|  | /* | 
|  | * Copyright (C) 2013 The Android Open Source Project | 
|  | * | 
|  | * Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | * you may not use this file except in compliance with the License. | 
|  | * You may obtain a copy of the License at | 
|  | * | 
|  | *      http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | * Unless required by applicable law or agreed to in writing, software | 
|  | * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | * See the License for the specific language governing permissions and | 
|  | * limitations under the License. | 
|  | */ | 
|  |  | 
|  | #define _GNU_SOURCE 1 | 
|  | #include <dirent.h> | 
|  | #include <dlfcn.h> | 
|  | #include <errno.h> | 
|  | #include <fcntl.h> | 
|  | #include <inttypes.h> | 
|  | #include <malloc.h> | 
|  | #include <pthread.h> | 
|  | #include <signal.h> | 
|  | #include <stdint.h> | 
|  | #include <stdio.h> | 
|  | #include <stdlib.h> | 
|  | #include <string.h> | 
|  | #include <sys/ptrace.h> | 
|  | #include <sys/stat.h> | 
|  | #include <sys/types.h> | 
|  | #include <sys/wait.h> | 
|  | #include <time.h> | 
|  | #include <ucontext.h> | 
|  | #include <unistd.h> | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <list> | 
|  | #include <memory> | 
|  | #include <ostream> | 
|  | #include <string> | 
|  | #include <vector> | 
|  |  | 
|  | #include <backtrace/Backtrace.h> | 
|  | #include <backtrace/BacktraceMap.h> | 
|  |  | 
|  | #include <android-base/macros.h> | 
|  | #include <android-base/stringprintf.h> | 
|  | #include <android-base/test_utils.h> | 
|  | #include <android-base/threads.h> | 
|  | #include <android-base/unique_fd.h> | 
|  | #include <cutils/atomic.h> | 
|  |  | 
|  | #include <gtest/gtest.h> | 
|  |  | 
|  | // For the THREAD_SIGNAL definition. | 
|  | #include "BacktraceCurrent.h" | 
|  | #include "BacktraceTest.h" | 
|  | #include "backtrace_testlib.h" | 
|  |  | 
|  | // Number of microseconds per milliseconds. | 
|  | #define US_PER_MSEC             1000 | 
|  |  | 
|  | // Number of nanoseconds in a second. | 
|  | #define NS_PER_SEC              1000000000ULL | 
|  |  | 
|  | // Number of simultaneous dumping operations to perform. | 
|  | #define NUM_THREADS  40 | 
|  |  | 
|  | // Number of simultaneous threads running in our forked process. | 
|  | #define NUM_PTRACE_THREADS 5 | 
|  |  | 
|  | // The list of shared libaries that make up the backtrace library. | 
|  | static std::vector<std::string> kBacktraceLibs{"libunwindstack.so", "libbacktrace.so"}; | 
|  |  | 
|  | struct thread_t { | 
|  | pid_t tid; | 
|  | int32_t state; | 
|  | pthread_t threadId; | 
|  | void* data; | 
|  | }; | 
|  |  | 
|  | struct dump_thread_t { | 
|  | thread_t thread; | 
|  | BacktraceMap* map; | 
|  | Backtrace* backtrace; | 
|  | int32_t* now; | 
|  | int32_t done; | 
|  | }; | 
|  |  | 
|  | typedef Backtrace* (*create_func_t)(pid_t, pid_t, BacktraceMap*); | 
|  | typedef BacktraceMap* (*map_create_func_t)(pid_t, bool); | 
|  |  | 
|  | static void VerifyLevelDump(Backtrace* backtrace, create_func_t create_func = nullptr, | 
|  | map_create_func_t map_func = nullptr); | 
|  | static void VerifyMaxDump(Backtrace* backtrace, create_func_t create_func = nullptr, | 
|  | map_create_func_t map_func = nullptr); | 
|  |  | 
|  | void* BacktraceTest::dl_handle_; | 
|  | int (*BacktraceTest::test_level_one_)(int, int, int, int, void (*)(void*), void*); | 
|  | int (*BacktraceTest::test_level_two_)(int, int, int, int, void (*)(void*), void*); | 
|  | int (*BacktraceTest::test_level_three_)(int, int, int, int, void (*)(void*), void*); | 
|  | int (*BacktraceTest::test_level_four_)(int, int, int, int, void (*)(void*), void*); | 
|  | int (*BacktraceTest::test_recursive_call_)(int, void (*)(void*), void*); | 
|  | void (*BacktraceTest::test_get_context_and_wait_)(void*, volatile int*); | 
|  | void (*BacktraceTest::test_signal_action_)(int, siginfo_t*, void*); | 
|  | void (*BacktraceTest::test_signal_handler_)(int); | 
|  |  | 
|  | extern "C" bool GetInitialArgs(const char*** args, size_t* num_args) { | 
|  | static const char* initial_args[] = {"--slow_threshold_ms=8000", "--deadline_threshold_ms=15000"}; | 
|  | *args = initial_args; | 
|  | *num_args = 2; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static uint64_t NanoTime() { | 
|  | struct timespec t = { 0, 0 }; | 
|  | clock_gettime(CLOCK_MONOTONIC, &t); | 
|  | return static_cast<uint64_t>(t.tv_sec * NS_PER_SEC + t.tv_nsec); | 
|  | } | 
|  |  | 
|  | static std::string DumpFrames(Backtrace* backtrace) { | 
|  | if (backtrace->NumFrames() == 0) { | 
|  | return "   No frames to dump.\n"; | 
|  | } | 
|  |  | 
|  | std::string frame; | 
|  | for (size_t i = 0; i < backtrace->NumFrames(); i++) { | 
|  | frame += "   " + backtrace->FormatFrameData(i) + '\n'; | 
|  | } | 
|  | return frame; | 
|  | } | 
|  |  | 
|  | static void WaitForStop(pid_t pid) { | 
|  | uint64_t start = NanoTime(); | 
|  |  | 
|  | siginfo_t si; | 
|  | while (ptrace(PTRACE_GETSIGINFO, pid, 0, &si) < 0 && (errno == EINTR || errno == ESRCH)) { | 
|  | if ((NanoTime() - start) > NS_PER_SEC) { | 
|  | printf("The process did not get to a stopping point in 1 second.\n"); | 
|  | break; | 
|  | } | 
|  | usleep(US_PER_MSEC); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void CreateRemoteProcess(pid_t* pid) { | 
|  | if ((*pid = fork()) == 0) { | 
|  | while (true) | 
|  | ; | 
|  | _exit(0); | 
|  | } | 
|  | ASSERT_NE(-1, *pid); | 
|  |  | 
|  | ASSERT_TRUE(ptrace(PTRACE_ATTACH, *pid, 0, 0) == 0); | 
|  |  | 
|  | // Wait for the process to get to a stopping point. | 
|  | WaitForStop(*pid); | 
|  | } | 
|  |  | 
|  | static void FinishRemoteProcess(pid_t pid) { | 
|  | ASSERT_TRUE(ptrace(PTRACE_DETACH, pid, 0, 0) == 0); | 
|  |  | 
|  | kill(pid, SIGKILL); | 
|  | ASSERT_EQ(waitpid(pid, nullptr, 0), pid); | 
|  | } | 
|  |  | 
|  | #if !defined(__ANDROID__) || defined(__arm__) | 
|  | // On host and arm target we aren't guaranteed that we will terminate cleanly. | 
|  | #define VERIFY_NO_ERROR(error_code)                               \ | 
|  | ASSERT_TRUE(error_code == BACKTRACE_UNWIND_NO_ERROR ||          \ | 
|  | error_code == BACKTRACE_UNWIND_ERROR_UNWIND_INFO || \ | 
|  | error_code == BACKTRACE_UNWIND_ERROR_MAP_MISSING)   \ | 
|  | << "Unknown error code " << std::to_string(error_code); | 
|  | #else | 
|  | #define VERIFY_NO_ERROR(error_code) ASSERT_EQ(BACKTRACE_UNWIND_NO_ERROR, error_code); | 
|  | #endif | 
|  |  | 
|  | static bool ReadyLevelBacktrace(Backtrace* backtrace) { | 
|  | // See if test_level_four is in the backtrace. | 
|  | bool found = false; | 
|  | for (Backtrace::const_iterator it = backtrace->begin(); it != backtrace->end(); ++it) { | 
|  | if (it->func_name == "test_level_four") { | 
|  | found = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return found; | 
|  | } | 
|  |  | 
|  | static void VerifyLevelDump(Backtrace* backtrace, create_func_t, map_create_func_t) { | 
|  | ASSERT_GT(backtrace->NumFrames(), static_cast<size_t>(0)) | 
|  | << DumpFrames(backtrace); | 
|  | ASSERT_LT(backtrace->NumFrames(), static_cast<size_t>(MAX_BACKTRACE_FRAMES)) | 
|  | << DumpFrames(backtrace); | 
|  |  | 
|  | // Look through the frames starting at the highest to find the | 
|  | // frame we want. | 
|  | size_t frame_num = 0; | 
|  | for (size_t i = backtrace->NumFrames()-1; i > 2; i--) { | 
|  | if (backtrace->GetFrame(i)->func_name == "test_level_one") { | 
|  | frame_num = i; | 
|  | break; | 
|  | } | 
|  | } | 
|  | ASSERT_LT(static_cast<size_t>(0), frame_num) << DumpFrames(backtrace); | 
|  | ASSERT_LE(static_cast<size_t>(3), frame_num) << DumpFrames(backtrace); | 
|  |  | 
|  | ASSERT_EQ(backtrace->GetFrame(frame_num)->func_name, "test_level_one") | 
|  | << DumpFrames(backtrace); | 
|  | ASSERT_EQ(backtrace->GetFrame(frame_num-1)->func_name, "test_level_two") | 
|  | << DumpFrames(backtrace); | 
|  | ASSERT_EQ(backtrace->GetFrame(frame_num-2)->func_name, "test_level_three") | 
|  | << DumpFrames(backtrace); | 
|  | ASSERT_EQ(backtrace->GetFrame(frame_num-3)->func_name, "test_level_four") | 
|  | << DumpFrames(backtrace); | 
|  | } | 
|  |  | 
|  | static void VerifyLevelBacktrace(void*) { | 
|  | std::unique_ptr<Backtrace> backtrace( | 
|  | Backtrace::Create(BACKTRACE_CURRENT_PROCESS, BACKTRACE_CURRENT_THREAD)); | 
|  | ASSERT_TRUE(backtrace.get() != nullptr); | 
|  | ASSERT_TRUE(backtrace->Unwind(0)); | 
|  | VERIFY_NO_ERROR(backtrace->GetError().error_code); | 
|  |  | 
|  | VerifyLevelDump(backtrace.get()); | 
|  | } | 
|  |  | 
|  | static bool ReadyMaxBacktrace(Backtrace* backtrace) { | 
|  | return (backtrace->NumFrames() == MAX_BACKTRACE_FRAMES); | 
|  | } | 
|  |  | 
|  | static void VerifyMaxDump(Backtrace* backtrace, create_func_t, map_create_func_t) { | 
|  | ASSERT_EQ(backtrace->NumFrames(), static_cast<size_t>(MAX_BACKTRACE_FRAMES)) | 
|  | << DumpFrames(backtrace); | 
|  | // Verify that the last frame is our recursive call. | 
|  | ASSERT_EQ(backtrace->GetFrame(MAX_BACKTRACE_FRAMES-1)->func_name, "test_recursive_call") | 
