|  | /* libs/pixelflinger/trap.cpp | 
|  | ** | 
|  | ** Copyright 2006, The Android Open Source Project | 
|  | ** | 
|  | ** Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | ** you may not use this file except in compliance with the License. | 
|  | ** You may obtain a copy of the License at | 
|  | ** | 
|  | **     http://www.apache.org/licenses/LICENSE-2.0 | 
|  | ** | 
|  | ** Unless required by applicable law or agreed to in writing, software | 
|  | ** distributed under the License is distributed on an "AS IS" BASIS, | 
|  | ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | ** See the License for the specific language governing permissions and | 
|  | ** limitations under the License. | 
|  | */ | 
|  |  | 
|  | #include <assert.h> | 
|  | #include <stdio.h> | 
|  | #include <stdlib.h> | 
|  |  | 
|  | #include "trap.h" | 
|  | #include "picker.h" | 
|  |  | 
|  | #include <cutils/log.h> | 
|  | #include <cutils/memory.h> | 
|  |  | 
|  | namespace android { | 
|  |  | 
|  | // ---------------------------------------------------------------------------- | 
|  |  | 
|  | // enable to see triangles edges | 
|  | #define DEBUG_TRANGLES  0 | 
|  |  | 
|  | // ---------------------------------------------------------------------------- | 
|  |  | 
|  | static void pointx_validate(void *con, const GGLcoord* c, GGLcoord r); | 
|  | static void pointx(void *con, const GGLcoord* c, GGLcoord r); | 
|  | static void aa_pointx(void *con, const GGLcoord* c, GGLcoord r); | 
|  | static void aa_nice_pointx(void *con, const GGLcoord* c, GGLcoord r); | 
|  |  | 
|  | static void linex_validate(void *con, const GGLcoord* v0, const GGLcoord* v1, GGLcoord w); | 
|  | static void linex(void *con, const GGLcoord* v0, const GGLcoord* v1, GGLcoord w); | 
|  | static void aa_linex(void *con, const GGLcoord* v0, const GGLcoord* v1, GGLcoord w); | 
|  |  | 
|  | static void recti_validate(void* c, GGLint l, GGLint t, GGLint r, GGLint b); | 
|  | static void recti(void* c, GGLint l, GGLint t, GGLint r, GGLint b); | 
|  |  | 
|  | static void trianglex_validate(void*, | 
|  | const GGLcoord*, const GGLcoord*, const GGLcoord*); | 
|  | static void trianglex_small(void*, | 
|  | const GGLcoord*, const GGLcoord*, const GGLcoord*); | 
|  | static void trianglex_big(void*, | 
|  | const GGLcoord*, const GGLcoord*, const GGLcoord*); | 
|  | static void aa_trianglex(void*, | 
|  | const GGLcoord*, const GGLcoord*, const GGLcoord*); | 
|  | static void trianglex_debug(void* con, | 
|  | const GGLcoord*, const GGLcoord*, const GGLcoord*); | 
|  |  | 
|  | static void aapolyx(void* con, | 
|  | const GGLcoord* pts, int count); | 
|  |  | 
|  | static inline int min(int a, int b) CONST; | 
|  | static inline int max(int a, int b) CONST; | 
|  | static inline int min(int a, int b, int c) CONST; | 
|  | static inline int max(int a, int b, int c) CONST; | 
|  |  | 
|  | // ---------------------------------------------------------------------------- | 
|  | #if 0 | 
|  | #pragma mark - | 
|  | #pragma mark Tools | 
|  | #endif | 
|  |  | 
|  | inline int min(int a, int b) { | 
|  | return a<b ? a : b; | 
|  | } | 
|  | inline int max(int a, int b) { | 
|  | return a<b ? b : a; | 
|  | } | 
|  | inline int min(int a, int b, int c) { | 
|  | return min(a,min(b,c)); | 
|  | } | 
|  | inline int max(int a, int b, int c) { | 
|  | return max(a,max(b,c)); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | static inline void swap(T& a, T& b) { | 
|  | T t(a); | 
|  | a = b; | 
|  | b = t; | 
|  | } | 
|  |  | 
|  | static void | 
|  | triangle_dump_points( const GGLcoord*  v0, | 
|  | const GGLcoord*  v1, | 
|  | const GGLcoord*  v2 ) | 
|  | { | 
|  | float tri = 1.0f / TRI_ONE; | 
|  | ALOGD("  P0=(%.3f, %.3f)  [%08x, %08x]\n" | 
|  | "  P1=(%.3f, %.3f)  [%08x, %08x]\n" | 
|  | "  P2=(%.3f, %.3f)  [%08x, %08x]\n", | 
|  | v0[0]*tri, v0[1]*tri, v0[0], v0[1], | 
|  | v1[0]*tri, v1[1]*tri, v1[0], v1[1], | 
|  | v2[0]*tri, v2[1]*tri, v2[0], v2[1] ); | 
|  | } | 
|  |  | 
|  | // ---------------------------------------------------------------------------- | 
|  | #if 0 | 
|  | #pragma mark - | 
|  | #pragma mark Misc | 
|  | #endif | 
|  |  | 
|  | void ggl_init_trap(context_t* c) | 
|  | { | 
|  | ggl_state_changed(c, GGL_PIXEL_PIPELINE_STATE|GGL_TMU_STATE|GGL_CB_STATE); | 
|  | } | 
|  |  | 
|  | void ggl_state_changed(context_t* c, int flags) | 
|  | { | 
|  | if (ggl_likely(!c->dirty)) { | 
|  | c->procs.pointx     = pointx_validate; | 
|  | c->procs.linex      = linex_validate; | 
|  | c->procs.recti      = recti_validate; | 
|  | c->procs.trianglex  = trianglex_validate; | 
|  | } | 
|  | c->dirty |= uint32_t(flags); | 
|  | } | 
|  |  | 
|  | // ---------------------------------------------------------------------------- | 
|  | #if 0 | 
|  | #pragma mark - | 
|  | #pragma mark Point | 
|  | #endif | 
|  |  | 
|  | void pointx_validate(void *con, const GGLcoord* v, GGLcoord rad) | 
|  | { | 
|  | GGL_CONTEXT(c, con); | 
|  | ggl_pick(c); | 
|  | if (c->state.needs.p & GGL_NEED_MASK(P_AA)) { | 
