| /* | 
 |  * Copyright (C) 2016 The Android Open Source Project | 
 |  * | 
 |  * Licensed under the Apache License, Version 2.0 (the "License"); | 
 |  * you may not use this file except in compliance with the License. | 
 |  * You may obtain a copy of the License at | 
 |  * | 
 |  *      http://www.apache.org/licenses/LICENSE-2.0 | 
 |  * | 
 |  * Unless required by applicable law or agreed to in writing, software | 
 |  * distributed under the License is distributed on an "AS IS" BASIS, | 
 |  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 |  * See the License for the specific language governing permissions and | 
 |  * limitations under the License. | 
 |  */ | 
 |  | 
 | #include <errno.h> | 
 | #include <inttypes.h> | 
 | #include <sys/mman.h> | 
 | #include <unistd.h> | 
 |  | 
 | #include <map> | 
 | #include <utility> | 
 |  | 
 | #include "Allocator.h" | 
 | #include "HeapWalker.h" | 
 | #include "LeakFolding.h" | 
 | #include "ScopedSignalHandler.h" | 
 | #include "log.h" | 
 |  | 
 | namespace android { | 
 |  | 
 | bool HeapWalker::Allocation(uintptr_t begin, uintptr_t end) { | 
 |   if (end == begin) { | 
 |     end = begin + 1; | 
 |   } | 
 |   Range range{begin, end}; | 
 |   if (valid_mappings_range_.end != 0 && | 
 |       (begin < valid_mappings_range_.begin || end > valid_mappings_range_.end)) { | 
 |     MEM_LOG_ALWAYS_FATAL("allocation %p-%p is outside mapping range %p-%p", | 
 |                          reinterpret_cast<void*>(begin), reinterpret_cast<void*>(end), | 
 |                          reinterpret_cast<void*>(valid_mappings_range_.begin), | 
 |                          reinterpret_cast<void*>(valid_mappings_range_.end)); | 
 |   } | 
 |   auto inserted = allocations_.insert(std::pair<Range, AllocationInfo>(range, AllocationInfo{})); | 
 |   if (inserted.second) { | 
 |     valid_allocations_range_.begin = std::min(valid_allocations_range_.begin, begin); | 
 |     valid_allocations_range_.end = std::max(valid_allocations_range_.end, end); | 
 |     allocation_bytes_ += range.size(); | 
 |     return true; | 
 |   } else { | 
 |     Range overlap = inserted.first->first; | 
 |     if (overlap != range) { | 
 |       MEM_ALOGE("range %p-%p overlaps with existing range %p-%p", reinterpret_cast<void*>(begin), | 
 |                 reinterpret_cast<void*>(end), reinterpret_cast<void*>(overlap.begin), | 
 |                 reinterpret_cast<void*>(overlap.end)); | 
 |     } | 
 |     return false; | 
 |   } | 
 | } | 
 |  | 
 | bool HeapWalker::WordContainsAllocationPtr(uintptr_t word_ptr, Range* range, AllocationInfo** info) { | 
 |   walking_ptr_ = word_ptr; | 
 |   // This access may segfault if the process under test has done something strange, | 
 |   // for example mprotect(PROT_NONE) on a native heap page.  If so, it will be | 
 |   // caught and handled by mmaping a zero page over the faulting page. | 
 |   uintptr_t value = *reinterpret_cast<uintptr_t*>(word_ptr); | 
 |   walking_ptr_ = 0; | 
 |   if (value >= valid_allocations_range_.begin && value < valid_allocations_range_.end) { | 
 |     AllocationMap::iterator it = allocations_.find(Range{value, value + 1}); | 
 |     if (it != allocations_.end()) { | 
 |       *range = it->first; | 
 |       *info = &it->second; | 
 |       return true; | 
 |     } | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | void HeapWalker::RecurseRoot(const Range& root) { | 
 |   allocator::vector<Range> to_do(1, root, allocator_); | 
 |   while (!to_do.empty()) { | 
 |     Range range = to_do.back(); | 
 |     to_do.pop_back(); | 
 |  | 
 |     walking_range_ = range; | 
 |     ForEachPtrInRange(range, [&](Range& ref_range, AllocationInfo* ref_info) { | 
 |       if (!ref_info->referenced_from_root) { | 
 |         ref_info->referenced_from_root = true; | 