|  | << DumpFrames(backtrace); | 
|  | } | 
|  |  | 
|  | static void VerifyMaxBacktrace(void*) { | 
|  | std::unique_ptr<Backtrace> backtrace( | 
|  | Backtrace::Create(BACKTRACE_CURRENT_PROCESS, BACKTRACE_CURRENT_THREAD)); | 
|  | ASSERT_TRUE(backtrace.get() != nullptr); | 
|  | ASSERT_TRUE(backtrace->Unwind(0)); | 
|  | ASSERT_EQ(BACKTRACE_UNWIND_ERROR_EXCEED_MAX_FRAMES_LIMIT, backtrace->GetError().error_code); | 
|  |  | 
|  | VerifyMaxDump(backtrace.get()); | 
|  | } | 
|  |  | 
|  | static void ThreadSetState(void* data) { | 
|  | thread_t* thread = reinterpret_cast<thread_t*>(data); | 
|  | android_atomic_acquire_store(1, &thread->state); | 
|  | volatile int i = 0; | 
|  | while (thread->state) { | 
|  | i++; | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool WaitForNonZero(int32_t* value, uint64_t seconds) { | 
|  | uint64_t start = NanoTime(); | 
|  | do { | 
|  | if (android_atomic_acquire_load(value)) { | 
|  | return true; | 
|  | } | 
|  | } while ((NanoTime() - start) < seconds * NS_PER_SEC); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | TEST_F(BacktraceTest, local_no_unwind_frames) { | 
|  | // Verify that a local unwind does not include any frames within | 
|  | // libunwind or libbacktrace. | 
|  | std::unique_ptr<Backtrace> backtrace(Backtrace::Create(getpid(), getpid())); | 
|  | ASSERT_TRUE(backtrace.get() != nullptr); | 
|  | ASSERT_TRUE(backtrace->Unwind(0)); | 
|  | VERIFY_NO_ERROR(backtrace->GetError().error_code); | 
|  |  | 
|  | ASSERT_TRUE(backtrace->NumFrames() != 0); | 
|  | // None of the frames should be in the backtrace libraries. | 
|  | for (const auto& frame : *backtrace ) { | 
|  | if (BacktraceMap::IsValid(frame.map)) { | 
|  | const std::string name = basename(frame.map.name.c_str()); | 
|  | for (const auto& lib : kBacktraceLibs) { | 
|  | ASSERT_TRUE(name != lib) << DumpFrames(backtrace.get()); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_F(BacktraceTest, local_unwind_frames) { | 
|  | // Verify that a local unwind with the skip frames disabled does include | 
|  | // frames within the backtrace libraries. | 
|  | std::unique_ptr<Backtrace> backtrace(Backtrace::Create(getpid(), getpid())); | 
|  | ASSERT_TRUE(backtrace.get() != nullptr); | 
|  | backtrace->SetSkipFrames(false); | 
|  | ASSERT_TRUE(backtrace->Unwind(0)); | 
|  | VERIFY_NO_ERROR(backtrace->GetError().error_code); | 
|  |  | 
|  | ASSERT_TRUE(backtrace->NumFrames() != 0); | 
|  | size_t first_frame_non_backtrace_lib = 0; | 
|  | for (const auto& frame : *backtrace) { | 
|  | if (BacktraceMap::IsValid(frame.map)) { | 
|  | const std::string name = basename(frame.map.name.c_str()); | 
|  | bool found = false; | 
|  | for (const auto& lib : kBacktraceLibs) { | 
|  | if (name == lib) { | 
|  | found = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!found) { | 
|  | first_frame_non_backtrace_lib = frame.num; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | ASSERT_NE(0U, first_frame_non_backtrace_lib) << "No frames found in backtrace libraries:\n" | 
|  | << DumpFrames(backtrace.get()); | 
|  | } | 
|  |  | 
|  | TEST_F(BacktraceTest, local_trace) { | 
|  | ASSERT_NE(test_level_one_(1, 2, 3, 4, VerifyLevelBacktrace, nullptr), 0); | 
|  | } | 
|  |  | 
|  | static void VerifyIgnoreFrames(Backtrace* bt_all, Backtrace* bt_ign1, Backtrace* bt_ign2, | 
|  | const char* cur_proc) { | 
|  | ASSERT_EQ(bt_all->NumFrames(), bt_ign1->NumFrames() + 1) << "All backtrace:\n" | 
|  | << DumpFrames(bt_all) | 
|  | << "Ignore 1 backtrace:\n" | 
|  | << DumpFrames(bt_ign1); | 
|  | ASSERT_EQ(bt_all->NumFrames(), bt_ign2->NumFrames() + 2) << "All backtrace:\n" | 
|  | << DumpFrames(bt_all) | 
|  | << "Ignore 2 backtrace:\n" | 
|  | << DumpFrames(bt_ign2); | 
|  |  | 
|  | // Check all of the frames are the same > the current frame. | 
|  | bool check = (cur_proc == nullptr); | 
|  | for (size_t i = 0; i < bt_ign2->NumFrames(); i++) { | 
|  | if (check) { | 
|  | EXPECT_EQ(bt_ign2->GetFrame(i)->pc, bt_ign1->GetFrame(i+1)->pc); | 
|  | EXPECT_EQ(bt_ign2->GetFrame(i)->sp, bt_ign1->GetFrame(i+1)->sp); | 
|  | EXPECT_EQ(bt_ign2->GetFrame(i)->stack_size, bt_ign1->GetFrame(i+1)->stack_size); | 
|  |  | 
|  | EXPECT_EQ(bt_ign2->GetFrame(i)->pc, bt_all->GetFrame(i+2)->pc); | 
|  | EXPECT_EQ(bt_ign2->GetFrame(i)->sp, bt_all->GetFrame(i+2)->sp); | 
|  | EXPECT_EQ(bt_ign2->GetFrame(i)->stack_size, bt_all->GetFrame(i+2)->stack_size); | 
|  | } | 
|  | if (!check && bt_ign2->GetFrame(i)->func_name == cur_proc) { | 
|  | check = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void VerifyLevelIgnoreFrames(void*) { | 
|  | std::unique_ptr<Backtrace> all( | 
|  | Backtrace::Create(BACKTRACE_CURRENT_PROCESS, BACKTRACE_CURRENT_THREAD)); | 
|  | ASSERT_TRUE(all.get() != nullptr); | 
|  | ASSERT_TRUE(all->Unwind(0)); | 
|  | VERIFY_NO_ERROR(all->GetError().error_code); | 
|  |  | 
|  | std::unique_ptr<Backtrace> ign1( | 
|  | Backtrace::Create(BACKTRACE_CURRENT_PROCESS, BACKTRACE_CURRENT_THREAD)); | 
|  | ASSERT_TRUE(ign1.get() != nullptr); | 
|  | ASSERT_TRUE(ign1->Unwind(1)); | 
|  | VERIFY_NO_ERROR(ign1->GetError().error_code); | 
|  |  | 
|  | std::unique_ptr<Backtrace> ign2( | 
|  | Backtrace::Create(BACKTRACE_CURRENT_PROCESS, BACKTRACE_CURRENT_THREAD)); | 
|  | ASSERT_TRUE(ign2.get() != nullptr); | 
|  | ASSERT_TRUE(ign2->Unwind(2)); | 
|  | VERIFY_NO_ERROR(ign2->GetError().error_code); | 
|  |  | 
|  | VerifyIgnoreFrames(all.get(), ign1.get(), ign2.get(), "VerifyLevelIgnoreFrames"); | 
|  | } | 
|  |  | 
|  | TEST_F(BacktraceTest, local_trace_ignore_frames) { | 
|  | ASSERT_NE(test_level_one_(1, 2, 3, 4, VerifyLevelIgnoreFrames, nullptr), 0); | 
|  | } | 
|  |  | 
|  | TEST_F(BacktraceTest, local_max_trace) { | 
|  | ASSERT_NE(test_recursive_call_(MAX_BACKTRACE_FRAMES + 10, VerifyMaxBacktrace, nullptr), 0); | 
|  | } | 
|  |  | 
|  | static void VerifyProcTest(pid_t pid, pid_t tid, bool (*ReadyFunc)(Backtrace*), | 
|  | void (*VerifyFunc)(Backtrace*, create_func_t, map_create_func_t), | 
|  | create_func_t create_func, map_create_func_t map_create_func) { | 
|  | pid_t ptrace_tid; | 
|  | if (tid < 0) { | 
|  | ptrace_tid = pid; | 
|  | } else { | 
|  | ptrace_tid = tid; | 
|  | } | 
|  | uint64_t start = NanoTime(); | 
|  | bool verified = false; | 
|  | std::string last_dump; | 
|  | do { | 
|  | usleep(US_PER_MSEC); | 
|  | if (ptrace(PTRACE_ATTACH, ptrace_tid, 0, 0) == 0) { | 
|  | // Wait for the process to get to a stopping point. | 
|  | WaitForStop(ptrace_tid); | 
|  |  | 
|  | std::unique_ptr<BacktraceMap> map; | 
|  | map.reset(map_create_func(pid, false)); | 
|  | std::unique_ptr<Backtrace> backtrace(create_func(pid, tid, map.get())); | 
|  | ASSERT_TRUE(backtrace.get() != nullptr); | 
|  | ASSERT_TRUE(backtrace->Unwind(0)); | 
|  | if (ReadyFunc(backtrace.get())) { | 
|  | VerifyFunc(backtrace.get(), create_func, map_create_func); | 
|  | verified = true; | 
|  | } else { | 
|  | last_dump = DumpFrames(backtrace.get()); | 
|  | } | 
|  |  | 
|  | ASSERT_TRUE(ptrace(PTRACE_DETACH, ptrace_tid, 0, 0) == 0); | 
|  | } | 
|  | // If 5 seconds have passed, then we are done. | 
|  | } while (!verified && (NanoTime() - start) <= 5 * NS_PER_SEC); | 
|  | ASSERT_TRUE(verified) << "Last backtrace:\n" << last_dump; | 
|  | } | 
|  |  | 
|  | TEST_F(BacktraceTest, ptrace_trace) { | 
|  | pid_t pid; | 
|  | if ((pid = fork()) == 0) { | 
|  | ASSERT_NE(test_level_one_(1, 2, 3, 4, nullptr, nullptr), 0); | 
|  | _exit(1); | 
|  | } | 
|  | VerifyProcTest(pid, BACKTRACE_CURRENT_THREAD, ReadyLevelBacktrace, VerifyLevelDump, | 
|  | Backtrace::Create, BacktraceMap::Create); | 
|  |  | 
|  | kill(pid, SIGKILL); | 
|  | int status; | 
|  | ASSERT_EQ(waitpid(pid, &status, 0), pid); | 
|  | } | 
|  |  | 
|  | TEST_F(BacktraceTest, ptrace_max_trace) { | 
|  | pid_t pid; | 
|  | if ((pid = fork()) == 0) { | 
|  | ASSERT_NE(test_recursive_call_(MAX_BACKTRACE_FRAMES + 10, nullptr, nullptr), 0); | 
|  | _exit(1); | 
|  | } | 
|  | VerifyProcTest(pid, BACKTRACE_CURRENT_THREAD, ReadyMaxBacktrace, VerifyMaxDump, Backtrace::Create, | 
|  | BacktraceMap::Create); | 
|  |  | 
|  | kill(pid, SIGKILL); | 
|  | int status; | 
|  | ASSERT_EQ(waitpid(pid, &status, 0), pid); | 
|  | } | 
|  |  | 
|  | static void VerifyProcessIgnoreFrames(Backtrace* bt_all, create_func_t create_func, | 
|  | map_create_func_t map_create_func) { | 
|  | std::unique_ptr<BacktraceMap> map(map_create_func(bt_all->Pid(), false)); | 
|  | std::unique_ptr<Backtrace> ign1(create_func(bt_all->Pid(), BACKTRACE_CURRENT_THREAD, map.get())); | 
|  | ASSERT_TRUE(ign1.get() != nullptr); | 
|  | ASSERT_TRUE(ign1->Unwind(1)); | 
|  | VERIFY_NO_ERROR(ign1->GetError().error_code); | 
|  |  | 
|  | std::unique_ptr<Backtrace> ign2(create_func(bt_all->Pid(), BACKTRACE_CURRENT_THREAD, map.get())); | 
|  | ASSERT_TRUE(ign2.get() != nullptr); | 
|  | ASSERT_TRUE(ign2->Unwind(2)); | 
|  | VERIFY_NO_ERROR(ign2->GetError().error_code); | 
|  |  | 
|  | VerifyIgnoreFrames(bt_all, ign1.get(), ign2.get(), nullptr); | 
|  | } | 
|  |  | 
|  | TEST_F(BacktraceTest, ptrace_ignore_frames) { | 
|  | pid_t pid; | 