|  | if (c->state.enables & GGL_ENABLE_POINT_AA_NICE) { | 
|  | c->procs.pointx = aa_nice_pointx; | 
|  | } else { | 
|  | c->procs.pointx = aa_pointx; | 
|  | } | 
|  | } else { | 
|  | c->procs.pointx = pointx; | 
|  | } | 
|  | c->procs.pointx(con, v, rad); | 
|  | } | 
|  |  | 
|  | void pointx(void *con, const GGLcoord* v, GGLcoord rad) | 
|  | { | 
|  | GGL_CONTEXT(c, con); | 
|  | GGLcoord halfSize = TRI_ROUND(rad) >> 1; | 
|  | if (halfSize == 0) | 
|  | halfSize = TRI_HALF; | 
|  | GGLcoord xc = v[0]; | 
|  | GGLcoord yc = v[1]; | 
|  | if (halfSize & TRI_HALF) { // size odd | 
|  | xc = TRI_FLOOR(xc) + TRI_HALF; | 
|  | yc = TRI_FLOOR(yc) + TRI_HALF; | 
|  | } else { // size even | 
|  | xc = TRI_ROUND(xc); | 
|  | yc = TRI_ROUND(yc); | 
|  | } | 
|  | GGLint l = (xc - halfSize) >> TRI_FRACTION_BITS; | 
|  | GGLint t = (yc - halfSize) >> TRI_FRACTION_BITS; | 
|  | GGLint r = (xc + halfSize) >> TRI_FRACTION_BITS; | 
|  | GGLint b = (yc + halfSize) >> TRI_FRACTION_BITS; | 
|  | recti(c, l, t, r, b); | 
|  | } | 
|  |  | 
|  | // This way of computing the coverage factor, is more accurate and gives | 
|  | // better results for small circles, but it is also a lot slower. | 
|  | // Here we use super-sampling. | 
|  | static int32_t coverageNice(GGLcoord x, GGLcoord y, | 
|  | GGLcoord rmin, GGLcoord rmax, GGLcoord rr) | 
|  | { | 
|  | const GGLcoord d2 = x*x + y*y; | 
|  | if (d2 >= rmax) return 0; | 
|  | if (d2 < rmin)  return 0x7FFF; | 
|  |  | 
|  | const int kSamples              =  4; | 
|  | const int kInc                  =  4;    // 1/4 = 0.25 | 
|  | const int kCoverageUnit         =  1;    // 1/(4^2) = 0.0625 | 
|  | const GGLcoord kCoordOffset     = -6;    // -0.375 | 
|  |  | 
|  | int hits = 0; | 
|  | int x_sample = x + kCoordOffset; | 
|  | for (int i=0 ; i<kSamples ; i++, x_sample += kInc) { | 
|  | const int xval = rr - (x_sample * x_sample); | 
|  | int y_sample = y + kCoordOffset; | 
|  | for (int j=0 ; j<kSamples ; j++, y_sample += kInc) { | 
|  | if (xval - (y_sample * y_sample) > 0) | 
|  | hits += kCoverageUnit; | 
|  | } | 
|  | } | 
|  | return min(0x7FFF, hits << (15 - kSamples)); | 
|  | } | 
|  |  | 
|  |  | 
|  | void aa_nice_pointx(void *con, const GGLcoord* v, GGLcoord size) | 
|  | { | 
|  | GGL_CONTEXT(c, con); | 
|  |  | 
|  | GGLcoord rad = ((size + 1)>>1); | 
|  | GGLint l = (v[0] - rad) >> TRI_FRACTION_BITS; | 
|  | GGLint t = (v[1] - rad) >> TRI_FRACTION_BITS; | 
|  | GGLint r = (v[0] + rad + (TRI_ONE-1)) >> TRI_FRACTION_BITS; | 
|  | GGLint b = (v[1] + rad + (TRI_ONE-1)) >> TRI_FRACTION_BITS; | 
|  | GGLcoord xstart = TRI_FROM_INT(l) - v[0] + TRI_HALF; | 
|  | GGLcoord ystart = TRI_FROM_INT(t) - v[1] + TRI_HALF; | 
|  |  | 
|  | // scissor... | 
|  | if (l < GGLint(c->state.scissor.left)) { | 
|  | xstart += TRI_FROM_INT(c->state.scissor.left-l); | 
|  | l = GGLint(c->state.scissor.left); | 
|  | } | 
|  | if (t < GGLint(c->state.scissor.top)) { | 
|  | ystart += TRI_FROM_INT(c->state.scissor.top-t); | 
|  | t = GGLint(c->state.scissor.top); | 
|  | } | 
|  | if (r > GGLint(c->state.scissor.right)) { | 
|  | r = GGLint(c->state.scissor.right); | 
|  | } | 
|  | if (b > GGLint(c->state.scissor.bottom)) { | 
|  | b = GGLint(c->state.scissor.bottom); | 
|  | } | 
|  |  | 
|  | int xc = r - l; | 
|  | int yc = b - t; | 
|  | if (xc>0 && yc>0) { | 
|  | int16_t* covPtr = c->state.buffers.coverage; | 
|  | const int32_t sqr2Over2 = 0xC; // rounded up | 
|  | GGLcoord rr = rad*rad; | 
|  | GGLcoord rmin = (rad - sqr2Over2)*(rad - sqr2Over2); | 
|  | GGLcoord rmax = (rad + sqr2Over2)*(rad + sqr2Over2); | 
|  | GGLcoord y = ystart; | 
|  | c->iterators.xl = l; | 
|  | c->iterators.xr = r; | 
|  | c->init_y(c, t); | 
|  | do { | 
|  | // compute coverage factors for each pixel | 
|  | GGLcoord x = xstart; | 
|  | for (int i=l ; i<r ; i++) { | 
|  | covPtr[i] = coverageNice(x, y, rmin, rmax, rr); | 
|  | x += TRI_ONE; | 
|  | } | 
|  | y += TRI_ONE; | 
|  | c->scanline(c); | 
|  | c->step_y(c); | 
|  | } while (--yc); | 
|  | } | 
|  | } | 
|  |  | 
|  | // This is a cheap way of computing the coverage factor for a circle. | 
|  | // We just lerp between the circles of radii r-sqrt(2)/2 and r+sqrt(2)/2 | 
|  | static inline int32_t coverageFast(GGLcoord x, GGLcoord y, | 
|  | GGLcoord rmin, GGLcoord rmax, GGLcoord scale) | 
|  | { | 
|  | const GGLcoord d2 = x*x + y*y; | 
|  | if (d2 >= rmax) return 0; | 
|  | if (d2 < rmin)  return 0x7FFF; | 
|  | return 0x7FFF - (d2-rmin)*scale; | 
|  | } | 
|  |  | 
|  | void aa_pointx(void *con, const GGLcoord* v, GGLcoord size) | 
|  | { | 
|  | GGL_CONTEXT(c, con); | 
|  |  | 
|  | GGLcoord rad = ((size + 1)>>1); | 
|  | GGLint l = (v[0] - rad) >> TRI_FRACTION_BITS; | 
|  | GGLint t = (v[1] - rad) >> TRI_FRACTION_BITS; | 
|  | GGLint r = (v[0] + rad + (TRI_ONE-1)) >> TRI_FRACTION_BITS; | 
|  | GGLint b = (v[1] + rad + (TRI_ONE-1)) >> TRI_FRACTION_BITS; | 
|  | GGLcoord xstart = TRI_FROM_INT(l) - v[0] + TRI_HALF; | 
|  | GGLcoord ystart = TRI_FROM_INT(t) - v[1] + TRI_HALF; | 
