| /* | 
 |  * Copyright (C) 2018 The Android Open Source Project | 
 |  * | 
 |  * Licensed under the Apache License, Version 2.0 (the "License"); | 
 |  * you may not use this file except in compliance with the License. | 
 |  * You may obtain a copy of the License at | 
 |  * | 
 |  *      http://www.apache.org/licenses/LICENSE-2.0 | 
 |  * | 
 |  * Unless required by applicable law or agreed to in writing, software | 
 |  * distributed under the License is distributed on an "AS IS" BASIS, | 
 |  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 |  * See the License for the specific language governing permissions and | 
 |  * limitations under the License. | 
 |  */ | 
 | #include "flashing.h" | 
 |  | 
 | #include <fcntl.h> | 
 | #include <string.h> | 
 | #include <sys/stat.h> | 
 | #include <unistd.h> | 
 |  | 
 | #include <algorithm> | 
 | #include <memory> | 
 | #include <optional> | 
 | #include <set> | 
 | #include <string> | 
 |  | 
 | #include <android-base/file.h> | 
 | #include <android-base/logging.h> | 
 | #include <android-base/properties.h> | 
 | #include <android-base/strings.h> | 
 | #include <ext4_utils/ext4_utils.h> | 
 | #include <fs_mgr_overlayfs.h> | 
 | #include <fstab/fstab.h> | 
 | #include <libavb/libavb.h> | 
 | #include <liblp/builder.h> | 
 | #include <liblp/liblp.h> | 
 | #include <libsnapshot/snapshot.h> | 
 | #include <sparse/sparse.h> | 
 |  | 
 | #include "fastboot_device.h" | 
 | #include "utility.h" | 
 |  | 
 | using namespace android::fs_mgr; | 
 | using namespace std::literals; | 
 |  | 
 | namespace { | 
 |  | 
 | constexpr uint32_t SPARSE_HEADER_MAGIC = 0xed26ff3a; | 
 |  | 
 | void WipeOverlayfsForPartition(FastbootDevice* device, const std::string& partition_name) { | 
 |     // May be called, in the case of sparse data, multiple times so cache/skip. | 
 |     static std::set<std::string> wiped; | 
 |     if (wiped.find(partition_name) != wiped.end()) return; | 
 |     wiped.insert(partition_name); | 
 |     // Following appears to have a first time 2% impact on flashing speeds. | 
 |  | 
 |     // Convert partition_name to a validated mount point and wipe. | 
 |     Fstab fstab; | 
 |     ReadDefaultFstab(&fstab); | 
 |  | 
 |     std::optional<AutoMountMetadata> mount_metadata; | 
 |     for (const auto& entry : fstab) { | 
 |         auto partition = android::base::Basename(entry.mount_point); | 
 |         if ("/" == entry.mount_point) { | 
 |             partition = "system"; | 
 |         } | 
 |  | 
 |         if ((partition + device->GetCurrentSlot()) == partition_name) { | 
 |             mount_metadata.emplace(); | 
 |             android::fs_mgr::TeardownAllOverlayForMountPoint(entry.mount_point); | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | }  // namespace | 
 |  | 
 | int FlashRawDataChunk(PartitionHandle* handle, const char* data, size_t len) { | 
 |     size_t ret = 0; | 
 |     const size_t max_write_size = 1048576; | 
 |     void* aligned_buffer; | 
 |  | 
 |     if (posix_memalign(&aligned_buffer, 4096, max_write_size)) { | 
 |         PLOG(ERROR) << "Failed to allocate write buffer"; | 
 |         return -ENOMEM; | 
 |     } | 
 |  | 
 |     auto aligned_buffer_unique_ptr = std::unique_ptr<void, decltype(&free)>{aligned_buffer, free}; | 
 |  | 
 |     while (ret < len) { | 
 |         int this_len = std::min(max_write_size, len - ret); | 
 |         memcpy(aligned_buffer_unique_ptr.get(), data, this_len); | 
 |         // In case of non 4KB aligned writes, reopen without O_DIRECT flag | 
 |         if (this_len & 0xFFF) { | 
 |             if (handle->Reset(O_WRONLY) != true) { | 
 |                 PLOG(ERROR) << "Failed to reset file descriptor"; | 
 |                 return -1; | 
 |             } | 
 |         } | 
 |  | 
 |         int this_ret = write(handle->fd(), aligned_buffer_unique_ptr.get(), this_len); | 
 |         if (this_ret < 0) { | 
 |             PLOG(ERROR) << "Failed to flash data of len " << len; | 
 |             return -1; | 
 |         } | 
 |         data += this_ret; | 
 |         ret += this_ret; | 