|  | if ((pid = fork()) == 0) { | 
|  | ASSERT_NE(test_level_one_(1, 2, 3, 4, nullptr, nullptr), 0); | 
|  | _exit(1); | 
|  | } | 
|  | VerifyProcTest(pid, BACKTRACE_CURRENT_THREAD, ReadyLevelBacktrace, VerifyProcessIgnoreFrames, | 
|  | Backtrace::Create, BacktraceMap::Create); | 
|  |  | 
|  | kill(pid, SIGKILL); | 
|  | int status; | 
|  | ASSERT_EQ(waitpid(pid, &status, 0), pid); | 
|  | } | 
|  |  | 
|  | // Create a process with multiple threads and dump all of the threads. | 
|  | static void* PtraceThreadLevelRun(void*) { | 
|  | EXPECT_NE(BacktraceTest::test_level_one_(1, 2, 3, 4, nullptr, nullptr), 0); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | static void GetThreads(pid_t pid, std::vector<pid_t>* threads) { | 
|  | // Get the list of tasks. | 
|  | char task_path[128]; | 
|  | snprintf(task_path, sizeof(task_path), "/proc/%d/task", pid); | 
|  |  | 
|  | std::unique_ptr<DIR, decltype(&closedir)> tasks_dir(opendir(task_path), closedir); | 
|  | ASSERT_TRUE(tasks_dir != nullptr); | 
|  | struct dirent* entry; | 
|  | while ((entry = readdir(tasks_dir.get())) != nullptr) { | 
|  | char* end; | 
|  | pid_t tid = strtoul(entry->d_name, &end, 10); | 
|  | if (*end == '\0') { | 
|  | threads->push_back(tid); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_F(BacktraceTest, ptrace_threads) { | 
|  | pid_t pid; | 
|  | if ((pid = fork()) == 0) { | 
|  | for (size_t i = 0; i < NUM_PTRACE_THREADS; i++) { | 
|  | pthread_attr_t attr; | 
|  | pthread_attr_init(&attr); | 
|  | pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); | 
|  |  | 
|  | pthread_t thread; | 
|  | ASSERT_TRUE(pthread_create(&thread, &attr, PtraceThreadLevelRun, nullptr) == 0); | 
|  | } | 
|  | ASSERT_NE(test_level_one_(1, 2, 3, 4, nullptr, nullptr), 0); | 
|  | _exit(1); | 
|  | } | 
|  |  | 
|  | // Check to see that all of the threads are running before unwinding. | 
|  | std::vector<pid_t> threads; | 
|  | uint64_t start = NanoTime(); | 
|  | do { | 
|  | usleep(US_PER_MSEC); | 
|  | threads.clear(); | 
|  | GetThreads(pid, &threads); | 
|  | } while ((threads.size() != NUM_PTRACE_THREADS + 1) && | 
|  | ((NanoTime() - start) <= 5 * NS_PER_SEC)); | 
|  | ASSERT_EQ(threads.size(), static_cast<size_t>(NUM_PTRACE_THREADS + 1)); | 
|  |  | 
|  | ASSERT_TRUE(ptrace(PTRACE_ATTACH, pid, 0, 0) == 0); | 
|  | WaitForStop(pid); | 
|  | for (std::vector<int>::const_iterator it = threads.begin(); it != threads.end(); ++it) { | 
|  | // Skip the current forked process, we only care about the threads. | 
|  | if (pid == *it) { | 
|  | continue; | 
|  | } | 
|  | VerifyProcTest(pid, *it, ReadyLevelBacktrace, VerifyLevelDump, Backtrace::Create, | 
|  | BacktraceMap::Create); | 
|  | } | 
|  |  | 
|  | FinishRemoteProcess(pid); | 
|  | } | 
|  |  | 
|  | void VerifyLevelThread(void*) { | 
|  | std::unique_ptr<Backtrace> backtrace(Backtrace::Create(getpid(), android::base::GetThreadId())); | 
|  | ASSERT_TRUE(backtrace.get() != nullptr); | 
|  | ASSERT_TRUE(backtrace->Unwind(0)); | 
|  | VERIFY_NO_ERROR(backtrace->GetError().error_code); | 
|  |  | 
|  | VerifyLevelDump(backtrace.get()); | 
|  | } | 
|  |  | 
|  | TEST_F(BacktraceTest, thread_current_level) { | 
|  | ASSERT_NE(test_level_one_(1, 2, 3, 4, VerifyLevelThread, nullptr), 0); | 
|  | } | 
|  |  | 
|  | static void VerifyMaxThread(void*) { | 
|  | std::unique_ptr<Backtrace> backtrace(Backtrace::Create(getpid(), android::base::GetThreadId())); | 
|  | ASSERT_TRUE(backtrace.get() != nullptr); | 
|  | ASSERT_TRUE(backtrace->Unwind(0)); | 
|  | ASSERT_EQ(BACKTRACE_UNWIND_ERROR_EXCEED_MAX_FRAMES_LIMIT, backtrace->GetError().error_code); | 
|  |  | 
|  | VerifyMaxDump(backtrace.get()); | 
|  | } | 
|  |  | 
|  | TEST_F(BacktraceTest, thread_current_max) { | 
|  | ASSERT_NE(test_recursive_call_(MAX_BACKTRACE_FRAMES + 10, VerifyMaxThread, nullptr), 0); | 
|  | } | 
|  |  | 
|  | static void* ThreadLevelRun(void* data) { | 
|  | thread_t* thread = reinterpret_cast<thread_t*>(data); | 
|  |  | 
|  | thread->tid = android::base::GetThreadId(); | 
|  | EXPECT_NE(BacktraceTest::test_level_one_(1, 2, 3, 4, ThreadSetState, data), 0); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | TEST_F(BacktraceTest, thread_level_trace) { | 
|  | pthread_attr_t attr; | 
|  | pthread_attr_init(&attr); | 
|  | pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); | 
|  |  | 
|  | thread_t thread_data = { 0, 0, 0, nullptr }; | 
|  | pthread_t thread; | 
|  | ASSERT_TRUE(pthread_create(&thread, &attr, ThreadLevelRun, &thread_data) == 0); | 
|  |  | 
|  | // Wait up to 2 seconds for the tid to be set. | 
|  | ASSERT_TRUE(WaitForNonZero(&thread_data.state, 2)); | 
|  |  | 
|  | // Make sure that the thread signal used is not visible when compiled for | 
|  | // the target. | 
|  | #if !defined(__GLIBC__) | 
|  | ASSERT_LT(THREAD_SIGNAL, SIGRTMIN); | 
|  | #endif | 
|  |  | 
|  | // Save the current signal action and make sure it is restored afterwards. | 
|  | struct sigaction cur_action; | 
|  | ASSERT_TRUE(sigaction(THREAD_SIGNAL, nullptr, &cur_action) == 0); | 
|  |  | 
|  | std::unique_ptr<Backtrace> backtrace(Backtrace::Create(getpid(), thread_data.tid)); | 
|  | ASSERT_TRUE(backtrace.get() != nullptr); | 
|  | ASSERT_TRUE(backtrace->Unwind(0)); | 
|  | VERIFY_NO_ERROR(backtrace->GetError().error_code); | 
|  |  | 
|  | VerifyLevelDump(backtrace.get()); | 
|  |  | 
|  | // Tell the thread to exit its infinite loop. | 
|  | android_atomic_acquire_store(0, &thread_data.state); | 
|  |  | 
|  | // Verify that the old action was restored. | 
|  | struct sigaction new_action; | 
|  | ASSERT_TRUE(sigaction(THREAD_SIGNAL, nullptr, &new_action) == 0); | 
|  | EXPECT_EQ(cur_action.sa_sigaction, new_action.sa_sigaction); | 
|  | // The SA_RESTORER flag gets set behind our back, so a direct comparison | 
|  | // doesn't work unless we mask the value off. Mips doesn't have this | 
|  | // flag, so skip this on that platform. | 
|  | #if defined(SA_RESTORER) | 
|  | cur_action.sa_flags &= ~SA_RESTORER; | 
|  | new_action.sa_flags &= ~SA_RESTORER; | 
|  | #elif defined(__GLIBC__) | 
|  | // Our host compiler doesn't appear to define this flag for some reason. | 
|  | cur_action.sa_flags &= ~0x04000000; | 
|  | new_action.sa_flags &= ~0x04000000; | 
|  | #endif | 
|  | EXPECT_EQ(cur_action.sa_flags, new_action.sa_flags); | 
|  | } | 
|  |  | 
|  | TEST_F(BacktraceTest, thread_ignore_frames) { | 
|  | pthread_attr_t attr; | 
|  | pthread_attr_init(&attr); | 
|  | pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); | 
|  |  | 
|  | thread_t thread_data = { 0, 0, 0, nullptr }; | 
|  | pthread_t thread; | 
|  | ASSERT_TRUE(pthread_create(&thread, &attr, ThreadLevelRun, &thread_data) == 0); | 
|  |  | 
|  | // Wait up to 2 seconds for the tid to be set. | 
|  | ASSERT_TRUE(WaitForNonZero(&thread_data.state, 2)); | 
|  |  | 
|  | std::unique_ptr<Backtrace> all(Backtrace::Create(getpid(), thread_data.tid)); | 
|  | ASSERT_TRUE(all.get() != nullptr); | 
|  | ASSERT_TRUE(all->Unwind(0)); | 
|  | VERIFY_NO_ERROR(all->GetError().error_code); | 
|  |  | 
|  | std::unique_ptr<Backtrace> ign1(Backtrace::Create(getpid(), thread_data.tid)); | 
|  | ASSERT_TRUE(ign1.get() != nullptr); | 
|  | ASSERT_TRUE(ign1->Unwind(1)); | 
|  | VERIFY_NO_ERROR(ign1->GetError().error_code); | 
|  |  | 
|  | std::unique_ptr<Backtrace> ign2(Backtrace::Create(getpid(), thread_data.tid)); | 
|  | ASSERT_TRUE(ign2.get() != nullptr); | 
|  | ASSERT_TRUE(ign2->Unwind(2)); | 
|  | VERIFY_NO_ERROR(ign2->GetError().error_code); | 
|  |  | 
|  | VerifyIgnoreFrames(all.get(), ign1.get(), ign2.get(), nullptr); | 
|  |  | 
|  | // Tell the thread to exit its infinite loop. | 
|  | android_atomic_acquire_store(0, &thread_data.state); | 
|  | } | 
|  |  | 
|  | static void* ThreadMaxRun(void* data) { | 
|  | thread_t* thread = reinterpret_cast<thread_t*>(data); | 
|  |  | 
|  | thread->tid = android::base::GetThreadId(); | 
|  | EXPECT_NE(BacktraceTest::test_recursive_call_(MAX_BACKTRACE_FRAMES + 10, ThreadSetState, data), | 
|  | 0); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | TEST_F(BacktraceTest, thread_max_trace) { | 
|  | pthread_attr_t attr; | 
|  | pthread_attr_init(&attr); | 
|  | pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); | 
|  |  | 
|  | thread_t thread_data = { 0, 0, 0, nullptr }; | 
|  | pthread_t thread; | 
|  | ASSERT_TRUE(pthread_create(&thread, &attr, ThreadMaxRun, &thread_data) == 0); | 
|  |  | 
|  | // Wait for the tid to be set. | 
|  | ASSERT_TRUE(WaitForNonZero(&thread_data.state, 2)); | 
|  |  | 
|  | std::unique_ptr<Backtrace> backtrace(Backtrace::Create(getpid(), thread_data.tid)); | 
|  | ASSERT_TRUE(backtrace.get() != nullptr); | 
|  | ASSERT_TRUE(backtrace->Unwind(0)); | 
|  | ASSERT_EQ(BACKTRACE_UNWIND_ERROR_EXCEED_MAX_FRAMES_LIMIT, backtrace->GetError().error_code); | 
|  |  | 
|  | VerifyMaxDump(backtrace.get()); | 
|  |  | 
|  | // Tell the thread to exit its infinite loop. | 
|  | android_atomic_acquire_store(0, &thread_data.state); | 
|  | } | 
|  |  | 
|  | static void* ThreadDump(void* data) { | 