|  |  | 
|  | // scissor... | 
|  | if (l < GGLint(c->state.scissor.left)) { | 
|  | xstart += TRI_FROM_INT(c->state.scissor.left-l); | 
|  | l = GGLint(c->state.scissor.left); | 
|  | } | 
|  | if (t < GGLint(c->state.scissor.top)) { | 
|  | ystart += TRI_FROM_INT(c->state.scissor.top-t); | 
|  | t = GGLint(c->state.scissor.top); | 
|  | } | 
|  | if (r > GGLint(c->state.scissor.right)) { | 
|  | r = GGLint(c->state.scissor.right); | 
|  | } | 
|  | if (b > GGLint(c->state.scissor.bottom)) { | 
|  | b = GGLint(c->state.scissor.bottom); | 
|  | } | 
|  |  | 
|  | int xc = r - l; | 
|  | int yc = b - t; | 
|  | if (xc>0 && yc>0) { | 
|  | int16_t* covPtr = c->state.buffers.coverage; | 
|  | rad <<= 4; | 
|  | const int32_t sqr2Over2 = 0xB5;    // fixed-point 24.8 | 
|  | GGLcoord rmin = rad - sqr2Over2; | 
|  | GGLcoord rmax = rad + sqr2Over2; | 
|  | GGLcoord scale; | 
|  | rmin *= rmin; | 
|  | rmax *= rmax; | 
|  | scale = 0x800000 / (rmax - rmin); | 
|  | rmin >>= 8; | 
|  | rmax >>= 8; | 
|  |  | 
|  | GGLcoord y = ystart; | 
|  | c->iterators.xl = l; | 
|  | c->iterators.xr = r; | 
|  | c->init_y(c, t); | 
|  |  | 
|  | do { | 
|  | // compute coverage factors for each pixel | 
|  | GGLcoord x = xstart; | 
|  | for (int i=l ; i<r ; i++) { | 
|  | covPtr[i] = coverageFast(x, y, rmin, rmax, scale); | 
|  | x += TRI_ONE; | 
|  | } | 
|  | y += TRI_ONE; | 
|  | c->scanline(c); | 
|  | c->step_y(c); | 
|  | } while (--yc); | 
|  | } | 
|  | } | 
|  |  | 
|  | // ---------------------------------------------------------------------------- | 
|  | #if 0 | 
|  | #pragma mark - | 
|  | #pragma mark Line | 
|  | #endif | 
|  |  | 
|  | void linex_validate(void *con, const GGLcoord* v0, const GGLcoord* v1, GGLcoord w) | 
|  | { | 
|  | GGL_CONTEXT(c, con); | 
|  | ggl_pick(c); | 
|  | if (c->state.needs.p & GGL_NEED_MASK(P_AA)) { | 
|  | c->procs.linex = aa_linex; | 
|  | } else { | 
|  | c->procs.linex = linex; | 
|  | } | 
|  | c->procs.linex(con, v0, v1, w); | 
|  | } | 
|  |  | 
|  | static void linex(void *con, const GGLcoord* v0, const GGLcoord* v1, GGLcoord width) | 
|  | { | 
|  | GGL_CONTEXT(c, con); | 
|  | GGLcoord v[4][2]; | 
|  | v[0][0] = v0[0];    v[0][1] = v0[1]; | 
|  | v[1][0] = v1[0];    v[1][1] = v1[1]; | 
|  | v0 = v[0]; | 
|  | v1 = v[1]; | 
|  | const GGLcoord dx = abs(v0[0] - v1[0]); | 
|  | const GGLcoord dy = abs(v0[1] - v1[1]); | 
|  | GGLcoord nx, ny; | 
|  | nx = ny = 0; | 
|  |  | 
|  | GGLcoord halfWidth = TRI_ROUND(width) >> 1; | 
|  | if (halfWidth == 0) | 
|  | halfWidth = TRI_HALF; | 
|  |  | 
|  | ((dx > dy) ? ny : nx) = halfWidth; | 
|  | v[2][0] = v1[0];    v[2][1] = v1[1]; | 
|  | v[3][0] = v0[0];    v[3][1] = v0[1]; | 
|  | v[0][0] += nx;      v[0][1] += ny; | 
|  | v[1][0] += nx;      v[1][1] += ny; | 
|  | v[2][0] -= nx;      v[2][1] -= ny; | 
|  | v[3][0] -= nx;      v[3][1] -= ny; | 
|  | trianglex_big(con, v[0], v[1], v[2]); | 
|  | trianglex_big(con, v[0], v[2], v[3]); | 
|  | } | 
|  |  | 
|  | static void aa_linex(void *con, const GGLcoord* v0, const GGLcoord* v1, GGLcoord width) | 
|  | { | 
|  | GGL_CONTEXT(c, con); | 
|  | GGLcoord v[4][2]; | 
|  | v[0][0] = v0[0];    v[0][1] = v0[1]; | 
|  | v[1][0] = v1[0];    v[1][1] = v1[1]; | 
|  | v0 = v[0]; | 
|  | v1 = v[1]; | 
|  |  | 
|  | const GGLcoord dx = v0[0] - v1[0]; | 
|  | const GGLcoord dy = v0[1] - v1[1]; | 
|  | GGLcoord nx = -dy; | 
|  | GGLcoord ny =  dx; | 
|  |  | 
|  | // generally, this will be well below 1.0 | 
|  | const GGLfixed norm = gglMulx(width, gglSqrtRecipx(nx*nx+ny*ny), 4); | 
|  | nx = gglMulx(nx, norm, 21); | 
|  | ny = gglMulx(ny, norm, 21); | 
|  |  | 
|  | v[2][0] = v1[0];    v[2][1] = v1[1]; | 
|  | v[3][0] = v0[0];    v[3][1] = v0[1]; | 
|  | v[0][0] += nx;      v[0][1] += ny; | 
|  | v[1][0] += nx;      v[1][1] += ny; | 
|  | v[2][0] -= nx;      v[2][1] -= ny; | 
|  | v[3][0] -= nx;      v[3][1] -= ny; | 
|  | aapolyx(con, v[0], 4); | 
|  | } | 
|  |  | 
|  |  | 
|  | // ---------------------------------------------------------------------------- | 
|  | #if 0 | 
|  | #pragma mark - | 
|  | #pragma mark Rect | 
|  | #endif | 
|  |  | 
|  | void recti_validate(void *con, GGLint l, GGLint t, GGLint r, GGLint b) | 
|  | { | 
|  | GGL_CONTEXT(c, con); | 
|  | ggl_pick(c); | 
|  | c->procs.recti = recti; | 
|  | c->procs.recti(con, l, t, r, b); | 
|  | } | 
|  |  | 
|  | void recti(void* con, GGLint l, GGLint t, GGLint r, GGLint b) | 
|  | { | 
|  | GGL_CONTEXT(c, con); | 
|  |  | 
|  | // scissor... | 
|  | if (l < GGLint(c->state.scissor.left)) | 
|  | l = GGLint(c->state.scissor.left); | 
|  | if (t < GGLint(c->state.scissor.top)) | 
|  | t = GGLint(c->state.scissor.top); | 
|  | if (r > GGLint(c->state.scissor.right)) | 
|  | r = GGLint(c->state.scissor.right); | 
|  | if (b > GGLint(c->state.scissor.bottom)) | 
|  | b = GGLint(c->state.scissor.bottom); | 
|  |  | 
|  | int xc = r - l; | 
|  | int yc = b - t; | 
|  | if (xc>0 && yc>0) { | 
|  | c->iterators.xl = l; | 
|  | c->iterators.xr = r; | 
|  | c->init_y(c, t); | 
