| /* libs/pixelflinger/fixed.cpp | 
 | ** | 
 | ** Copyright 2006, The Android Open Source Project | 
 | ** | 
 | ** Licensed under the Apache License, Version 2.0 (the "License");  | 
 | ** you may not use this file except in compliance with the License.  | 
 | ** You may obtain a copy of the License at  | 
 | ** | 
 | **     http://www.apache.org/licenses/LICENSE-2.0  | 
 | ** | 
 | ** Unless required by applicable law or agreed to in writing, software  | 
 | ** distributed under the License is distributed on an "AS IS" BASIS,  | 
 | ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  | 
 | ** See the License for the specific language governing permissions and  | 
 | ** limitations under the License. | 
 | */ | 
 |  | 
 | #include <stdio.h> | 
 |  | 
 | #include <private/pixelflinger/ggl_context.h> | 
 | #include <private/pixelflinger/ggl_fixed.h> | 
 |  | 
 |  | 
 | // ------------------------------------------------------------------------ | 
 |  | 
 | int32_t gglRecipQNormalized(int32_t x, int* exponent) | 
 | { | 
 |     const int32_t s = x>>31; | 
 |     uint32_t a = s ? -x : x; | 
 |  | 
 |     // the result will overflow, so just set it to the biggest/inf value | 
 |     if (ggl_unlikely(a <= 2LU)) { | 
 |         *exponent = 0; | 
 |         return s ? FIXED_MIN : FIXED_MAX; | 
 |     } | 
 |  | 
 |     // Newton-Raphson iteration: | 
 |     // x = r*(2 - a*r) | 
 |  | 
 |     const int32_t lz = gglClz(a); | 
 |     a <<= lz;  // 0.32 | 
 |     uint32_t r = a; | 
 |     // note: if a == 0x80000000, this means x was a power-of-2, in this | 
 |     // case we don't need to compute anything. We get the reciprocal for | 
 |     // (almost) free. | 
 |     if (a != 0x80000000) { | 
 |         r = (0x2E800 << (30-16)) - (r>>(2-1)); // 2.30, r = 2.90625 - 2*a | 
 |         // 0.32 + 2.30 = 2.62 -> 2.30 | 
 |         // 2.30 + 2.30 = 4.60 -> 2.30 | 
 |         r = (((2LU<<30) - uint32_t((uint64_t(a)*r) >> 32)) * uint64_t(r)) >> 30; | 
 |         r = (((2LU<<30) - uint32_t((uint64_t(a)*r) >> 32)) * uint64_t(r)) >> 30; | 
 |     } | 
 |  | 
 |     // shift right 1-bit to make room for the sign bit | 
 |     *exponent = 30-lz-1; | 
 |     r >>= 1; | 
 |     return s ? -r : r; | 
 | } | 
 |  | 
 | int32_t gglRecipQ(GGLfixed x, int q) | 
 | { | 
 |     int shift; | 
 |     x = gglRecipQNormalized(x, &shift); | 
 |     shift += 16-q; | 
 |     if (shift > 0) | 
 |         x += 1L << (shift-1);   // rounding | 
 |     x >>= shift; | 
 |     return x; | 
 | }     | 
 |  | 
 | // ------------------------------------------------------------------------ | 
 |  | 
 | static const GGLfixed ggl_sqrt_reciproc_approx_tab[8] = { | 
 |     // 1/sqrt(x) with x = 1-N/16, N=[8...1] | 
 |     0x16A09, 0x15555, 0x143D1, 0x134BF, 0x1279A, 0x11C01, 0x111AC, 0x10865 | 
 | }; | 
 |  | 
 | GGLfixed gglSqrtRecipx(GGLfixed x) | 
 | { | 
 |     if (x == 0)         return FIXED_MAX; | 
 |     if (x == FIXED_ONE) return x; | 
 |     const GGLfixed a = x; | 
 |     const int32_t lz = gglClz(x); | 
 |     x = ggl_sqrt_reciproc_approx_tab[(a>>(28-lz))&0x7]; | 
 |     const int32_t exp = lz - 16; | 
 |     if (exp <= 0)   x >>= -exp>>1; | 
 |     else            x <<= (exp>>1) + (exp & 1);         | 
 |     if (exp & 1) { | 
 |         x = gglMulx(x, ggl_sqrt_reciproc_approx_tab[0])>>1; | 
 |     } | 
 |     // 2 Newton-Raphson iterations: x = x/2*(3-(a*x)*x) | 
 |     x = gglMulx((x>>1),(0x30000 - gglMulx(gglMulx(a,x),x))); | 
 |     x = gglMulx((x>>1),(0x30000 - gglMulx(gglMulx(a,x),x))); | 
 |     return x; | 
 | } | 
 |  | 
 | GGLfixed gglSqrtx(GGLfixed a) | 
 | { | 
 |     // Compute a full precision square-root (24 bits accuracy) | 
 |     GGLfixed r = 0; | 
 |     GGLfixed bit = 0x800000; | 
 |     int32_t bshift = 15; | 
 |     do { | 
 |         GGLfixed temp = bit + (r<<1); | 
 |         if (bshift >= 8)    temp <<= (bshift-8); | 
 |         else                temp >>= (8-bshift); | 
 |         if (a >= temp) { | 
 |             r += bit; | 
 |             a -= temp; | 
 |         } | 
 |         bshift--; | 
 |     } while (bit>>=1); | 
 |     return r; | 
 | } | 
 |  | 