|  | dump_thread_t* dump = reinterpret_cast<dump_thread_t*>(data); | 
|  | while (true) { | 
|  | if (android_atomic_acquire_load(dump->now)) { | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // The status of the actual unwind will be checked elsewhere. | 
|  | dump->backtrace = Backtrace::Create(getpid(), dump->thread.tid, dump->map); | 
|  | dump->backtrace->Unwind(0); | 
|  |  | 
|  | android_atomic_acquire_store(1, &dump->done); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | static void MultipleThreadDumpTest(bool share_map) { | 
|  | // Dump NUM_THREADS simultaneously using the same map. | 
|  | std::vector<thread_t> runners(NUM_THREADS); | 
|  | std::vector<dump_thread_t> dumpers(NUM_THREADS); | 
|  |  | 
|  | pthread_attr_t attr; | 
|  | pthread_attr_init(&attr); | 
|  | pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); | 
|  | for (size_t i = 0; i < NUM_THREADS; i++) { | 
|  | // Launch the runners, they will spin in hard loops doing nothing. | 
|  | runners[i].tid = 0; | 
|  | runners[i].state = 0; | 
|  | ASSERT_TRUE(pthread_create(&runners[i].threadId, &attr, ThreadMaxRun, &runners[i]) == 0); | 
|  | } | 
|  |  | 
|  | // Wait for tids to be set. | 
|  | for (std::vector<thread_t>::iterator it = runners.begin(); it != runners.end(); ++it) { | 
|  | ASSERT_TRUE(WaitForNonZero(&it->state, 30)); | 
|  | } | 
|  |  | 
|  | // Start all of the dumpers at once, they will spin until they are signalled | 
|  | // to begin their dump run. | 
|  | std::unique_ptr<BacktraceMap> map; | 
|  | if (share_map) { | 
|  | map.reset(BacktraceMap::Create(getpid())); | 
|  | } | 
|  | int32_t dump_now = 0; | 
|  | for (size_t i = 0; i < NUM_THREADS; i++) { | 
|  | dumpers[i].thread.tid = runners[i].tid; | 
|  | dumpers[i].thread.state = 0; | 
|  | dumpers[i].done = 0; | 
|  | dumpers[i].now = &dump_now; | 
|  | dumpers[i].map = map.get(); | 
|  |  | 
|  | ASSERT_TRUE(pthread_create(&dumpers[i].thread.threadId, &attr, ThreadDump, &dumpers[i]) == 0); | 
|  | } | 
|  |  | 
|  | // Start all of the dumpers going at once. | 
|  | android_atomic_acquire_store(1, &dump_now); | 
|  |  | 
|  | for (size_t i = 0; i < NUM_THREADS; i++) { | 
|  | ASSERT_TRUE(WaitForNonZero(&dumpers[i].done, 30)); | 
|  |  | 
|  | // Tell the runner thread to exit its infinite loop. | 
|  | android_atomic_acquire_store(0, &runners[i].state); | 
|  |  | 
|  | ASSERT_TRUE(dumpers[i].backtrace != nullptr); | 
|  | VerifyMaxDump(dumpers[i].backtrace); | 
|  |  | 
|  | delete dumpers[i].backtrace; | 
|  | dumpers[i].backtrace = nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_F(BacktraceTest, thread_multiple_dump) { | 
|  | MultipleThreadDumpTest(false); | 
|  | } | 
|  |  | 
|  | TEST_F(BacktraceTest, thread_multiple_dump_same_map) { | 
|  | MultipleThreadDumpTest(true); | 
|  | } | 
|  |  | 
|  | // This test is for UnwindMaps that should share the same map cursor when | 
|  | // multiple maps are created for the current process at the same time. | 
|  | TEST_F(BacktraceTest, simultaneous_maps) { | 
|  | BacktraceMap* map1 = BacktraceMap::Create(getpid()); | 
|  | BacktraceMap* map2 = BacktraceMap::Create(getpid()); | 
|  | BacktraceMap* map3 = BacktraceMap::Create(getpid()); | 
|  |  | 
|  | Backtrace* back1 = Backtrace::Create(getpid(), BACKTRACE_CURRENT_THREAD, map1); | 
|  | ASSERT_TRUE(back1 != nullptr); | 
|  | EXPECT_TRUE(back1->Unwind(0)); | 
|  | VERIFY_NO_ERROR(back1->GetError().error_code); | 
|  | delete back1; | 
|  | delete map1; | 
|  |  | 
|  | Backtrace* back2 = Backtrace::Create(getpid(), BACKTRACE_CURRENT_THREAD, map2); | 
|  | ASSERT_TRUE(back2 != nullptr); | 
|  | EXPECT_TRUE(back2->Unwind(0)); | 
|  | VERIFY_NO_ERROR(back2->GetError().error_code); | 
|  | delete back2; | 
|  | delete map2; | 
|  |  | 
|  | Backtrace* back3 = Backtrace::Create(getpid(), BACKTRACE_CURRENT_THREAD, map3); | 
|  | ASSERT_TRUE(back3 != nullptr); | 
|  | EXPECT_TRUE(back3->Unwind(0)); | 
|  | VERIFY_NO_ERROR(back3->GetError().error_code); | 
|  | delete back3; | 
|  | delete map3; | 
|  | } | 
|  |  | 
|  | TEST_F(BacktraceTest, fillin_erases) { | 
|  | BacktraceMap* back_map = BacktraceMap::Create(getpid()); | 
|  |  | 
|  | backtrace_map_t map; | 
|  |  | 
|  | map.start = 1; | 
|  | map.end = 3; | 
|  | map.flags = 1; | 
|  | map.name = "Initialized"; | 
|  | back_map->FillIn(0, &map); | 
|  | delete back_map; | 
|  |  | 
|  | ASSERT_FALSE(BacktraceMap::IsValid(map)); | 
|  | ASSERT_EQ(static_cast<uint64_t>(0), map.start); | 
|  | ASSERT_EQ(static_cast<uint64_t>(0), map.end); | 
|  | ASSERT_EQ(0, map.flags); | 
|  | ASSERT_EQ("", map.name); | 
|  | } | 
|  |  | 
|  | TEST_F(BacktraceTest, format_test) { | 
|  | std::unique_ptr<Backtrace> backtrace(Backtrace::Create(getpid(), BACKTRACE_CURRENT_THREAD)); | 
|  | ASSERT_TRUE(backtrace.get() != nullptr); | 
|  |  | 
|  | backtrace_frame_data_t frame; | 
|  | frame.num = 1; | 
|  | frame.pc = 2; | 
|  | frame.rel_pc = 2; | 
|  | frame.sp = 0; | 
|  | frame.stack_size = 0; | 
|  | frame.func_offset = 0; | 
|  |  | 
|  | // Check no map set. | 
|  | frame.num = 1; | 
|  | #if defined(__LP64__) | 
|  | EXPECT_EQ("#01 pc 0000000000000002  <unknown>", | 
|  | #else | 
|  | EXPECT_EQ("#01 pc 00000002  <unknown>", | 
|  | #endif | 
|  | backtrace->FormatFrameData(&frame)); | 
|  |  | 
|  | // Check map name empty, but exists. | 
|  | frame.pc = 0xb0020; | 
|  | frame.rel_pc = 0x20; | 
|  | frame.map.start = 0xb0000; | 
|  | frame.map.end = 0xbffff; | 
|  | frame.map.load_bias = 0; | 
|  | #if defined(__LP64__) | 
|  | EXPECT_EQ("#01 pc 0000000000000020  <anonymous:00000000000b0000>", | 
|  | #else | 
|  | EXPECT_EQ("#01 pc 00000020  <anonymous:000b0000>", | 
|  | #endif | 
|  | backtrace->FormatFrameData(&frame)); | 
|  |  | 
|  | // Check map name begins with a [. | 
|  | frame.pc = 0xc0020; | 
|  | frame.map.start = 0xc0000; | 
|  | frame.map.end = 0xcffff; | 
|  | frame.map.load_bias = 0; | 
|  | frame.map.name = "[anon:thread signal stack]"; | 
|  | #if defined(__LP64__) | 
|  | EXPECT_EQ("#01 pc 0000000000000020  [anon:thread signal stack:00000000000c0000]", | 
|  | #else | 
|  | EXPECT_EQ("#01 pc 00000020  [anon:thread signal stack:000c0000]", | 
|  | #endif | 
|  | backtrace->FormatFrameData(&frame)); | 
|  |  | 
|  | // Check relative pc is set and map name is set. | 
|  | frame.pc = 0x12345679; | 
|  | frame.rel_pc = 0x12345678; | 
|  | frame.map.name = "MapFake"; | 
|  | frame.map.start =  1; | 
|  | frame.map.end =  1; | 
|  | #if defined(__LP64__) | 
|  | EXPECT_EQ("#01 pc 0000000012345678  MapFake", | 
|  | #else | 
|  | EXPECT_EQ("#01 pc 12345678  MapFake", | 
|  | #endif | 
|  | backtrace->FormatFrameData(&frame)); | 
|  |  | 
|  | // Check func_name is set, but no func offset. | 
|  | frame.func_name = "ProcFake"; | 
|  | #if defined(__LP64__) | 
|  | EXPECT_EQ("#01 pc 0000000012345678  MapFake (ProcFake)", | 
|  | #else | 
|  | EXPECT_EQ("#01 pc 12345678  MapFake (ProcFake)", | 
|  | #endif | 
|  | backtrace->FormatFrameData(&frame)); | 
|  |  | 
|  | // Check func_name is set, and func offset is non-zero. | 
|  | frame.func_offset = 645; | 
|  | #if defined(__LP64__) | 
|  | EXPECT_EQ("#01 pc 0000000012345678  MapFake (ProcFake+645)", | 
|  | #else | 
|  | EXPECT_EQ("#01 pc 12345678  MapFake (ProcFake+645)", | 
|  | #endif | 
|  | backtrace->FormatFrameData(&frame)); | 
|  |  | 
|  | // Check func_name is set, func offset is non-zero, and load_bias is non-zero. | 
|  | frame.rel_pc = 0x123456dc; | 
|  | frame.func_offset = 645; | 
|  | frame.map.load_bias = 100; | 
|  | #if defined(__LP64__) | 
|  | EXPECT_EQ("#01 pc 00000000123456dc  MapFake (ProcFake+645)", | 
|  | #else | 
|  | EXPECT_EQ("#01 pc 123456dc  MapFake (ProcFake+645)", | 
|  | #endif | 
|  | backtrace->FormatFrameData(&frame)); | 
|  |  | 
|  | // Check a non-zero map offset. | 
|  | frame.map.offset = 0x1000; | 
|  | #if defined(__LP64__) | 
|  | EXPECT_EQ("#01 pc 00000000123456dc  MapFake (offset 0x1000) (ProcFake+645)", | 
|  | #else | 
|  | EXPECT_EQ("#01 pc 123456dc  MapFake (offset 0x1000) (ProcFake+645)", | 
|  | #endif | 
|  | backtrace->FormatFrameData(&frame)); | 
|  | } | 
|  |  | 
|  | struct map_test_t { | 
|  | uint64_t start; | 
|  | uint64_t end; | 
|  | }; | 
|  |  | 
|  | static bool map_sort(map_test_t i, map_test_t j) { return i.start < j.start; } | 
|  |  | 
|  | static std::string GetTestMapsAsString(const std::vector<map_test_t>& maps) { | 
|  | if (maps.size() == 0) { | 
|  | return "No test map entries\n"; | 
|  | } | 
|  | std::string map_txt; | 
|  | for (auto map : maps) { | 
|  | map_txt += android::base::StringPrintf("%" PRIx64 "-%" PRIx64 "\n", map.start, map.end); | 
|  | } | 
|  | return map_txt; | 
|  | } | 
|  |  | 
|  | static std::string GetMapsAsString(BacktraceMap* maps) { | 
|  | if (maps->size() == 0) { | 
|  | return "No map entries\n"; | 
|  | } | 
|  | std::string map_txt; | 
|  | for (const backtrace_map_t* map : *maps) { | 
|  | map_txt += android::base::StringPrintf( | 
|  | "%" PRIx64 "-%" PRIx64 " flags: 0x%x offset: 0x%" PRIx64 " load_bias: 0x%" PRIx64, | 
|  | map->start, map->end, map->flags, map->offset, map->load_bias); | 