|  | c->rect(c, yc); | 
|  | } | 
|  | } | 
|  |  | 
|  | // ---------------------------------------------------------------------------- | 
|  | #if 0 | 
|  | #pragma mark - | 
|  | #pragma mark Triangle / Debugging | 
|  | #endif | 
|  |  | 
|  | static void scanline_set(context_t* c) | 
|  | { | 
|  | int32_t x = c->iterators.xl; | 
|  | size_t ct = c->iterators.xr - x; | 
|  | int32_t y = c->iterators.y; | 
|  | surface_t* cb = &(c->state.buffers.color); | 
|  | const GGLFormat* fp = &(c->formats[cb->format]); | 
|  | uint8_t* dst = reinterpret_cast<uint8_t*>(cb->data) + | 
|  | (x + (cb->stride * y)) * fp->size; | 
|  | const size_t size = ct * fp->size; | 
|  | memset(dst, 0xFF, size); | 
|  | } | 
|  |  | 
|  | static void trianglex_debug(void* con, | 
|  | const GGLcoord* v0, const GGLcoord* v1, const GGLcoord* v2) | 
|  | { | 
|  | GGL_CONTEXT(c, con); | 
|  | if (c->state.needs.p & GGL_NEED_MASK(P_AA)) { | 
|  | aa_trianglex(con,v0,v1,v2); | 
|  | } else { | 
|  | trianglex_big(con,v0,v1,v2); | 
|  | } | 
|  | void (*save_scanline)(context_t*)  = c->scanline; | 
|  | c->scanline = scanline_set; | 
|  | linex(con, v0, v1, TRI_ONE); | 
|  | linex(con, v1, v2, TRI_ONE); | 
|  | linex(con, v2, v0, TRI_ONE); | 
|  | c->scanline = save_scanline; | 
|  | } | 
|  |  | 
|  | static void trianglex_xor(void* con, | 
|  | const GGLcoord* v0, const GGLcoord* v1, const GGLcoord* v2) | 
|  | { | 
|  | trianglex_big(con,v0,v1,v2); | 
|  | trianglex_small(con,v0,v1,v2); | 
|  | } | 
|  |  | 
|  | // ---------------------------------------------------------------------------- | 
|  | #if 0 | 
|  | #pragma mark - | 
|  | #pragma mark Triangle | 
|  | #endif | 
|  |  | 
|  | void trianglex_validate(void *con, | 
|  | const GGLcoord* v0, const GGLcoord* v1, const GGLcoord* v2) | 
|  | { | 
|  | GGL_CONTEXT(c, con); | 
|  | ggl_pick(c); | 
|  | if (c->state.needs.p & GGL_NEED_MASK(P_AA)) { | 
|  | c->procs.trianglex = DEBUG_TRANGLES ? trianglex_debug : aa_trianglex; | 
|  | } else { | 
|  | c->procs.trianglex = DEBUG_TRANGLES ? trianglex_debug : trianglex_big; | 
|  | } | 
|  | c->procs.trianglex(con, v0, v1, v2); | 
|  | } | 
|  |  | 
|  | // ---------------------------------------------------------------------------- | 
|  |  | 
|  | void trianglex_small(void* con, | 
|  | const GGLcoord* v0, const GGLcoord* v1, const GGLcoord* v2) | 
|  | { | 
|  | GGL_CONTEXT(c, con); | 
|  |  | 
|  | // vertices are in 28.4 fixed point, which allows | 
|  | // us to use 32 bits multiplies below. | 
|  | int32_t x0 = v0[0]; | 
|  | int32_t y0 = v0[1]; | 
|  | int32_t x1 = v1[0]; | 
|  | int32_t y1 = v1[1]; | 
|  | int32_t x2 = v2[0]; | 
|  | int32_t y2 = v2[1]; | 
|  |  | 
|  | int32_t dx01 = x0 - x1; | 
|  | int32_t dy20 = y2 - y0; | 
|  | int32_t dy01 = y0 - y1; | 
|  | int32_t dx20 = x2 - x0; | 
|  |  | 
|  | // The code below works only with CCW triangles | 
|  | // so if we get a CW triangle, we need to swap two of its vertices | 
|  | if (dx01*dy20 < dy01*dx20) { | 
|  | swap(x0, x1); | 
|  | swap(y0, y1); | 
|  | dx01 = x0 - x1; | 
|  | dy01 = y0 - y1; | 
|  | dx20 = x2 - x0; | 
|  | dy20 = y2 - y0; | 
|  | } | 
|  | int32_t dx12 = x1 - x2; | 
|  | int32_t dy12 = y1 - y2; | 
|  |  | 
|  | // bounding box & scissor | 
|  | const int32_t bminx = TRI_FLOOR(min(x0, x1, x2)) >> TRI_FRACTION_BITS; | 
|  | const int32_t bminy = TRI_FLOOR(min(y0, y1, y2)) >> TRI_FRACTION_BITS; | 
|  | const int32_t bmaxx = TRI_CEIL( max(x0, x1, x2)) >> TRI_FRACTION_BITS; | 
|  | const int32_t bmaxy = TRI_CEIL( max(y0, y1, y2)) >> TRI_FRACTION_BITS; | 
|  | const int32_t minx = max(bminx, c->state.scissor.left); | 
|  | const int32_t miny = max(bminy, c->state.scissor.top); | 
|  | const int32_t maxx = min(bmaxx, c->state.scissor.right); | 
|  | const int32_t maxy = min(bmaxy, c->state.scissor.bottom); | 
|  | if ((minx >= maxx) || (miny >= maxy)) | 
|  | return; // too small or clipped out... | 
|  |  | 
|  | // step equations to the bounding box and snap to pixel center | 
|  | const int32_t my = (miny << TRI_FRACTION_BITS) + TRI_HALF; | 
|  | const int32_t mx = (minx << TRI_FRACTION_BITS) + TRI_HALF; | 
|  | int32_t ey0 = dy01 * (x0 - mx) - dx01 * (y0 - my); | 
|  | int32_t ey1 = dy12 * (x1 - mx) - dx12 * (y1 - my); | 
|  | int32_t ey2 = dy20 * (x2 - mx) - dx20 * (y2 - my); | 
|  |  | 
|  | // right-exclusive fill rule, to avoid rare cases | 
|  | // of over drawing | 
|  | if (dy01<0 || (dy01 == 0 && dx01>0)) ey0++; | 
|  | if (dy12<0 || (dy12 == 0 && dx12>0)) ey1++; | 
|  | if (dy20<0 || (dy20 == 0 && dx20>0)) ey2++; | 
|  |  | 
|  | c->init_y(c, miny); | 
|  | for (int32_t y = miny; y < maxy; y++) { | 
|  | register int32_t ex0 = ey0; | 
|  | register int32_t ex1 = ey1; | 
|  | register int32_t ex2 = ey2; | 
|  | register int32_t xl, xr; | 
|  | for (xl=minx ; xl<maxx ; xl++) { | 
|  | if (ex0>0 && ex1>0 && ex2>0) | 
|  | break; // all strictly positive | 
|  | ex0 -= dy01 << TRI_FRACTION_BITS; | 
|  | ex1 -= dy12 << TRI_FRACTION_BITS; | 
|  | ex2 -= dy20 << TRI_FRACTION_BITS; | 
|  | } | 