 |         to_do.push_back(ref_range); | 
 |       } | 
 |     }); | 
 |     walking_range_ = Range{0, 0}; | 
 |   } | 
 | } | 
 |  | 
 | void HeapWalker::Mapping(uintptr_t begin, uintptr_t end) { | 
 |   valid_mappings_range_.begin = std::min(valid_mappings_range_.begin, begin); | 
 |   valid_mappings_range_.end = std::max(valid_mappings_range_.end, end); | 
 | } | 
 |  | 
 | void HeapWalker::Root(uintptr_t begin, uintptr_t end) { | 
 |   roots_.push_back(Range{begin, end}); | 
 | } | 
 |  | 
 | void HeapWalker::Root(const allocator::vector<uintptr_t>& vals) { | 
 |   root_vals_.insert(root_vals_.end(), vals.begin(), vals.end()); | 
 | } | 
 |  | 
 | size_t HeapWalker::Allocations() { | 
 |   return allocations_.size(); | 
 | } | 
 |  | 
 | size_t HeapWalker::AllocationBytes() { | 
 |   return allocation_bytes_; | 
 | } | 
 |  | 
 | bool HeapWalker::DetectLeaks() { | 
 |   // Recursively walk pointers from roots to mark referenced allocations | 
 |   for (auto it = roots_.begin(); it != roots_.end(); it++) { | 
 |     RecurseRoot(*it); | 
 |   } | 
 |  | 
 |   Range vals; | 
 |   vals.begin = reinterpret_cast<uintptr_t>(root_vals_.data()); | 
 |   vals.end = vals.begin + root_vals_.size() * sizeof(uintptr_t); | 
 |  | 
 |   RecurseRoot(vals); | 
 |  | 
 |   if (segv_page_count_ > 0) { | 
 |     MEM_ALOGE("%zu pages skipped due to segfaults", segv_page_count_); | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | bool HeapWalker::Leaked(allocator::vector<Range>& leaked, size_t limit, size_t* num_leaks_out, | 
 |                         size_t* leak_bytes_out) { | 
 |   leaked.clear(); | 
 |  | 
 |   size_t num_leaks = 0; | 
 |   size_t leak_bytes = 0; | 
 |   for (auto it = allocations_.begin(); it != allocations_.end(); it++) { | 
 |     if (!it->second.referenced_from_root) { | 
 |       num_leaks++; | 
 |       leak_bytes += it->first.end - it->first.begin; | 
 |     } | 
 |   } | 
 |  | 
 |   size_t n = 0; | 
 |   for (auto it = allocations_.begin(); it != allocations_.end(); it++) { | 
 |     if (!it->second.referenced_from_root) { | 
 |       if (n++ < limit) { | 
 |         leaked.push_back(it->first); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   if (num_leaks_out) { | 
 |     *num_leaks_out = num_leaks; | 
 |   } | 
 |   if (leak_bytes_out) { | 
 |     *leak_bytes_out = leak_bytes; | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | static bool MapOverPage(void* addr) { | 
 |   const size_t page_size = sysconf(_SC_PAGE_SIZE); | 
 |   void* page = reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(addr) & ~(page_size - 1)); | 
 |  | 
 |   void* ret = mmap(page, page_size, PROT_READ, MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0); | 
 |   if (ret == MAP_FAILED) { | 
 |     MEM_ALOGE("failed to map page at %p: %s", page, strerror(errno)); | 
 |     return false; | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | void HeapWalker::HandleSegFault(ScopedSignalHandler& handler, int signal, siginfo_t* si, | 
 |                                 void* /*uctx*/) { | 
 |   uintptr_t addr = reinterpret_cast<uintptr_t>(si->si_addr); | 
 |   if (addr != walking_ptr_) { | 
 |     handler.reset(); | 
 |     return; | 
 |   } | 
 |   if (!segv_logged_) { | 
 |     MEM_ALOGW("failed to read page at %p, signal %d", si->si_addr, signal); | 
 |     if (walking_range_.begin != 0U) { | 
 |       MEM_ALOGW("while walking range %p-%p", reinterpret_cast<void*>(walking_range_.begin), | 
 |                 reinterpret_cast<void*>(walking_range_.end)); | 
 |     } | 
 |     segv_logged_ = true; | 
 |   } | 
 |   segv_page_count_++; | 
 |   if (!MapOverPage(si->si_addr)) { | 
 |     handler.reset(); | 
 |   } | 
 | } | 
 |  | 
 | ScopedSignalHandler::SignalFn ScopedSignalHandler::handler_; | 
 |  | 
 | }  // namespace android |