|  | if (!map->name.empty()) { | 
|  | map_txt += ' ' + map->name; | 
|  | } | 
|  | map_txt += '\n'; | 
|  | } | 
|  | return map_txt; | 
|  | } | 
|  |  | 
|  | static void VerifyMap(pid_t pid) { | 
|  | char buffer[4096]; | 
|  | snprintf(buffer, sizeof(buffer), "/proc/%d/maps", pid); | 
|  |  | 
|  | FILE* map_file = fopen(buffer, "r"); | 
|  | ASSERT_TRUE(map_file != nullptr); | 
|  | std::vector<map_test_t> test_maps; | 
|  | while (fgets(buffer, sizeof(buffer), map_file)) { | 
|  | map_test_t map; | 
|  | ASSERT_EQ(2, sscanf(buffer, "%" SCNx64 "-%" SCNx64 " ", &map.start, &map.end)); | 
|  | test_maps.push_back(map); | 
|  | } | 
|  | fclose(map_file); | 
|  | std::sort(test_maps.begin(), test_maps.end(), map_sort); | 
|  |  | 
|  | std::unique_ptr<BacktraceMap> map(BacktraceMap::Create(pid)); | 
|  |  | 
|  | // Basic test that verifies that the map is in the expected order. | 
|  | auto test_it = test_maps.begin(); | 
|  | for (auto it = map->begin(); it != map->end(); ++it) { | 
|  | ASSERT_TRUE(test_it != test_maps.end()) << "Mismatch in number of maps, expected test maps:\n" | 
|  | << GetTestMapsAsString(test_maps) << "Actual maps:\n" | 
|  | << GetMapsAsString(map.get()); | 
|  | ASSERT_EQ(test_it->start, (*it)->start) << "Mismatch in map data, expected test maps:\n" | 
|  | << GetTestMapsAsString(test_maps) << "Actual maps:\n" | 
|  | << GetMapsAsString(map.get()); | 
|  | ASSERT_EQ(test_it->end, (*it)->end) << "Mismatch maps in map data, expected test maps:\n" | 
|  | << GetTestMapsAsString(test_maps) << "Actual maps:\n" | 
|  | << GetMapsAsString(map.get()); | 
|  | // Make sure the load bias get set to a value. | 
|  | ASSERT_NE(static_cast<uint64_t>(-1), (*it)->load_bias) << "Found uninitialized load_bias\n" | 
|  | << GetMapsAsString(map.get()); | 
|  | ++test_it; | 
|  | } | 
|  | ASSERT_TRUE(test_it == test_maps.end()); | 
|  | } | 
|  |  | 
|  | TEST_F(BacktraceTest, verify_map_remote) { | 
|  | pid_t pid; | 
|  | CreateRemoteProcess(&pid); | 
|  |  | 
|  | // The maps should match exactly since the forked process has been paused. | 
|  | VerifyMap(pid); | 
|  |  | 
|  | FinishRemoteProcess(pid); | 
|  | } | 
|  |  | 
|  | static void InitMemory(uint8_t* memory, size_t bytes) { | 
|  | for (size_t i = 0; i < bytes; i++) { | 
|  | memory[i] = i; | 
|  | if (memory[i] == '\0') { | 
|  | // Don't use '\0' in our data so we can verify that an overread doesn't | 
|  | // occur by using a '\0' as the character after the read data. | 
|  | memory[i] = 23; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void* ThreadReadTest(void* data) { | 
|  | thread_t* thread_data = reinterpret_cast<thread_t*>(data); | 
|  |  | 
|  | thread_data->tid = android::base::GetThreadId(); | 
|  |  | 
|  | // Create two map pages. | 
|  | // Mark the second page as not-readable. | 
|  | size_t pagesize = static_cast<size_t>(sysconf(_SC_PAGE_SIZE)); | 
|  | uint8_t* memory; | 
|  | if (posix_memalign(reinterpret_cast<void**>(&memory), pagesize, 2 * pagesize) != 0) { | 
|  | return reinterpret_cast<void*>(-1); | 
|  | } | 
|  |  | 
|  | if (mprotect(&memory[pagesize], pagesize, PROT_NONE) != 0) { | 
|  | return reinterpret_cast<void*>(-1); | 
|  | } | 
|  |  | 
|  | // Set up a simple pattern in memory. | 
|  | InitMemory(memory, pagesize); | 
|  |  | 
|  | thread_data->data = memory; | 
|  |  | 
|  | // Tell the caller it's okay to start reading memory. | 
|  | android_atomic_acquire_store(1, &thread_data->state); | 
|  |  | 
|  | // Loop waiting for the caller to finish reading the memory. | 
|  | while (thread_data->state) { | 
|  | } | 
|  |  | 
|  | // Re-enable read-write on the page so that we don't crash if we try | 
|  | // and access data on this page when freeing the memory. | 
|  | if (mprotect(&memory[pagesize], pagesize, PROT_READ | PROT_WRITE) != 0) { | 
|  | return reinterpret_cast<void*>(-1); | 
|  | } | 
|  | free(memory); | 
|  |  | 
|  | android_atomic_acquire_store(1, &thread_data->state); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | static void RunReadTest(Backtrace* backtrace, uint64_t read_addr) { | 
|  | size_t pagesize = static_cast<size_t>(sysconf(_SC_PAGE_SIZE)); | 
|  |  | 
|  | // Create a page of data to use to do quick compares. | 
|  | uint8_t* expected = new uint8_t[pagesize]; | 
|  | InitMemory(expected, pagesize); | 
|  |  | 
|  | uint8_t* data = new uint8_t[2 * pagesize]; | 
|  | // Verify that we can only read one page worth of data. | 
|  | size_t bytes_read = backtrace->Read(read_addr, data, 2 * pagesize); | 
|  | ASSERT_EQ(pagesize, bytes_read); | 
|  | ASSERT_TRUE(memcmp(data, expected, pagesize) == 0); | 
|  |  | 
|  | // Verify unaligned reads. | 
|  | for (size_t i = 1; i < sizeof(word_t); i++) { | 
|  | bytes_read = backtrace->Read(read_addr + i, data, 2 * sizeof(word_t)); | 
|  | ASSERT_EQ(2 * sizeof(word_t), bytes_read); | 
|  | ASSERT_TRUE(memcmp(data, &expected[i], 2 * sizeof(word_t)) == 0) | 
|  | << "Offset at " << i << " failed"; | 
|  | } | 
|  |  | 
|  | // Verify small unaligned reads. | 
|  | for (size_t i = 1; i < sizeof(word_t); i++) { | 
|  | for (size_t j = 1; j < sizeof(word_t); j++) { | 
|  | // Set one byte past what we expect to read, to guarantee we don't overread. | 
|  | data[j] = '\0'; | 
|  | bytes_read = backtrace->Read(read_addr + i, data, j); | 
|  | ASSERT_EQ(j, bytes_read); | 
|  | ASSERT_TRUE(memcmp(data, &expected[i], j) == 0) | 
|  | << "Offset at " << i << " length " << j << " miscompared"; | 
|  | ASSERT_EQ('\0', data[j]) | 
|  | << "Offset at " << i << " length " << j << " wrote too much data"; | 
|  | } | 
|  | } | 
|  | delete[] data; | 
|  | delete[] expected; | 
|  | } | 
|  |  | 
|  | TEST_F(BacktraceTest, thread_read) { | 
|  | pthread_attr_t attr; | 
|  | pthread_attr_init(&attr); | 
|  | pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); | 
|  | pthread_t thread; | 
|  | thread_t thread_data = { 0, 0, 0, nullptr }; | 
|  | ASSERT_TRUE(pthread_create(&thread, &attr, ThreadReadTest, &thread_data) == 0); | 
|  |  | 
|  | ASSERT_TRUE(WaitForNonZero(&thread_data.state, 10)); | 
|  |  | 
|  | std::unique_ptr<Backtrace> backtrace(Backtrace::Create(getpid(), thread_data.tid)); | 
|  | ASSERT_TRUE(backtrace.get() != nullptr); | 
|  |  | 
|  | RunReadTest(backtrace.get(), reinterpret_cast<uint64_t>(thread_data.data)); | 
|  |  | 
|  | android_atomic_acquire_store(0, &thread_data.state); | 
|  |  | 
|  | ASSERT_TRUE(WaitForNonZero(&thread_data.state, 10)); | 
|  | } | 
|  |  | 
|  | // The code requires these variables are the same size. | 
|  | volatile uint64_t g_ready = 0; | 
|  | volatile uint64_t g_addr = 0; | 
|  | static_assert(sizeof(g_ready) == sizeof(g_addr), "g_ready/g_addr must be same size"); | 
|  |  | 
|  | static void ForkedReadTest() { | 
|  | // Create two map pages. | 
|  | size_t pagesize = static_cast<size_t>(sysconf(_SC_PAGE_SIZE)); | 
|  | uint8_t* memory; | 
|  | if (posix_memalign(reinterpret_cast<void**>(&memory), pagesize, 2 * pagesize) != 0) { | 
|  | perror("Failed to allocate memory\n"); | 
|  | exit(1); | 
|  | } | 
|  |  | 
|  | // Mark the second page as not-readable. | 
|  | if (mprotect(&memory[pagesize], pagesize, PROT_NONE) != 0) { | 
|  | perror("Failed to mprotect memory\n"); | 
|  | exit(1); | 
|  | } | 
|  |  | 
|  | // Set up a simple pattern in memory. | 
|  | InitMemory(memory, pagesize); | 
|  |  | 
|  | g_addr = reinterpret_cast<uint64_t>(memory); | 
|  | g_ready = 1; | 
|  |  | 
|  | while (1) { | 
|  | usleep(US_PER_MSEC); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_F(BacktraceTest, process_read) { | 
|  | g_ready = 0; | 
|  | pid_t pid; | 
|  | if ((pid = fork()) == 0) { | 
|  | ForkedReadTest(); | 
|  | exit(0); | 
|  | } | 
|  | ASSERT_NE(-1, pid); | 
|  |  | 
|  | bool test_executed = false; | 
|  | uint64_t start = NanoTime(); | 
|  | while (1) { | 
|  | if (ptrace(PTRACE_ATTACH, pid, 0, 0) == 0) { | 
|  | WaitForStop(pid); | 
|  |  | 
|  | std::unique_ptr<Backtrace> backtrace(Backtrace::Create(pid, pid)); | 
|  | ASSERT_TRUE(backtrace.get() != nullptr); | 
|  |  | 
|  | uint64_t read_addr; | 
|  | size_t bytes_read = backtrace->Read(reinterpret_cast<uint64_t>(&g_ready), | 
|  | reinterpret_cast<uint8_t*>(&read_addr), sizeof(g_ready)); | 
|  | ASSERT_EQ(sizeof(g_ready), bytes_read); | 
|  | if (read_addr) { | 
|  | // The forked process is ready to be read. | 
|  | bytes_read = backtrace->Read(reinterpret_cast<uint64_t>(&g_addr), | 
|  | reinterpret_cast<uint8_t*>(&read_addr), sizeof(g_addr)); | 
|  | ASSERT_EQ(sizeof(g_addr), bytes_read); | 
|  |  | 
|  | RunReadTest(backtrace.get(), read_addr); | 
|  |  | 
|  | test_executed = true; | 
|  | break; | 
|  | } | 
|  | ASSERT_TRUE(ptrace(PTRACE_DETACH, pid, 0, 0) == 0); | 
|  | } | 
|  | if ((NanoTime() - start) > 5 * NS_PER_SEC) { | 
|  | break; | 
|  | } | 
|  | usleep(US_PER_MSEC); | 
|  | } | 
|  | kill(pid, SIGKILL); | 
|  | ASSERT_EQ(waitpid(pid, nullptr, 0), pid); | 
|  |  | 
|  | ASSERT_TRUE(test_executed); | 
|  | } | 
|  |  | 
|  | static void VerifyFunctionsFound(const std::vector<std::string>& found_functions) { | 