|  | xr = xl; | 
|  | for ( ; xr<maxx ; xr++) { | 
|  | if (!(ex0>0 && ex1>0 && ex2>0)) | 
|  | break; // not all strictly positive | 
|  | ex0 -= dy01 << TRI_FRACTION_BITS; | 
|  | ex1 -= dy12 << TRI_FRACTION_BITS; | 
|  | ex2 -= dy20 << TRI_FRACTION_BITS; | 
|  | } | 
|  |  | 
|  | if (xl < xr) { | 
|  | c->iterators.xl = xl; | 
|  | c->iterators.xr = xr; | 
|  | c->scanline(c); | 
|  | } | 
|  | c->step_y(c); | 
|  |  | 
|  | ey0 += dx01 << TRI_FRACTION_BITS; | 
|  | ey1 += dx12 << TRI_FRACTION_BITS; | 
|  | ey2 += dx20 << TRI_FRACTION_BITS; | 
|  | } | 
|  | } | 
|  |  | 
|  | // ---------------------------------------------------------------------------- | 
|  | #if 0 | 
|  | #pragma mark - | 
|  | #endif | 
|  |  | 
|  | // the following routine fills a triangle via edge stepping, which | 
|  | // unfortunately requires divisions in the setup phase to get right, | 
|  | // it should probably only be used for relatively large trianges | 
|  |  | 
|  |  | 
|  | // x = y*DX/DY    (ou DX and DY are constants, DY > 0, et y >= 0) | 
|  | // | 
|  | // for an equation of the type: | 
|  | //      x' = y*K/2^p     (with K and p constants "carefully chosen") | 
|  | // | 
|  | // We can now do a DDA without precision loss. We define 'e' by: | 
|  | //      x' - x = y*(DX/DY - K/2^p) = y*e | 
|  | // | 
|  | // If we choose K = round(DX*2^p/DY) then, | 
|  | //      abs(e) <= 1/2^(p+1) by construction | 
|  | // | 
|  | // therefore abs(x'-x) = y*abs(e) <= y/2^(p+1) <= DY/2^(p+1) <= DMAX/2^(p+1) | 
|  | // | 
|  | // which means that if DMAX <= 2^p, therefore abs(x-x') <= 1/2, including | 
|  | // at the last line. In fact, it's even a strict inequality except in one | 
|  | // extrem case (DY == DMAX et e = +/- 1/2) | 
|  | // | 
|  | // Applying that to our coordinates, we need 2^p >= 4096*16 = 65536 | 
|  | // so p = 16 is enough, we're so lucky! | 
|  |  | 
|  | const int TRI_ITERATORS_BITS = 16; | 
|  |  | 
|  | struct Edge | 
|  | { | 
|  | int32_t  x;      // edge position in 16.16 coordinates | 
|  | int32_t  x_incr; // on each step, increment x by that amount | 
|  | int32_t  y_top;  // starting scanline, 16.4 format | 
|  | int32_t  y_bot; | 
|  | }; | 
|  |  | 
|  | static void | 
|  | edge_dump( Edge*  edge ) | 
|  | { | 
|  | ALOGI( "  top=%d (%.3f)  bot=%d (%.3f)  x=%d (%.3f)  ix=%d (%.3f)", | 
|  | edge->y_top, edge->y_top/float(TRI_ONE), | 
|  | edge->y_bot, edge->y_bot/float(TRI_ONE), | 
|  | edge->x, edge->x/float(FIXED_ONE), | 
|  | edge->x_incr, edge->x_incr/float(FIXED_ONE) ); | 
|  | } | 
|  |  | 
|  | static void | 
|  | triangle_dump_edges( Edge*  edges, | 
|  | int            count ) | 
|  | { | 
|  | ALOGI( "%d edge%s:\n", count, count == 1 ? "" : "s" ); | 
|  | for ( ; count > 0; count--, edges++ ) | 
|  | edge_dump( edges ); | 
|  | } | 
|  |  | 
|  | // the following function sets up an edge, it assumes | 
|  | // that ymin and ymax are in already in the 'reduced' | 
|  | // format | 
|  | static __attribute__((noinline)) | 
|  | void edge_setup( | 
|  | Edge*           edges, | 
|  | int*            pcount, | 
|  | const GGLcoord* p1, | 
|  | const GGLcoord* p2, | 
|  | int32_t         ymin, | 
|  | int32_t         ymax ) | 
|  | { | 
|  | const GGLfixed*  top = p1; | 
|  | const GGLfixed*  bot = p2; | 
|  | Edge*    edge = edges + *pcount; | 
|  |  | 
|  | if (top[1] > bot[1]) { | 
|  | swap(top, bot); | 
|  | } | 
|  |  | 
|  | int  y1 = top[1] | 1; | 
|  | int  y2 = bot[1] | 1; | 
|  | int  dy = y2 - y1; | 
|  |  | 
|  | if ( dy == 0 || y1 > ymax || y2 < ymin ) | 
|  | return; | 
|  |  | 
|  | if ( y1 > ymin ) | 
|  | ymin = TRI_SNAP_NEXT_HALF(y1); | 
|  |  | 
|  | if ( y2 < ymax ) | 
|  | ymax = TRI_SNAP_PREV_HALF(y2); | 
|  |  | 
|  | if ( ymin > ymax )  // when the edge doesn't cross any scanline | 
|  | return; | 
|  |  | 
|  | const int x1 = top[0]; | 
|  | const int dx = bot[0] - x1; | 
|  | const int shift = TRI_ITERATORS_BITS - TRI_FRACTION_BITS; | 
|  |  | 
|  | // setup edge fields | 
|  | // We add 0.5 to edge->x here because it simplifies the rounding | 
|  | // in triangle_sweep_edges() -- this doesn't change the ordering of 'x' | 
|  | edge->x      = (x1 << shift) + (1LU << (TRI_ITERATORS_BITS-1)); | 
|  | edge->x_incr = 0; | 
|  | edge->y_top  = ymin; | 
|  | edge->y_bot  = ymax; | 
|  |  | 
|  | if (ggl_likely(ymin <= ymax && dx)) { | 
|  | edge->x_incr = gglDivQ16(dx, dy); | 
|  | } | 
|  | if (ggl_likely(y1 < ymin)) { | 
|  | int32_t xadjust = (edge->x_incr * (ymin-y1)) >> TRI_FRACTION_BITS; | 
|  | edge->x += xadjust; | 
|  | } | 
|  |  | 
|  | ++*pcount; | 
|  | } | 
|  |  | 
|  |  | 
|  | static void | 
|  | triangle_sweep_edges( Edge*  left, | 
|  | Edge*  right, | 
|  | int            ytop, | 
|  | int            ybot, | 
|  | context_t*     c ) | 
|  | { | 
|  | int count = ((ybot - ytop)>>TRI_FRACTION_BITS) + 1; | 
|  | if (count<=0) return; | 
|  |  | 
|  | // sort the edges horizontally | 
|  | if ((left->x > right->x) || | 
|  | ((left->x == right->x) && (left->x_incr > right->x_incr))) { | 
