | P256_DIGIT(b, i) = (P256_DIGIT(a, i) >> n); | 
|  | } | 
|  |  | 
|  | static void p256_shr1(const p256_int* a, int highbit, p256_int* b) { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < P256_NDIGITS - 1; ++i) { | 
|  | p256_digit accu = (P256_DIGIT(a, i) >> 1); | 
|  | accu |= (P256_DIGIT(a, i + 1) << (P256_BITSPERDIGIT - 1)); | 
|  | P256_DIGIT(b, i) = accu; | 
|  | } | 
|  | P256_DIGIT(b, i) = (P256_DIGIT(a, i) >> 1) | | 
|  | (highbit << (P256_BITSPERDIGIT - 1)); | 
|  | } | 
|  |  | 
|  | // Return -1, 0, 1 for a < b, a == b or a > b respectively. | 
|  | int p256_cmp(const p256_int* a, const p256_int* b) { | 
|  | int i; | 
|  | p256_sddigit borrow = 0; | 
|  | p256_digit notzero = 0; | 
|  |  | 
|  | for (i = 0; i < P256_NDIGITS; ++i) { | 
|  | borrow += (p256_sddigit)P256_DIGIT(a, i) - P256_DIGIT(b, i); | 
|  | // Track whether any result digit is ever not zero. | 
|  | // Relies on !!(non-zero) evaluating to 1, e.g., !!(-1) evaluating to 1. | 
|  | notzero |= !!((p256_digit)borrow); | 
|  | borrow >>= P256_BITSPERDIGIT; | 
|  | } | 
|  | return (int)borrow | notzero; | 
|  | } | 
|  |  | 
|  | // c = a - b. Returns borrow: 0 or -1. | 
|  | int p256_sub(const p256_int* a, const p256_int* b, p256_int* c) { | 
|  | int i; | 
|  | p256_sddigit borrow = 0; | 
|  |  | 
|  | for (i = 0; i < P256_NDIGITS; ++i) { | 
|  | borrow += (p256_sddigit)P256_DIGIT(a, i) - P256_DIGIT(b, i); | 
|  | if (c) P256_DIGIT(c, i) = (p256_digit)borrow; | 
|  | borrow >>= P256_BITSPERDIGIT; | 
|  | } | 
|  | return (int)borrow; | 
|  | } | 
|  |  | 
|  | // c = a + b. Returns carry: 0 or 1. | 
|  | int p256_add(const p256_int* a, const p256_int* b, p256_int* c) { | 
|  | int i; | 
|  | p256_ddigit carry = 0; | 
|  |  | 
|  | for (i = 0; i < P256_NDIGITS; ++i) { | 
|  | carry += (p256_ddigit)P256_DIGIT(a, i) + P256_DIGIT(b, i); | 
|  | if (c) P256_DIGIT(c, i) = (p256_digit)carry; | 
|  | carry >>= P256_BITSPERDIGIT; | 
|  | } | 
|  | return (int)carry; | 
|  | } | 
|  |  | 
|  | // b = a + d. Returns carry, 0 or 1. | 
|  | int p256_add_d(const p256_int* a, p256_digit d, p256_int* b) { | 
|  | int i; | 
|  | p256_ddigit carry = d; | 
|  |  | 
|  | for (i = 0; i < P256_NDIGITS; ++i) { | 
|  | carry += (p256_ddigit)P256_DIGIT(a, i); | 
|  | if (b) P256_DIGIT(b, i) = (p256_digit)carry; | 
|  | carry >>= P256_BITSPERDIGIT; | 
|  | } | 
|  | return (int)carry; | 
|  | } | 
|  |  | 
|  | // b = 1/a mod MOD, binary euclid. | 
|  | void p256_modinv_vartime(const p256_int* MOD, | 
|  | const p256_int* a, | 