|  | // We expect to find these functions in libbacktrace_test. If we don't | 
|  | // find them, that's a bug in the memory read handling code in libunwind. | 
|  | std::list<std::string> expected_functions; | 
|  | expected_functions.push_back("test_recursive_call"); | 
|  | expected_functions.push_back("test_level_one"); | 
|  | expected_functions.push_back("test_level_two"); | 
|  | expected_functions.push_back("test_level_three"); | 
|  | expected_functions.push_back("test_level_four"); | 
|  | for (const auto& found_function : found_functions) { | 
|  | for (const auto& expected_function : expected_functions) { | 
|  | if (found_function == expected_function) { | 
|  | expected_functions.remove(found_function); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | ASSERT_TRUE(expected_functions.empty()) << "Not all functions found in shared library."; | 
|  | } | 
|  |  | 
|  | static void CopySharedLibrary(const char* tmp_dir, std::string* tmp_so_name) { | 
|  | std::string test_lib(testing::internal::GetArgvs()[0]); | 
|  | auto const value = test_lib.find_last_of('/'); | 
|  | if (value == std::string::npos) { | 
|  | test_lib = "../backtrace_test_libs/"; | 
|  | } else { | 
|  | test_lib = test_lib.substr(0, value + 1) + "../backtrace_test_libs/"; | 
|  | } | 
|  | test_lib += "libbacktrace_test.so"; | 
|  |  | 
|  | *tmp_so_name = std::string(tmp_dir) + "/libbacktrace_test.so"; | 
|  | std::string cp_cmd = android::base::StringPrintf("cp %s %s", test_lib.c_str(), tmp_dir); | 
|  |  | 
|  | // Copy the shared so to a tempory directory. | 
|  | ASSERT_EQ(0, system(cp_cmd.c_str())); | 
|  | } | 
|  |  | 
|  | TEST_F(BacktraceTest, check_unreadable_elf_local) { | 
|  | TemporaryDir td; | 
|  | std::string tmp_so_name; | 
|  | ASSERT_NO_FATAL_FAILURE(CopySharedLibrary(td.path, &tmp_so_name)); | 
|  |  | 
|  | struct stat buf; | 
|  | ASSERT_TRUE(stat(tmp_so_name.c_str(), &buf) != -1); | 
|  | uint64_t map_size = buf.st_size; | 
|  |  | 
|  | int fd = open(tmp_so_name.c_str(), O_RDONLY); | 
|  | ASSERT_TRUE(fd != -1); | 
|  |  | 
|  | void* map = mmap(nullptr, map_size, PROT_READ | PROT_EXEC, MAP_PRIVATE, fd, 0); | 
|  | ASSERT_TRUE(map != MAP_FAILED); | 
|  | close(fd); | 
|  | ASSERT_TRUE(unlink(tmp_so_name.c_str()) != -1); | 
|  |  | 
|  | std::vector<std::string> found_functions; | 
|  | std::unique_ptr<Backtrace> backtrace(Backtrace::Create(BACKTRACE_CURRENT_PROCESS, | 
|  | BACKTRACE_CURRENT_THREAD)); | 
|  | ASSERT_TRUE(backtrace.get() != nullptr); | 
|  |  | 
|  | // Needed before GetFunctionName will work. | 
|  | backtrace->Unwind(0); | 
|  |  | 
|  | // Loop through the entire map, and get every function we can find. | 
|  | map_size += reinterpret_cast<uint64_t>(map); | 
|  | std::string last_func; | 
|  | for (uint64_t read_addr = reinterpret_cast<uint64_t>(map); read_addr < map_size; read_addr += 4) { | 
|  | uint64_t offset; | 
|  | std::string func_name = backtrace->GetFunctionName(read_addr, &offset); | 
|  | if (!func_name.empty() && last_func != func_name) { | 
|  | found_functions.push_back(func_name); | 
|  | } | 
|  | last_func = func_name; | 
|  | } | 
|  |  | 
|  | ASSERT_TRUE(munmap(map, map_size - reinterpret_cast<uint64_t>(map)) == 0); | 
|  |  | 
|  | VerifyFunctionsFound(found_functions); | 
|  | } | 
|  |  | 
|  | TEST_F(BacktraceTest, check_unreadable_elf_remote) { | 
|  | TemporaryDir td; | 
|  | std::string tmp_so_name; | 
|  | ASSERT_NO_FATAL_FAILURE(CopySharedLibrary(td.path, &tmp_so_name)); | 
|  |  | 
|  | g_ready = 0; | 
|  |  | 
|  | struct stat buf; | 
|  | ASSERT_TRUE(stat(tmp_so_name.c_str(), &buf) != -1); | 
|  | uint64_t map_size = buf.st_size; | 
|  |  | 
|  | pid_t pid; | 
|  | if ((pid = fork()) == 0) { | 
|  | int fd = open(tmp_so_name.c_str(), O_RDONLY); | 
|  | if (fd == -1) { | 
|  | fprintf(stderr, "Failed to open file %s: %s\n", tmp_so_name.c_str(), strerror(errno)); | 
|  | unlink(tmp_so_name.c_str()); | 
|  | exit(0); | 
|  | } | 
|  |  | 
|  | void* map = mmap(nullptr, map_size, PROT_READ | PROT_EXEC, MAP_PRIVATE, fd, 0); | 
|  | if (map == MAP_FAILED) { | 
|  | fprintf(stderr, "Failed to map in memory: %s\n", strerror(errno)); | 
|  | unlink(tmp_so_name.c_str()); | 
|  | exit(0); | 
|  | } | 
|  | close(fd); | 
|  | if (unlink(tmp_so_name.c_str()) == -1) { | 
|  | fprintf(stderr, "Failed to unlink: %s\n", strerror(errno)); | 
|  | exit(0); | 
|  | } | 
|  |  | 
|  | g_addr = reinterpret_cast<uint64_t>(map); | 
|  | g_ready = 1; | 
|  | while (true) { | 
|  | usleep(US_PER_MSEC); | 
|  | } | 
|  | exit(0); | 
|  | } | 
|  | ASSERT_TRUE(pid > 0); | 
|  |  | 
|  | std::vector<std::string> found_functions; | 
|  | uint64_t start = NanoTime(); | 
|  | while (true) { | 
|  | ASSERT_TRUE(ptrace(PTRACE_ATTACH, pid, 0, 0) == 0); | 
|  |  | 
|  | // Wait for the process to get to a stopping point. | 
|  | WaitForStop(pid); | 
|  |  | 
|  | std::unique_ptr<Backtrace> backtrace(Backtrace::Create(pid, BACKTRACE_CURRENT_THREAD)); | 
|  | ASSERT_TRUE(backtrace.get() != nullptr); | 
|  |  | 
|  | uint64_t read_addr; | 
|  | ASSERT_EQ(sizeof(g_ready), | 
|  | backtrace->Read(reinterpret_cast<uint64_t>(&g_ready), | 
|  | reinterpret_cast<uint8_t*>(&read_addr), sizeof(g_ready))); | 
|  | if (read_addr) { | 
|  | ASSERT_EQ(sizeof(g_addr), | 
|  | backtrace->Read(reinterpret_cast<uint64_t>(&g_addr), | 
|  | reinterpret_cast<uint8_t*>(&read_addr), sizeof(uint64_t))); | 
|  |  | 
|  | // Needed before GetFunctionName will work. | 
|  | backtrace->Unwind(0); | 
|  |  | 
|  | // Loop through the entire map, and get every function we can find. | 
|  | map_size += read_addr; | 
|  | std::string last_func; | 
|  | for (; read_addr < map_size; read_addr += 4) { | 
|  | uint64_t offset; | 
|  | std::string func_name = backtrace->GetFunctionName(read_addr, &offset); | 
|  | if (!func_name.empty() && last_func != func_name) { | 
|  | found_functions.push_back(func_name); | 
|  | } | 
|  | last_func = func_name; | 
|  | } | 
|  | break; | 
|  | } | 
|  | ASSERT_TRUE(ptrace(PTRACE_DETACH, pid, 0, 0) == 0); | 
|  |  | 
|  | if ((NanoTime() - start) > 5 * NS_PER_SEC) { | 
|  | break; | 
|  | } | 
|  | usleep(US_PER_MSEC); | 
|  | } | 
|  |  | 
|  | kill(pid, SIGKILL); | 
|  | ASSERT_EQ(waitpid(pid, nullptr, 0), pid); | 
|  |  | 
|  | VerifyFunctionsFound(found_functions); | 
|  | } | 
|  |  | 
|  | static bool FindFuncFrameInBacktrace(Backtrace* backtrace, uint64_t test_func, size_t* frame_num) { | 
|  | backtrace_map_t map; | 
|  | backtrace->FillInMap(test_func, &map); | 
|  | if (!BacktraceMap::IsValid(map)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Loop through the frames, and find the one that is in the map. | 
|  | *frame_num = 0; | 
|  | for (Backtrace::const_iterator it = backtrace->begin(); it != backtrace->end(); ++it) { | 
|  | if (BacktraceMap::IsValid(it->map) && map.start == it->map.start && | 
|  | it->pc >= test_func) { | 
|  | *frame_num = it->num; | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void VerifyUnreadableElfFrame(Backtrace* backtrace, uint64_t test_func, size_t frame_num) { | 
|  | ASSERT_LT(backtrace->NumFrames(), static_cast<size_t>(MAX_BACKTRACE_FRAMES)) | 
|  | << DumpFrames(backtrace); | 
|  |  | 
|  | ASSERT_TRUE(frame_num != 0) << DumpFrames(backtrace); | 
|  | // Make sure that there is at least one more frame above the test func call. | 
|  | ASSERT_LT(frame_num, backtrace->NumFrames()) << DumpFrames(backtrace); | 
|  |  | 
|  | uint64_t diff = backtrace->GetFrame(frame_num)->pc - test_func; | 
|  | ASSERT_LT(diff, 200U) << DumpFrames(backtrace); | 
|  | } | 
|  |  | 
|  | static void VerifyUnreadableElfBacktrace(void* func) { | 
|  | std::unique_ptr<Backtrace> backtrace(Backtrace::Create(BACKTRACE_CURRENT_PROCESS, | 
|  | BACKTRACE_CURRENT_THREAD)); | 
|  | ASSERT_TRUE(backtrace.get() != nullptr); | 
|  | ASSERT_TRUE(backtrace->Unwind(0)); | 
|  | VERIFY_NO_ERROR(backtrace->GetError().error_code); | 
|  |  | 
|  | size_t frame_num; | 
|  | uint64_t test_func = reinterpret_cast<uint64_t>(func); | 
|  | ASSERT_TRUE(FindFuncFrameInBacktrace(backtrace.get(), test_func, &frame_num)) | 
|  | << DumpFrames(backtrace.get()); | 
|  |  | 
|  | VerifyUnreadableElfFrame(backtrace.get(), test_func, frame_num); | 
|  | } | 
|  |  | 
|  | typedef int (*test_func_t)(int, int, int, int, void (*)(void*), void*); | 
|  |  | 
|  | TEST_F(BacktraceTest, unwind_through_unreadable_elf_local) { | 
|  | TemporaryDir td; | 
|  | std::string tmp_so_name; | 
|  | ASSERT_NO_FATAL_FAILURE(CopySharedLibrary(td.path, &tmp_so_name)); | 
|  |  | 
|  | void* lib_handle = dlopen(tmp_so_name.c_str(), RTLD_NOW); | 
|  | ASSERT_TRUE(lib_handle != nullptr); | 
|  | ASSERT_TRUE(unlink(tmp_so_name.c_str()) != -1); | 
|  |  | 
|  | test_func_t test_func; | 
|  | test_func = reinterpret_cast<test_func_t>(dlsym(lib_handle, "test_level_one")); | 
|  | ASSERT_TRUE(test_func != nullptr); | 
|  |  | 
|  | ASSERT_NE(test_func(1, 2, 3, 4, VerifyUnreadableElfBacktrace, reinterpret_cast<void*>(test_func)), | 
|  | 0); | 
|  | } | 
|  |  | 
|  | TEST_F(BacktraceTest, unwind_through_unreadable_elf_remote) { | 