 |     } | 
 |     return 0; | 
 | } | 
 |  | 
 | int FlashRawData(PartitionHandle* handle, const std::vector<char>& downloaded_data) { | 
 |     int ret = FlashRawDataChunk(handle, downloaded_data.data(), downloaded_data.size()); | 
 |     if (ret < 0) { | 
 |         return -errno; | 
 |     } | 
 |     return ret; | 
 | } | 
 |  | 
 | int WriteCallback(void* priv, const void* data, size_t len) { | 
 |     PartitionHandle* handle = reinterpret_cast<PartitionHandle*>(priv); | 
 |     if (!data) { | 
 |         if (lseek64(handle->fd(), len, SEEK_CUR) < 0) { | 
 |             int rv = -errno; | 
 |             PLOG(ERROR) << "lseek failed"; | 
 |             return rv; | 
 |         } | 
 |         return 0; | 
 |     } | 
 |     return FlashRawDataChunk(handle, reinterpret_cast<const char*>(data), len); | 
 | } | 
 |  | 
 | int FlashSparseData(PartitionHandle* handle, std::vector<char>& downloaded_data) { | 
 |     struct sparse_file* file = sparse_file_import_buf(downloaded_data.data(), | 
 |                                                       downloaded_data.size(), true, false); | 
 |     if (!file) { | 
 |         // Invalid sparse format | 
 |         LOG(ERROR) << "Unable to open sparse data for flashing"; | 
 |         return -EINVAL; | 
 |     } | 
 |     return sparse_file_callback(file, false, false, WriteCallback, reinterpret_cast<void*>(handle)); | 
 | } | 
 |  | 
 | int FlashBlockDevice(PartitionHandle* handle, std::vector<char>& downloaded_data) { | 
 |     lseek64(handle->fd(), 0, SEEK_SET); | 
 |     if (downloaded_data.size() >= sizeof(SPARSE_HEADER_MAGIC) && | 
 |         *reinterpret_cast<uint32_t*>(downloaded_data.data()) == SPARSE_HEADER_MAGIC) { | 
 |         return FlashSparseData(handle, downloaded_data); | 
 |     } else { | 
 |         return FlashRawData(handle, downloaded_data); | 
 |     } | 
 | } | 
 |  | 
 | static void CopyAVBFooter(std::vector<char>* data, const uint64_t block_device_size) { | 
 |     if (data->size() < AVB_FOOTER_SIZE) { | 
 |         return; | 
 |     } | 
 |     std::string footer; | 
 |     uint64_t footer_offset = data->size() - AVB_FOOTER_SIZE; | 
 |     for (int idx = 0; idx < AVB_FOOTER_MAGIC_LEN; idx++) { | 
 |         footer.push_back(data->at(footer_offset + idx)); | 
 |     } | 
 |     if (0 != footer.compare(AVB_FOOTER_MAGIC)) { | 
 |         return; | 
 |     } | 
 |  | 
 |     // copy AVB footer from end of data to end of block device | 
 |     uint64_t original_data_size = data->size(); | 
 |     data->resize(block_device_size, 0); | 
 |     for (int idx = 0; idx < AVB_FOOTER_SIZE; idx++) { | 
 |         data->at(block_device_size - 1 - idx) = data->at(original_data_size - 1 - idx); | 
 |     } | 
 | } | 
 |  | 
 | int Flash(FastbootDevice* device, const std::string& partition_name) { | 
 |     PartitionHandle handle; | 
 |     if (!OpenPartition(device, partition_name, &handle, O_WRONLY | O_DIRECT)) { | 
 |         return -ENOENT; | 
 |     } | 
 |  | 
 |     std::vector<char> data = std::move(device->download_data()); | 
 |     if (data.size() == 0) { | 
 |         LOG(ERROR) << "Cannot flash empty data vector"; | 
 |         return -EINVAL; | 
 |     } | 
 |     uint64_t block_device_size = get_block_device_size(handle.fd()); | 
 |     if (data.size() > block_device_size) { | 
 |         LOG(ERROR) << "Cannot flash " << data.size() << " bytes to block device of size " | 
 |                    << block_device_size; | 
 |         return -EOVERFLOW; | 
 |     } else if (data.size() < block_device_size && | 
 |                (partition_name == "boot" || partition_name == "boot_a" || | 
 |                 partition_name == "boot_b" || partition_name == "init_boot" || | 
 |                 partition_name == "init_boot_a" || partition_name == "init_boot_b")) { | 
 |         CopyAVBFooter(&data, block_device_size); | 
 |     } | 
 |     if (android::base::GetProperty("ro.system.build.type", "") != "user") { | 
 |         WipeOverlayfsForPartition(device, partition_name); | 
 |     } | 
 |     int result = FlashBlockDevice(&handle, data); | 