|  | swap(left, right); | 
|  | } | 
|  |  | 
|  | int left_x = left->x; | 
|  | int right_x = right->x; | 
|  | const int left_xi = left->x_incr; | 
|  | const int right_xi  = right->x_incr; | 
|  | left->x  += left_xi * count; | 
|  | right->x += right_xi * count; | 
|  |  | 
|  | const int xmin = c->state.scissor.left; | 
|  | const int xmax = c->state.scissor.right; | 
|  | do { | 
|  | // horizontal scissoring | 
|  | const int32_t xl = max(left_x  >> TRI_ITERATORS_BITS, xmin); | 
|  | const int32_t xr = min(right_x >> TRI_ITERATORS_BITS, xmax); | 
|  | left_x  += left_xi; | 
|  | right_x += right_xi; | 
|  | // invoke the scanline rasterizer | 
|  | if (ggl_likely(xl < xr)) { | 
|  | c->iterators.xl = xl; | 
|  | c->iterators.xr = xr; | 
|  | c->scanline(c); | 
|  | } | 
|  | c->step_y(c); | 
|  | } while (--count); | 
|  | } | 
|  |  | 
|  |  | 
|  | void trianglex_big(void* con, | 
|  | const GGLcoord* v0, const GGLcoord* v1, const GGLcoord* v2) | 
|  | { | 
|  | GGL_CONTEXT(c, con); | 
|  |  | 
|  | Edge edges[3]; | 
|  | int num_edges = 0; | 
|  | int32_t ymin = TRI_FROM_INT(c->state.scissor.top)    + TRI_HALF; | 
|  | int32_t ymax = TRI_FROM_INT(c->state.scissor.bottom) - TRI_HALF; | 
|  |  | 
|  | edge_setup( edges, &num_edges, v0, v1, ymin, ymax ); | 
|  | edge_setup( edges, &num_edges, v0, v2, ymin, ymax ); | 
|  | edge_setup( edges, &num_edges, v1, v2, ymin, ymax ); | 
|  |  | 
|  | if (ggl_unlikely(num_edges<2))  // for really tiny triangles that don't | 
|  | return;                     // cross any scanline centers | 
|  |  | 
|  | Edge* left  = &edges[0]; | 
|  | Edge* right = &edges[1]; | 
|  | Edge* other = &edges[2]; | 
|  | int32_t y_top = min(left->y_top, right->y_top); | 
|  | int32_t y_bot = max(left->y_bot, right->y_bot); | 
|  |  | 
|  | if (ggl_likely(num_edges==3)) { | 
|  | y_top = min(y_top, edges[2].y_top); | 
|  | y_bot = max(y_bot, edges[2].y_bot); | 
|  | if (edges[0].y_top > y_top) { | 
|  | other = &edges[0]; | 
|  | left  = &edges[2]; | 
|  | } else if (edges[1].y_top > y_top) { | 
|  | other = &edges[1]; | 
|  | right = &edges[2]; | 
|  | } | 
|  | } | 
|  |  | 
|  | c->init_y(c, y_top >> TRI_FRACTION_BITS); | 
|  |  | 
|  | int32_t y_mid = min(left->y_bot, right->y_bot); | 
|  | triangle_sweep_edges( left, right, y_top, y_mid, c ); | 
|  |  | 
|  | // second scanline sweep loop, if necessary | 
|  | y_mid += TRI_ONE; | 
|  | if (y_mid <= y_bot) { | 
|  | ((left->y_bot == y_bot) ? right : left) = other; | 
|  | if (other->y_top < y_mid) { | 
|  | other->x += other->x_incr; | 
|  | } | 
|  | triangle_sweep_edges( left, right, y_mid, y_bot, c ); | 
|  | } | 
|  | } | 
|  |  | 
|  | void aa_trianglex(void* con, | 
|  | const GGLcoord* a, const GGLcoord* b, const GGLcoord* c) | 
|  | { | 
|  | GGLcoord pts[6] = { a[0], a[1], b[0], b[1], c[0], c[1] }; | 
|  | aapolyx(con, pts, 3); | 
|  | } | 
|  |  | 
|  | // ---------------------------------------------------------------------------- | 
|  | #if 0 | 
|  | #pragma mark - | 
|  | #endif | 
|  |  | 
|  | struct AAEdge | 
|  | { | 
|  | GGLfixed x;         // edge position in 12.16 coordinates | 
|  | GGLfixed x_incr;    // on each y step, increment x by that amount | 
|  | GGLfixed y_incr;    // on each x step, increment y by that amount | 
|  | int16_t y_top;      // starting scanline, 12.4 format | 
|  | int16_t y_bot;      // starting scanline, 12.4 format | 
|  | void dump(); | 
|  | }; | 
|  |  | 
|  | void AAEdge::dump() | 
|  | { | 
|  | float tri  = 1.0f / TRI_ONE; | 
|  | float iter = 1.0f / (1<<TRI_ITERATORS_BITS); | 
|  | float fix  = 1.0f / FIXED_ONE; | 
|  | ALOGD(   "x=%08x (%.3f), " | 
|  | "x_incr=%08x (%.3f), y_incr=%08x (%.3f), " | 
|  | "y_top=%08x (%.3f), y_bot=%08x (%.3f) ", | 
|  | x, x*fix, | 
|  | x_incr, x_incr*iter, | 
|  | y_incr, y_incr*iter, | 
|  | y_top, y_top*tri, | 
|  | y_bot, y_bot*tri ); | 
|  | } | 
|  |  | 
|  | // the following function sets up an edge, it assumes | 
|  | // that ymin and ymax are in already in the 'reduced' | 
|  | // format | 
|  | static __attribute__((noinline)) | 
|  | void aa_edge_setup( | 
|  | AAEdge*         edges, | 
|  | int*            pcount, | 
|  | const GGLcoord* p1, | 
|  | const GGLcoord* p2, | 
|  | int32_t         ymin, | 
|  | int32_t         ymax ) | 
|  | { | 
|  | const GGLfixed*  top = p1; | 
|  | const GGLfixed*  bot = p2; | 
|  | AAEdge* edge = edges + *pcount; | 
|  |  | 
|  | if (top[1] > bot[1]) | 
|  | swap(top, bot); | 
|  |  | 
|  | int  y1 = top[1]; | 
|  | int  y2 = bot[1]; | 
|  | int  dy = y2 - y1; | 
|  |  | 
|  | if (dy==0 || y1>ymax || y2<ymin) | 
|  | return; | 
|  |  | 
|  | if (y1 > ymin) | 
|  | ymin = y1; | 
|  |  | 
|  | if (y2 < ymax) | 
|  | ymax = y2; | 
|  |  | 
|  | const int x1 = top[0]; | 
|  | const int dx = bot[0] - x1; | 
|  | const int shift = FIXED_BITS - TRI_FRACTION_BITS; | 
|  |  | 
|  | // setup edge fields | 
|  | edge->x      = x1 << shift; | 
|  | edge->x_incr = 0; | 
|  | edge->y_top  = ymin; | 
|  | edge->y_bot  = ymax; | 
|  | edge->y_incr = 0x7FFFFFFF; | 
|  |  | 