|  | TemporaryDir td; | 
|  | std::string tmp_so_name; | 
|  | ASSERT_NO_FATAL_FAILURE(CopySharedLibrary(td.path, &tmp_so_name)); | 
|  |  | 
|  | void* lib_handle = dlopen(tmp_so_name.c_str(), RTLD_NOW); | 
|  | ASSERT_TRUE(lib_handle != nullptr); | 
|  | ASSERT_TRUE(unlink(tmp_so_name.c_str()) != -1); | 
|  |  | 
|  | test_func_t test_func; | 
|  | test_func = reinterpret_cast<test_func_t>(dlsym(lib_handle, "test_level_one")); | 
|  | ASSERT_TRUE(test_func != nullptr); | 
|  |  | 
|  | pid_t pid; | 
|  | if ((pid = fork()) == 0) { | 
|  | test_func(1, 2, 3, 4, 0, 0); | 
|  | exit(0); | 
|  | } | 
|  | ASSERT_TRUE(pid > 0); | 
|  |  | 
|  | uint64_t start = NanoTime(); | 
|  | bool done = false; | 
|  | while (!done) { | 
|  | ASSERT_TRUE(ptrace(PTRACE_ATTACH, pid, 0, 0) == 0); | 
|  |  | 
|  | // Wait for the process to get to a stopping point. | 
|  | WaitForStop(pid); | 
|  |  | 
|  | std::unique_ptr<Backtrace> backtrace(Backtrace::Create(pid, BACKTRACE_CURRENT_THREAD)); | 
|  | ASSERT_TRUE(backtrace.get() != nullptr); | 
|  | ASSERT_TRUE(backtrace->Unwind(0)); | 
|  | VERIFY_NO_ERROR(backtrace->GetError().error_code); | 
|  |  | 
|  | size_t frame_num; | 
|  | if (FindFuncFrameInBacktrace(backtrace.get(), reinterpret_cast<uint64_t>(test_func), | 
|  | &frame_num) && | 
|  | frame_num != 0) { | 
|  | VerifyUnreadableElfFrame(backtrace.get(), reinterpret_cast<uint64_t>(test_func), frame_num); | 
|  | done = true; | 
|  | } | 
|  |  | 
|  | ASSERT_TRUE(ptrace(PTRACE_DETACH, pid, 0, 0) == 0); | 
|  |  | 
|  | if ((NanoTime() - start) > 5 * NS_PER_SEC) { | 
|  | break; | 
|  | } | 
|  | usleep(US_PER_MSEC); | 
|  | } | 
|  |  | 
|  | kill(pid, SIGKILL); | 
|  | ASSERT_EQ(waitpid(pid, nullptr, 0), pid); | 
|  |  | 
|  | ASSERT_TRUE(done) << "Test function never found in unwind."; | 
|  | } | 
|  |  | 
|  | TEST_F(BacktraceTest, unwind_thread_doesnt_exist) { | 
|  | std::unique_ptr<Backtrace> backtrace( | 
|  | Backtrace::Create(BACKTRACE_CURRENT_PROCESS, 99999999)); | 
|  | ASSERT_TRUE(backtrace.get() != nullptr); | 
|  | ASSERT_FALSE(backtrace->Unwind(0)); | 
|  | ASSERT_EQ(BACKTRACE_UNWIND_ERROR_THREAD_DOESNT_EXIST, backtrace->GetError().error_code); | 
|  | } | 
|  |  | 
|  | TEST_F(BacktraceTest, local_get_function_name_before_unwind) { | 
|  | std::unique_ptr<Backtrace> backtrace( | 
|  | Backtrace::Create(BACKTRACE_CURRENT_PROCESS, BACKTRACE_CURRENT_THREAD)); | 
|  | ASSERT_TRUE(backtrace.get() != nullptr); | 
|  |  | 
|  | // Verify that trying to get a function name before doing an unwind works. | 
|  | uint64_t cur_func_offset = reinterpret_cast<uint64_t>(test_level_one_) + 1; | 
|  | uint64_t offset; | 
|  | ASSERT_NE(std::string(""), backtrace->GetFunctionName(cur_func_offset, &offset)); | 
|  | } | 
|  |  | 
|  | TEST_F(BacktraceTest, remote_get_function_name_before_unwind) { | 
|  | pid_t pid; | 
|  | CreateRemoteProcess(&pid); | 
|  |  | 
|  | // Now create an unwind object. | 
|  | std::unique_ptr<Backtrace> backtrace(Backtrace::Create(pid, pid)); | 
|  |  | 
|  | // Verify that trying to get a function name before doing an unwind works. | 
|  | uint64_t cur_func_offset = reinterpret_cast<uint64_t>(test_level_one_) + 1; | 
|  | uint64_t offset; | 
|  | ASSERT_NE(std::string(""), backtrace->GetFunctionName(cur_func_offset, &offset)); | 
|  |  | 
|  | FinishRemoteProcess(pid); | 
|  | } | 
|  |  | 
|  | static void SetUcontextSp(uint64_t sp, ucontext_t* ucontext) { | 
|  | #if defined(__arm__) | 
|  | ucontext->uc_mcontext.arm_sp = sp; | 
|  | #elif defined(__aarch64__) | 
|  | ucontext->uc_mcontext.sp = sp; | 
|  | #elif defined(__i386__) | 
|  | ucontext->uc_mcontext.gregs[REG_ESP] = sp; | 
|  | #elif defined(__x86_64__) | 
|  | ucontext->uc_mcontext.gregs[REG_RSP] = sp; | 
|  | #else | 
|  | UNUSED(sp); | 
|  | UNUSED(ucontext); | 
|  | ASSERT_TRUE(false) << "Unsupported architecture"; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void SetUcontextPc(uint64_t pc, ucontext_t* ucontext) { | 
|  | #if defined(__arm__) | 
|  | ucontext->uc_mcontext.arm_pc = pc; | 
|  | #elif defined(__aarch64__) | 
|  | ucontext->uc_mcontext.pc = pc; | 
|  | #elif defined(__i386__) | 
|  | ucontext->uc_mcontext.gregs[REG_EIP] = pc; | 
|  | #elif defined(__x86_64__) | 
|  | ucontext->uc_mcontext.gregs[REG_RIP] = pc; | 
|  | #else | 
|  | UNUSED(pc); | 
|  | UNUSED(ucontext); | 
|  | ASSERT_TRUE(false) << "Unsupported architecture"; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void SetUcontextLr(uint64_t lr, ucontext_t* ucontext) { | 
|  | #if defined(__arm__) | 
|  | ucontext->uc_mcontext.arm_lr = lr; | 
|  | #elif defined(__aarch64__) | 
|  | ucontext->uc_mcontext.regs[30] = lr; | 
|  | #elif defined(__i386__) | 
|  | // The lr is on the stack. | 
|  | ASSERT_TRUE(lr != 0); | 
|  | ASSERT_TRUE(ucontext != nullptr); | 
|  | #elif defined(__x86_64__) | 
|  | // The lr is on the stack. | 
|  | ASSERT_TRUE(lr != 0); | 
|  | ASSERT_TRUE(ucontext != nullptr); | 
|  | #else | 
|  | UNUSED(lr); | 
|  | UNUSED(ucontext); | 
|  | ASSERT_TRUE(false) << "Unsupported architecture"; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static constexpr size_t DEVICE_MAP_SIZE = 1024; | 
|  |  | 
|  | static void SetupDeviceMap(void** device_map) { | 
|  | // Make sure that anything in a device map will result in fails | 
|  | // to read. | 
|  | android::base::unique_fd device_fd(open("/dev/zero", O_RDONLY | O_CLOEXEC)); | 
|  |  | 
|  | *device_map = mmap(nullptr, 1024, PROT_READ, MAP_PRIVATE, device_fd, 0); | 
|  | ASSERT_TRUE(*device_map != MAP_FAILED); | 
|  |  | 
|  | // Make sure the map is readable. | 
|  | ASSERT_EQ(0, reinterpret_cast<int*>(*device_map)[0]); | 
|  | } | 
|  |  | 
|  | static void UnwindFromDevice(Backtrace* backtrace, void* device_map) { | 
|  | uint64_t device_map_uint = reinterpret_cast<uint64_t>(device_map); | 
|  |  | 
|  | backtrace_map_t map; | 
|  | backtrace->FillInMap(device_map_uint, &map); | 
|  | // Verify the flag is set. | 
|  | ASSERT_EQ(PROT_DEVICE_MAP, map.flags & PROT_DEVICE_MAP); | 
|  |  | 
|  | // Quick sanity checks. | 
|  | uint64_t offset; | 
|  | ASSERT_EQ(std::string(""), backtrace->GetFunctionName(device_map_uint, &offset)); | 
|  | ASSERT_EQ(std::string(""), backtrace->GetFunctionName(device_map_uint, &offset, &map)); | 
|  | ASSERT_EQ(std::string(""), backtrace->GetFunctionName(0, &offset)); | 
|  |  | 
|  | uint64_t cur_func_offset = reinterpret_cast<uint64_t>(BacktraceTest::test_level_one_) + 1; | 
|  | // Now verify the device map flag actually causes the function name to be empty. | 
|  | backtrace->FillInMap(cur_func_offset, &map); | 
|  | ASSERT_TRUE((map.flags & PROT_DEVICE_MAP) == 0); | 
|  | ASSERT_NE(std::string(""), backtrace->GetFunctionName(cur_func_offset, &offset, &map)); | 
|  | map.flags |= PROT_DEVICE_MAP; | 
|  | ASSERT_EQ(std::string(""), backtrace->GetFunctionName(cur_func_offset, &offset, &map)); | 
|  |  | 
|  | ucontext_t ucontext; | 
|  |  | 
|  | // Create a context that has the pc in the device map, but the sp | 
|  | // in a non-device map. | 
|  | memset(&ucontext, 0, sizeof(ucontext)); | 
|  | SetUcontextSp(reinterpret_cast<uint64_t>(&ucontext), &ucontext); | 
|  | SetUcontextPc(device_map_uint, &ucontext); | 
|  | SetUcontextLr(cur_func_offset, &ucontext); | 
|  |  | 
|  | ASSERT_TRUE(backtrace->Unwind(0, &ucontext)); | 
|  |  | 
|  | // The buffer should only be a single element. | 
|  | ASSERT_EQ(1U, backtrace->NumFrames()); | 
|  | const backtrace_frame_data_t* frame = backtrace->GetFrame(0); | 
|  | ASSERT_EQ(device_map_uint, frame->pc); | 
|  | ASSERT_EQ(reinterpret_cast<uint64_t>(&ucontext), frame->sp); | 
|  |  | 
|  | // Check what happens when skipping the first frame. | 
|  | ASSERT_TRUE(backtrace->Unwind(1, &ucontext)); | 
|  | ASSERT_EQ(0U, backtrace->NumFrames()); | 
|  |  | 
|  | // Create a context that has the sp in the device map, but the pc | 
|  | // in a non-device map. | 
|  | memset(&ucontext, 0, sizeof(ucontext)); | 
|  | SetUcontextSp(device_map_uint, &ucontext); | 
|  | SetUcontextPc(cur_func_offset, &ucontext); | 
|  | SetUcontextLr(cur_func_offset, &ucontext); | 
|  |  | 
|  | ASSERT_TRUE(backtrace->Unwind(0, &ucontext)); | 
|  |  | 
|  | // The buffer should only be a single element. | 
|  | ASSERT_EQ(1U, backtrace->NumFrames()); | 
|  | frame = backtrace->GetFrame(0); | 
|  | ASSERT_EQ(cur_func_offset, frame->pc); | 
|  | ASSERT_EQ(device_map_uint, frame->sp); | 
|  |  | 
|  | // Check what happens when skipping the first frame. | 
|  | ASSERT_TRUE(backtrace->Unwind(1, &ucontext)); | 
|  | ASSERT_EQ(0U, backtrace->NumFrames()); | 
|  | } | 
|  |  | 
|  | TEST_F(BacktraceTest, unwind_disallow_device_map_local) { | 
|  | void* device_map; | 
|  | SetupDeviceMap(&device_map); | 
|  |  | 
|  | // Now create an unwind object. | 
|  | std::unique_ptr<Backtrace> backtrace( | 
|  | Backtrace::Create(BACKTRACE_CURRENT_PROCESS, BACKTRACE_CURRENT_THREAD)); | 
|  | ASSERT_TRUE(backtrace); | 
|  |  | 
|  | UnwindFromDevice(backtrace.get(), device_map); | 
|  |  | 
|  | munmap(device_map, DEVICE_MAP_SIZE); | 
|  | } | 
|  |  | 