 |     sync(); | 
 |     return result; | 
 | } | 
 |  | 
 | static void RemoveScratchPartition() { | 
 |     AutoMountMetadata mount_metadata; | 
 |     android::fs_mgr::TeardownAllOverlayForMountPoint(); | 
 | } | 
 |  | 
 | bool UpdateSuper(FastbootDevice* device, const std::string& super_name, bool wipe) { | 
 |     std::vector<char> data = std::move(device->download_data()); | 
 |     if (data.empty()) { | 
 |         return device->WriteFail("No data available"); | 
 |     } | 
 |  | 
 |     std::unique_ptr<LpMetadata> new_metadata = ReadFromImageBlob(data.data(), data.size()); | 
 |     if (!new_metadata) { | 
 |         return device->WriteFail("Data is not a valid logical partition metadata image"); | 
 |     } | 
 |  | 
 |     if (!FindPhysicalPartition(super_name)) { | 
 |         return device->WriteFail("Cannot find " + super_name + | 
 |                                  ", build may be missing broken or missing boot_devices"); | 
 |     } | 
 |  | 
 |     std::string slot_suffix = device->GetCurrentSlot(); | 
 |     uint32_t slot_number = SlotNumberForSlotSuffix(slot_suffix); | 
 |  | 
 |     std::string other_slot_suffix; | 
 |     if (!slot_suffix.empty()) { | 
 |         other_slot_suffix = (slot_suffix == "_a") ? "_b" : "_a"; | 
 |     } | 
 |  | 
 |     // If we are unable to read the existing metadata, then the super partition | 
 |     // is corrupt. In this case we reflash the whole thing using the provided | 
 |     // image. | 
 |     std::unique_ptr<LpMetadata> old_metadata = ReadMetadata(super_name, slot_number); | 
 |     if (wipe || !old_metadata) { | 
 |         if (!FlashPartitionTable(super_name, *new_metadata.get())) { | 
 |             return device->WriteFail("Unable to flash new partition table"); | 
 |         } | 
 |         RemoveScratchPartition(); | 
 |         sync(); | 
 |         return device->WriteOkay("Successfully flashed partition table"); | 
 |     } | 
 |  | 
 |     std::set<std::string> partitions_to_keep; | 
 |     bool virtual_ab = android::base::GetBoolProperty("ro.virtual_ab.enabled", false); | 
 |     for (const auto& partition : old_metadata->partitions) { | 
 |         // Preserve partitions in the other slot, but not the current slot. | 
 |         std::string partition_name = GetPartitionName(partition); | 
 |         if (!slot_suffix.empty()) { | 
 |             auto part_suffix = GetPartitionSlotSuffix(partition_name); | 
 |             if (part_suffix == slot_suffix || (part_suffix == other_slot_suffix && virtual_ab)) { | 
 |                 continue; | 
 |             } | 
 |         } | 
 |         std::string group_name = GetPartitionGroupName(old_metadata->groups[partition.group_index]); | 
 |         // Skip partitions in the COW group | 
 |         if (group_name == android::snapshot::kCowGroupName) { | 
 |             continue; | 
 |         } | 
 |         partitions_to_keep.emplace(partition_name); | 
 |     } | 
 |  | 
 |     // Do not preserve the scratch partition. | 
 |     partitions_to_keep.erase("scratch"); | 
 |  | 
 |     if (!partitions_to_keep.empty()) { | 
 |         std::unique_ptr<MetadataBuilder> builder = MetadataBuilder::New(*new_metadata.get()); | 
 |         if (!builder->ImportPartitions(*old_metadata.get(), partitions_to_keep)) { | 
 |             return device->WriteFail( | 
 |                     "Old partitions are not compatible with the new super layout; wipe needed"); | 
 |         } | 
 |  | 
 |         new_metadata = builder->Export(); | 
 |         if (!new_metadata) { | 
 |             return device->WriteFail("Unable to build new partition table; wipe needed"); | 
 |         } | 
 |     } | 
 |  | 
 |     // Write the new table to every metadata slot. | 
 |     if (!UpdateAllPartitionMetadata(device, super_name, *new_metadata.get())) { | 
 |         return device->WriteFail("Unable to write new partition table"); | 
 |     } | 
 |     RemoveScratchPartition(); | 
 |     sync(); | 
 |     return device->WriteOkay("Successfully updated partition table"); | 
 | } |