|  | if (ggl_likely(ymin <= ymax && dx)) { | 
|  | edge->x_incr = gglDivQ16(dx, dy); | 
|  | if (dx != 0) { | 
|  | edge->y_incr = abs(gglDivQ16(dy, dx)); | 
|  | } | 
|  | } | 
|  | if (ggl_likely(y1 < ymin)) { | 
|  | int32_t xadjust = (edge->x_incr * (ymin-y1)) | 
|  | >> (TRI_FRACTION_BITS + TRI_ITERATORS_BITS - FIXED_BITS); | 
|  | edge->x += xadjust; | 
|  | } | 
|  |  | 
|  | ++*pcount; | 
|  | } | 
|  |  | 
|  |  | 
|  | typedef int (*compar_t)(const void*, const void*); | 
|  | static int compare_edges(const AAEdge *e0, const AAEdge *e1) { | 
|  | if (e0->y_top > e1->y_top)      return 1; | 
|  | if (e0->y_top < e1->y_top)      return -1; | 
|  | if (e0->x > e1->x)              return 1; | 
|  | if (e0->x < e1->x)              return -1; | 
|  | if (e0->x_incr > e1->x_incr)    return 1; | 
|  | if (e0->x_incr < e1->x_incr)    return -1; | 
|  | return 0; // same edges, should never happen | 
|  | } | 
|  |  | 
|  | static inline | 
|  | void SET_COVERAGE(int16_t*& p, int32_t value, ssize_t n) | 
|  | { | 
|  | android_memset16((uint16_t*)p, value, n*2); | 
|  | p += n; | 
|  | } | 
|  |  | 
|  | static inline | 
|  | void ADD_COVERAGE(int16_t*& p, int32_t value) | 
|  | { | 
|  | value = *p + value; | 
|  | if (value >= 0x8000) | 
|  | value = 0x7FFF; | 
|  | *p++ = value; | 
|  | } | 
|  |  | 
|  | static inline | 
|  | void SUB_COVERAGE(int16_t*& p, int32_t value) | 
|  | { | 
|  | value = *p - value; | 
|  | value &= ~(value>>31); | 
|  | *p++ = value; | 
|  | } | 
|  |  | 
|  | void aapolyx(void* con, | 
|  | const GGLcoord* pts, int count) | 
|  | { | 
|  | /* | 
|  | * NOTE: This routine assumes that the polygon has been clipped to the | 
|  | * viewport already, that is, no vertex lies outside of the framebuffer. | 
|  | * If this happens, the code below won't corrupt memory but the | 
|  | * coverage values may not be correct. | 
|  | */ | 
|  |  | 
|  | GGL_CONTEXT(c, con); | 
|  |  | 
|  | // we do only quads for now (it's used for thick lines) | 
|  | if ((count>4) || (count<2)) return; | 
|  |  | 
|  | // take scissor into account | 
|  | const int xmin = c->state.scissor.left; | 
|  | const int xmax = c->state.scissor.right; | 
|  | if (xmin >= xmax) return; | 
|  |  | 
|  | // generate edges from the vertices | 
|  | int32_t ymin = TRI_FROM_INT(c->state.scissor.top); | 
|  | int32_t ymax = TRI_FROM_INT(c->state.scissor.bottom); | 
|  | if (ymin >= ymax) return; | 
|  |  | 
|  | AAEdge edges[4]; | 
|  | int num_edges = 0; | 
|  | GGLcoord const * p = pts; | 
|  | for (int i=0 ; i<count-1 ; i++, p+=2) { | 
|  | aa_edge_setup(edges, &num_edges, p, p+2, ymin, ymax); | 
|  | } | 
|  | aa_edge_setup(edges, &num_edges, p, pts, ymin, ymax ); | 
|  | if (ggl_unlikely(num_edges<2)) | 
|  | return; | 
|  |  | 
|  | // sort the edge list top to bottom, left to right. | 
|  | qsort(edges, num_edges, sizeof(AAEdge), (compar_t)compare_edges); | 
|  |  | 
|  | int16_t* const covPtr = c->state.buffers.coverage; | 
|  | memset(covPtr+xmin, 0, (xmax-xmin)*sizeof(*covPtr)); | 
|  |  | 
|  | // now, sweep all edges in order | 
|  | // start with the 2 first edges. We know that they share their top | 
|  | // vertex, by construction. | 
|  | int i = 2; | 
|  | AAEdge* left  = &edges[0]; | 
|  | AAEdge* right = &edges[1]; | 
|  | int32_t yt = left->y_top; | 
|  | GGLfixed l = left->x; | 
|  | GGLfixed r = right->x; | 
|  | int retire = 0; | 
|  | int16_t* coverage; | 
|  |  | 
|  | // at this point we can initialize the rasterizer | 
|  | c->init_y(c, yt>>TRI_FRACTION_BITS); | 
|  | c->iterators.xl = xmax; | 
|  | c->iterators.xr = xmin; | 
|  |  | 
|  | do { | 
|  | int32_t y = min(min(left->y_bot, right->y_bot), TRI_FLOOR(yt + TRI_ONE)); | 
|  | const int32_t shift = TRI_FRACTION_BITS + TRI_ITERATORS_BITS - FIXED_BITS; | 
|  | const int cf_shift = (1 + TRI_FRACTION_BITS*2 + TRI_ITERATORS_BITS - 15); | 
|  |  | 
|  | // compute xmin and xmax for the left edge | 
|  | GGLfixed l_min = gglMulAddx(left->x_incr, y - left->y_top, left->x, shift); | 
|  | GGLfixed l_max = l; | 
|  | l = l_min; | 
|  | if (l_min > l_max) | 
|  | swap(l_min, l_max); | 
|  |  | 
|  | // compute xmin and xmax for the right edge | 
|  | GGLfixed r_min = gglMulAddx(right->x_incr, y - right->y_top, right->x, shift); | 
|  | GGLfixed r_max = r; | 
|  | r = r_min; | 
|  | if (r_min > r_max) | 
|  | swap(r_min, r_max); | 
|  |  | 
|  | // make sure we're not touching coverage values outside of the | 
|  | // framebuffer | 
|  | l_min &= ~(l_min>>31); | 
|  | r_min &= ~(r_min>>31); | 
|  | l_max &= ~(l_max>>31); | 
|  | r_max &= ~(r_max>>31); | 
|  | if (gglFixedToIntFloor(l_min) >= xmax) l_min = gglIntToFixed(xmax)-1; | 
|  | if (gglFixedToIntFloor(r_min) >= xmax) r_min = gglIntToFixed(xmax)-1; | 
|  | if (gglFixedToIntCeil(l_max) >= xmax)  l_max = gglIntToFixed(xmax)-1; | 
|  | if (gglFixedToIntCeil(r_max) >= xmax)  r_max = gglIntToFixed(xmax)-1; | 
|  |  | 
|  | // compute the integer versions of the above | 
|  | const GGLfixed l_min_i = gglFloorx(l_min); | 