|  | TEST_F(BacktraceTest, unwind_disallow_device_map_remote) { | 
|  | void* device_map; | 
|  | SetupDeviceMap(&device_map); | 
|  |  | 
|  | // Fork a process to do a remote backtrace. | 
|  | pid_t pid; | 
|  | CreateRemoteProcess(&pid); | 
|  |  | 
|  | // Now create an unwind object. | 
|  | std::unique_ptr<Backtrace> backtrace(Backtrace::Create(pid, pid)); | 
|  |  | 
|  | UnwindFromDevice(backtrace.get(), device_map); | 
|  |  | 
|  | FinishRemoteProcess(pid); | 
|  |  | 
|  | munmap(device_map, DEVICE_MAP_SIZE); | 
|  | } | 
|  |  | 
|  | class ScopedSignalHandler { | 
|  | public: | 
|  | ScopedSignalHandler(int signal_number, void (*handler)(int)) : signal_number_(signal_number) { | 
|  | memset(&action_, 0, sizeof(action_)); | 
|  | action_.sa_handler = handler; | 
|  | sigaction(signal_number_, &action_, &old_action_); | 
|  | } | 
|  |  | 
|  | ScopedSignalHandler(int signal_number, void (*action)(int, siginfo_t*, void*)) | 
|  | : signal_number_(signal_number) { | 
|  | memset(&action_, 0, sizeof(action_)); | 
|  | action_.sa_flags = SA_SIGINFO; | 
|  | action_.sa_sigaction = action; | 
|  | sigaction(signal_number_, &action_, &old_action_); | 
|  | } | 
|  |  | 
|  | ~ScopedSignalHandler() { sigaction(signal_number_, &old_action_, nullptr); } | 
|  |  | 
|  | private: | 
|  | struct sigaction action_; | 
|  | struct sigaction old_action_; | 
|  | const int signal_number_; | 
|  | }; | 
|  |  | 
|  | static void SetValueAndLoop(void* data) { | 
|  | volatile int* value = reinterpret_cast<volatile int*>(data); | 
|  |  | 
|  | *value = 1; | 
|  | for (volatile int i = 0;; i++) | 
|  | ; | 
|  | } | 
|  |  | 
|  | static void UnwindThroughSignal(bool use_action, create_func_t create_func, | 
|  | map_create_func_t map_create_func) { | 
|  | volatile int value = 0; | 
|  | pid_t pid; | 
|  | if ((pid = fork()) == 0) { | 
|  | if (use_action) { | 
|  | ScopedSignalHandler ssh(SIGUSR1, BacktraceTest::test_signal_action_); | 
|  |  | 
|  | BacktraceTest::test_level_one_(1, 2, 3, 4, SetValueAndLoop, const_cast<int*>(&value)); | 
|  | } else { | 
|  | ScopedSignalHandler ssh(SIGUSR1, BacktraceTest::test_signal_handler_); | 
|  |  | 
|  | BacktraceTest::test_level_one_(1, 2, 3, 4, SetValueAndLoop, const_cast<int*>(&value)); | 
|  | } | 
|  | } | 
|  | ASSERT_NE(-1, pid); | 
|  |  | 
|  | int read_value = 0; | 
|  | uint64_t start = NanoTime(); | 
|  | while (read_value == 0) { | 
|  | usleep(1000); | 
|  |  | 
|  | // Loop until the remote function gets into the final function. | 
|  | ASSERT_TRUE(ptrace(PTRACE_ATTACH, pid, 0, 0) == 0); | 
|  |  | 
|  | WaitForStop(pid); | 
|  |  | 
|  | std::unique_ptr<BacktraceMap> map(map_create_func(pid, false)); | 
|  | std::unique_ptr<Backtrace> backtrace(create_func(pid, pid, map.get())); | 
|  |  | 
|  | size_t bytes_read = backtrace->Read(reinterpret_cast<uint64_t>(const_cast<int*>(&value)), | 
|  | reinterpret_cast<uint8_t*>(&read_value), sizeof(read_value)); | 
|  | ASSERT_EQ(sizeof(read_value), bytes_read); | 
|  |  | 
|  | ASSERT_TRUE(ptrace(PTRACE_DETACH, pid, 0, 0) == 0); | 
|  |  | 
|  | ASSERT_TRUE(NanoTime() - start < 5 * NS_PER_SEC) | 
|  | << "Remote process did not execute far enough in 5 seconds."; | 
|  | } | 
|  |  | 
|  | // Now need to send a signal to the remote process. | 
|  | kill(pid, SIGUSR1); | 
|  |  | 
|  | // Wait for the process to get to the signal handler loop. | 
|  | Backtrace::const_iterator frame_iter; | 
|  | start = NanoTime(); | 
|  | std::unique_ptr<BacktraceMap> map; | 
|  | std::unique_ptr<Backtrace> backtrace; | 
|  | while (true) { | 
|  | usleep(1000); | 
|  |  | 
|  | ASSERT_TRUE(ptrace(PTRACE_ATTACH, pid, 0, 0) == 0); | 
|  |  | 
|  | WaitForStop(pid); | 
|  |  | 
|  | map.reset(map_create_func(pid, false)); | 
|  | ASSERT_TRUE(map.get() != nullptr); | 
|  | backtrace.reset(create_func(pid, pid, map.get())); | 
|  | ASSERT_TRUE(backtrace->Unwind(0)); | 
|  | bool found = false; | 
|  | for (frame_iter = backtrace->begin(); frame_iter != backtrace->end(); ++frame_iter) { | 
|  | if (frame_iter->func_name == "test_loop_forever") { | 
|  | ++frame_iter; | 
|  | found = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (found) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | ASSERT_TRUE(ptrace(PTRACE_DETACH, pid, 0, 0) == 0); | 
|  |  | 
|  | ASSERT_TRUE(NanoTime() - start < 5 * NS_PER_SEC) | 
|  | << "Remote process did not get in signal handler in 5 seconds." << std::endl | 
|  | << DumpFrames(backtrace.get()); | 
|  | } | 
|  |  | 
|  | std::vector<std::string> names; | 
|  | // Loop through the frames, and save the function names. | 
|  | size_t frame = 0; | 
|  | for (; frame_iter != backtrace->end(); ++frame_iter) { | 
|  | if (frame_iter->func_name == "test_level_four") { | 
|  | frame = names.size() + 1; | 
|  | } | 
|  | names.push_back(frame_iter->func_name); | 
|  | } | 
|  | ASSERT_NE(0U, frame) << "Unable to find test_level_four in backtrace" << std::endl | 
|  | << DumpFrames(backtrace.get()); | 
|  |  | 
|  | // The expected order of the frames: | 
|  | //   test_loop_forever | 
|  | //   test_signal_handler|test_signal_action | 
|  | //   <OPTIONAL_FRAME> May or may not exist. | 
|  | //   SetValueAndLoop (but the function name might be empty) | 
|  | //   test_level_four | 
|  | //   test_level_three | 
|  | //   test_level_two | 
|  | //   test_level_one | 
|  | ASSERT_LE(frame + 2, names.size()) << DumpFrames(backtrace.get()); | 
|  | ASSERT_LE(2U, frame) << DumpFrames(backtrace.get()); | 
|  | if (use_action) { | 
|  | ASSERT_EQ("test_signal_action", names[0]) << DumpFrames(backtrace.get()); | 
|  | } else { | 
|  | ASSERT_EQ("test_signal_handler", names[0]) << DumpFrames(backtrace.get()); | 
|  | } | 
|  | ASSERT_EQ("test_level_three", names[frame]) << DumpFrames(backtrace.get()); | 
|  | ASSERT_EQ("test_level_two", names[frame + 1]) << DumpFrames(backtrace.get()); | 
|  | ASSERT_EQ("test_level_one", names[frame + 2]) << DumpFrames(backtrace.get()); | 
|  |  | 
|  | FinishRemoteProcess(pid); | 
|  | } | 
|  |  | 
|  | TEST_F(BacktraceTest, unwind_remote_through_signal_using_handler) { | 
|  | UnwindThroughSignal(false, Backtrace::Create, BacktraceMap::Create); | 
|  | } | 
|  |  | 
|  | TEST_F(BacktraceTest, unwind_remote_through_signal_using_action) { | 
|  | UnwindThroughSignal(true, Backtrace::Create, BacktraceMap::Create); | 
|  | } | 
|  |  | 
|  | static void TestFrameSkipNumbering(create_func_t create_func, map_create_func_t map_create_func) { | 
|  | std::unique_ptr<BacktraceMap> map(map_create_func(getpid(), false)); | 
|  | std::unique_ptr<Backtrace> backtrace( | 
|  | create_func(getpid(), android::base::GetThreadId(), map.get())); | 
|  | backtrace->Unwind(1); | 
|  | ASSERT_NE(0U, backtrace->NumFrames()); | 
|  | ASSERT_EQ(0U, backtrace->GetFrame(0)->num); | 
|  | } | 
|  |  | 
|  | TEST_F(BacktraceTest, unwind_frame_skip_numbering) { | 
|  | TestFrameSkipNumbering(Backtrace::Create, BacktraceMap::Create); | 
|  | } | 
|  |  | 
|  | #define MAX_LEAK_BYTES (32*1024UL) | 
|  |  | 
|  | static void CheckForLeak(pid_t pid, pid_t tid) { | 
|  | std::unique_ptr<BacktraceMap> map(BacktraceMap::Create(pid)); | 
|  |  | 
|  | // Loop enough that even a small leak should be detectable. | 
|  | size_t first_allocated_bytes = 0; | 
|  | size_t last_allocated_bytes = 0; | 
|  | for (size_t i = 0; i < 4096; i++) { | 
|  | Backtrace* backtrace = Backtrace::Create(pid, tid, map.get()); | 
|  | ASSERT_TRUE(backtrace != nullptr); | 
|  | ASSERT_TRUE(backtrace->Unwind(0)); | 
|  | VERIFY_NO_ERROR(backtrace->GetError().error_code); | 
|  | delete backtrace; | 
|  |  | 
|  | size_t allocated_bytes = mallinfo().uordblks; | 
|  | if (first_allocated_bytes == 0) { | 
|  | first_allocated_bytes = allocated_bytes; | 
|  | } else if (last_allocated_bytes > first_allocated_bytes) { | 
|  | // Check that the memory did not increase too much over the first loop. | 
|  | ASSERT_LE(last_allocated_bytes - first_allocated_bytes, MAX_LEAK_BYTES); | 
|  | } | 
|  | last_allocated_bytes = allocated_bytes; | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_F(BacktraceTest, check_for_leak_local) { | 
|  | CheckForLeak(BACKTRACE_CURRENT_PROCESS, BACKTRACE_CURRENT_THREAD); | 
|  | } | 
|  |  | 
|  | TEST_F(BacktraceTest, check_for_leak_local_thread) { | 
|  | thread_t thread_data = { 0, 0, 0, nullptr }; | 
|  | pthread_t thread; | 
|  | ASSERT_TRUE(pthread_create(&thread, nullptr, ThreadLevelRun, &thread_data) == 0); | 
|  |  | 
|  | // Wait up to 2 seconds for the tid to be set. | 
|  | ASSERT_TRUE(WaitForNonZero(&thread_data.state, 2)); | 
|  |  | 
|  | CheckForLeak(BACKTRACE_CURRENT_PROCESS, thread_data.tid); | 
|  |  | 
|  | // Tell the thread to exit its infinite loop. | 
|  | android_atomic_acquire_store(0, &thread_data.state); | 
|  |  | 
|  | ASSERT_TRUE(pthread_join(thread, nullptr) == 0); | 
|  | } | 
|  |  | 
|  | TEST_F(BacktraceTest, check_for_leak_remote) { | 
|  | pid_t pid; | 
|  | CreateRemoteProcess(&pid); | 
|  |  | 
|  | CheckForLeak(pid, BACKTRACE_CURRENT_THREAD); | 
|  |  | 
|  | FinishRemoteProcess(pid); | 
|  | } |