|  | p256_int* b) { | 
|  | p256_int R = P256_ZERO; | 
|  | p256_int S = P256_ONE; | 
|  | p256_int U = *MOD; | 
|  | p256_int V = *a; | 
|  |  | 
|  | for (;;) { | 
|  | if (p256_is_even(&U)) { | 
|  | p256_shr1(&U, 0, &U); | 
|  | if (p256_is_even(&R)) { | 
|  | p256_shr1(&R, 0, &R); | 
|  | } else { | 
|  | // R = (R+MOD)/2 | 
|  | p256_shr1(&R, p256_add(&R, MOD, &R), &R); | 
|  | } | 
|  | } else if (p256_is_even(&V)) { | 
|  | p256_shr1(&V, 0, &V); | 
|  | if (p256_is_even(&S)) { | 
|  | p256_shr1(&S, 0, &S); | 
|  | } else { | 
|  | // S = (S+MOD)/2 | 
|  | p256_shr1(&S, p256_add(&S, MOD, &S) , &S); | 
|  | } | 
|  | } else {  // U,V both odd. | 
|  | if (!p256_sub(&V, &U, NULL)) { | 
|  | p256_sub(&V, &U, &V); | 
|  | if (p256_sub(&S, &R, &S)) p256_add(&S, MOD, &S); | 
|  | if (p256_is_zero(&V)) break;  // done. | 
|  | } else { | 
|  | p256_sub(&U, &V, &U); | 
|  | if (p256_sub(&R, &S, &R)) p256_add(&R, MOD, &R); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | p256_mod(MOD, &R, b); | 
|  | } | 
|  |  | 
|  | void p256_mod(const p256_int* MOD, | 
|  | const p256_int* in, | 
|  | p256_int* out) { | 
|  | if (out != in) *out = *in; | 
|  | addM(MOD, 0, P256_DIGITS(out), subM(MOD, 0, P256_DIGITS(out), -1)); | 
|  | } | 
|  |  | 
|  | // Verify y^2 == x^3 - 3x + b mod p | 
|  | // and 0 < x < p and 0 < y < p | 
|  | int p256_is_valid_point(const p256_int* x, const p256_int* y) { | 
|  | p256_int y2, x3; | 
|  |  | 
|  | if (p256_cmp(&SECP256r1_p, x) <= 0 || | 
|  | p256_cmp(&SECP256r1_p, y) <= 0 || | 
|  | p256_is_zero(x) || | 
|  | p256_is_zero(y)) return 0; | 
|  |  | 
|  | p256_modmul(&SECP256r1_p, y, 0, y, &y2);  // y^2 | 
|  |  | 
|  | p256_modmul(&SECP256r1_p, x, 0, x, &x3);  // x^2 | 
|  | p256_modmul(&SECP256r1_p, x, 0, &x3, &x3);  // x^3 | 
|  | if (p256_sub(&x3, x, &x3)) p256_add(&x3, &SECP256r1_p, &x3);  // x^3 - x | 
|  | if (p256_sub(&x3, x, &x3)) p256_add(&x3, &SECP256r1_p, &x3);  // x^3 - 2x | 
|  | if (p256_sub(&x3, x, &x3)) p256_add(&x3, &SECP256r1_p, &x3);  // x^3 - 3x | 
|  | if (p256_add(&x3, &SECP256r1_b, &x3))  // x^3 - 3x + b | 
|  | p256_sub(&x3, &SECP256r1_p, &x3); | 
|  |  | 
|  | return p256_cmp(&y2, &x3) == 0; | 
|  | } | 
|  |  | 
|  | void p256_from_bin(const uint8_t src[P256_NBYTES], p256_int* dst) { | 
|  | int i; | 
|  | const uint8_t* p = &src[0]; | 
|  |  | 
|  | for (i = P256_NDIGITS - 1; i >= 0; --i) { | 
|  | P256_DIGIT(dst, i) = | 
|  | (p[0] << 24) | | 
|  | (p[1] << 16) | | 
|  | (p[2] << 8) | | 
|  | p[3]; | 
|  | p += 4; | 
|  | } | 
|  | } |