|  | const GGLfixed l_max_i = gglCeilx (l_max); | 
|  | const GGLfixed r_min_i = gglFloorx(r_min); | 
|  | const GGLfixed r_max_i = gglCeilx (r_max); | 
|  |  | 
|  | // clip horizontally using the scissor | 
|  | const int xml = max(xmin, gglFixedToIntFloor(l_min_i)); | 
|  | const int xmr = min(xmax, gglFixedToIntFloor(r_max_i)); | 
|  |  | 
|  | // if we just stepped to a new scanline, render the previous one. | 
|  | // and clear the coverage buffer | 
|  | if (retire) { | 
|  | if (c->iterators.xl < c->iterators.xr) | 
|  | c->scanline(c); | 
|  | c->step_y(c); | 
|  | memset(covPtr+xmin, 0, (xmax-xmin)*sizeof(*covPtr)); | 
|  | c->iterators.xl = xml; | 
|  | c->iterators.xr = xmr; | 
|  | } else { | 
|  | // update the horizontal range of this scanline | 
|  | c->iterators.xl = min(c->iterators.xl, xml); | 
|  | c->iterators.xr = max(c->iterators.xr, xmr); | 
|  | } | 
|  |  | 
|  | coverage = covPtr + gglFixedToIntFloor(l_min_i); | 
|  | if (l_min_i == gglFloorx(l_max)) { | 
|  |  | 
|  | /* | 
|  | *  fully traverse this pixel vertically | 
|  | *       l_max | 
|  | *  +-----/--+  yt | 
|  | *  |    /   | | 
|  | *  |   /    | | 
|  | *  |  /     | | 
|  | *  +-/------+  y | 
|  | *   l_min  (l_min_i + TRI_ONE) | 
|  | */ | 
|  |  | 
|  | GGLfixed dx = l_max - l_min; | 
|  | int32_t dy = y - yt; | 
|  | int cf = gglMulx((dx >> 1) + (l_min_i + FIXED_ONE - l_max), dy, | 
|  | FIXED_BITS + TRI_FRACTION_BITS - 15); | 
|  | ADD_COVERAGE(coverage, cf); | 
|  | // all pixels on the right have cf = 1.0 | 
|  | } else { | 
|  | /* | 
|  | *  spans several pixels in one scanline | 
|  | *            l_max | 
|  | *  +--------+--/-----+  yt | 
|  | *  |        |/       | | 
|  | *  |       /|        | | 
|  | *  |     /  |        | | 
|  | *  +---/----+--------+  y | 
|  | *   l_min (l_min_i + TRI_ONE) | 
|  | */ | 
|  |  | 
|  | // handle the first pixel separately... | 
|  | const int32_t y_incr = left->y_incr; | 
|  | int32_t dx = TRI_FROM_FIXED(l_min_i - l_min) + TRI_ONE; | 
|  | int32_t cf = (dx * dx * y_incr) >> cf_shift; | 
|  | ADD_COVERAGE(coverage, cf); | 
|  |  | 
|  | // following pixels get covered by y_incr, but we need | 
|  | // to fix-up the cf to account for previous partial pixel | 
|  | dx = TRI_FROM_FIXED(l_min - l_min_i); | 
|  | cf -= (dx * dx * y_incr) >> cf_shift; | 
|  | for (int x = l_min_i+FIXED_ONE ; x < l_max_i-FIXED_ONE ; x += FIXED_ONE) { | 
|  | cf += y_incr >> (TRI_ITERATORS_BITS-15); | 
|  | ADD_COVERAGE(coverage, cf); | 
|  | } | 
|  |  | 
|  | // and the last pixel | 
|  | dx = TRI_FROM_FIXED(l_max - l_max_i) - TRI_ONE; | 
|  | cf += (dx * dx * y_incr) >> cf_shift; | 
|  | ADD_COVERAGE(coverage, cf); | 
|  | } | 
|  |  | 
|  | // now, fill up all fully covered pixels | 
|  | coverage = covPtr + gglFixedToIntFloor(l_max_i); | 
|  | int cf = ((y - yt) << (15 - TRI_FRACTION_BITS)); | 
|  | if (ggl_likely(cf >= 0x8000)) { | 
|  | SET_COVERAGE(coverage, 0x7FFF, ((r_max - l_max_i)>>FIXED_BITS)+1); | 
|  | } else { | 
|  | for (int x=l_max_i ; x<r_max ; x+=FIXED_ONE) { | 
|  | ADD_COVERAGE(coverage, cf); | 
|  | } | 
|  | } | 
|  |  | 
|  | // subtract the coverage of the right edge | 
|  | coverage = covPtr + gglFixedToIntFloor(r_min_i); | 
|  | if (r_min_i == gglFloorx(r_max)) { | 
|  | GGLfixed dx = r_max - r_min; | 
|  | int32_t dy = y - yt; | 
|  | int cf = gglMulx((dx >> 1) + (r_min_i + FIXED_ONE - r_max), dy, | 
|  | FIXED_BITS + TRI_FRACTION_BITS - 15); | 
|  | SUB_COVERAGE(coverage, cf); | 
|  | // all pixels on the right have cf = 1.0 | 
|  | } else { | 
|  | // handle the first pixel separately... | 
|  | const int32_t y_incr = right->y_incr; | 
|  | int32_t dx = TRI_FROM_FIXED(r_min_i - r_min) + TRI_ONE; | 
|  | int32_t cf = (dx * dx * y_incr) >> cf_shift; | 
|  | SUB_COVERAGE(coverage, cf); | 
|  |  | 
|  | // following pixels get covered by y_incr, but we need | 
|  | // to fix-up the cf to account for previous partial pixel | 
|  | dx = TRI_FROM_FIXED(r_min - r_min_i); | 
|  | cf -= (dx * dx * y_incr) >> cf_shift; | 
|  | for (int x = r_min_i+FIXED_ONE ; x < r_max_i-FIXED_ONE ; x += FIXED_ONE) { | 
|  | cf += y_incr >> (TRI_ITERATORS_BITS-15); | 
|  | SUB_COVERAGE(coverage, cf); | 
|  | } | 
|  |  | 
|  | // and the last pixel | 
|  | dx = TRI_FROM_FIXED(r_max - r_max_i) - TRI_ONE; | 
|  | cf += (dx * dx * y_incr) >> cf_shift; | 
|  | SUB_COVERAGE(coverage, cf); | 
|  | } | 
|  |  | 
|  | // did we reach the end of an edge? if so, get a new one. | 
|  | if (y == left->y_bot || y == right->y_bot) { | 
|  | // bail out if we're done | 
|  | if (i>=num_edges) | 
|  | break; | 
|  | if (y == left->y_bot) | 
|  | left = &edges[i++]; | 
|  | if (y == right->y_bot) | 
|  | right = &edges[i++]; | 
|  | } | 
|  |  | 
|  | // next scanline | 
|  | yt = y; | 
|  |  | 
|  | // did we just finish a scanline? | 
|  | retire = (y << (32-TRI_FRACTION_BITS)) == 0; | 
|  | } while (true); | 
|  |  | 
|  | // render the last scanline | 
|  | if (c->iterators.xl < c->iterators.xr) | 
|  | c->scanline(c); | 
|  | } | 
|  |  | 
|  | }; // namespace android |