 | // ------------------------------------------------------------------------ | 
 |  | 
 | static const GGLfixed ggl_log_approx_tab[] = { | 
 |     // -ln(x)/ln(2) with x = N/16, N=[8...16] | 
 |     0xFFFF, 0xd47f, 0xad96, 0x8a62, 0x6a3f, 0x4caf, 0x3151, 0x17d6, 0x0000 | 
 | }; | 
 |  | 
 | static const GGLfixed ggl_alog_approx_tab[] = { // domain [0 - 1.0] | 
 | 	0xffff, 0xeac0, 0xd744, 0xc567, 0xb504, 0xa5fe, 0x9837, 0x8b95, 0x8000 | 
 | }; | 
 |  | 
 | GGLfixed gglPowx(GGLfixed x, GGLfixed y) | 
 | { | 
 |     // prerequisite: 0 <= x <= 1, and y >=0 | 
 |  | 
 |     // pow(x,y) = 2^(y*log2(x)) | 
 |     // =  2^(y*log2(x*(2^exp)*(2^-exp)))) | 
 |     // =  2^(y*(log2(X)-exp)) | 
 |     // =  2^(log2(X)*y - y*exp) | 
 |     // =  2^( - (-log2(X)*y + y*exp) ) | 
 |      | 
 |     int32_t exp = gglClz(x) - 16; | 
 |     GGLfixed f = x << exp; | 
 |     x = (f & 0x0FFF)<<4; | 
 |     f = (f >> 12) & 0x7; | 
 |     GGLfixed p = gglMulAddx( | 
 |             ggl_log_approx_tab[f+1] - ggl_log_approx_tab[f], x, | 
 |             ggl_log_approx_tab[f]); | 
 |     p = gglMulAddx(p, y, y*exp); | 
 |     exp = gglFixedToIntFloor(p); | 
 |     if (exp < 31) { | 
 |         p = gglFracx(p); | 
 |         x = (p & 0x1FFF)<<3; | 
 |         p >>= 13;     | 
 |         p = gglMulAddx( | 
 |                 ggl_alog_approx_tab[p+1] - ggl_alog_approx_tab[p], x, | 
 |                 ggl_alog_approx_tab[p]); | 
 |         p >>= exp; | 
 |     } else { | 
 |         p = 0; | 
 |     } | 
 |     return p; | 
 |         // ( powf((a*65536.0f), (b*65536.0f)) ) * 65536.0f; | 
 | } | 
 |  | 
 | // ------------------------------------------------------------------------ | 
 |  | 
 | int32_t gglDivQ(GGLfixed n, GGLfixed d, int32_t i) | 
 | { | 
 |     //int32_t r =int32_t((int64_t(n)<<i)/d); | 
 |     const int32_t ds = n^d; | 
 |     if (n<0) n = -n; | 
 |     if (d<0) d = -d; | 
 |     int nd = gglClz(d) - gglClz(n); | 
 |     i += nd + 1; | 
 |     if (nd > 0) d <<= nd; | 
 |     else        n <<= -nd; | 
 |     uint32_t q = 0; | 
 |  | 
 |     int j = i & 7; | 
 |     i >>= 3; | 
 |  | 
 |     // gcc deals with the code below pretty well. | 
 |     // we get 3.75 cycles per bit in the main loop | 
 |     // and 8 cycles per bit in the termination loop | 
 |     if (ggl_likely(i)) { | 
 |         n -= d; | 
 |         do { | 
 |             q <<= 8; | 
 |             if (n>=0)   q |= 128; | 
 |             else        n += d; | 
 |             n = n*2 - d; | 
 |             if (n>=0)   q |= 64; | 
 |             else        n += d; | 
 |             n = n*2 - d; | 
 |             if (n>=0)   q |= 32; | 
 |             else        n += d; | 
 |             n = n*2 - d; | 
 |             if (n>=0)   q |= 16; | 
 |             else        n += d; | 
 |             n = n*2 - d; | 
 |             if (n>=0)   q |= 8; | 
 |             else        n += d; | 
 |             n = n*2 - d; | 
 |             if (n>=0)   q |= 4; | 
 |             else        n += d; | 
 |             n = n*2 - d; | 
 |             if (n>=0)   q |= 2; | 
 |             else        n += d; | 
 |             n = n*2 - d; | 
 |             if (n>=0)   q |= 1; | 
 |             else        n += d; | 
 |              | 
 |             if (--i == 0) | 
 |                 goto finish; | 
 |  | 
 |             n = n*2 - d; | 
 |         } while(true); | 
 |         do { | 
 |             q <<= 1; | 
 |             n = n*2 - d; | 
 |             if (n>=0)   q |= 1; | 
 |             else        n += d; | 
 |         finish: ; | 
 |         } while (j--); | 
 |         return (ds<0) ? -q : q; | 
 |     } | 
 |  | 
 |     n -= d; | 
 |     if (n>=0)   q |= 1; | 
 |     else        n += d; | 
 |     j--; | 
 |     goto finish; | 
 | } | 
 |  | 
 | // ------------------------------------------------------------------------ | 
 |  | 
 | // assumes that the int32_t values of a, b, and c are all positive | 
 | // use when both a and b are larger than c | 
 |  | 
 | template <typename T> | 
 | static inline void swap(T& a, T& b) { | 
 |     T t(a); | 
 |     a = b; | 
 |     b = t; | 
 | } | 
 |  | 
 | static __attribute__((noinline)) | 
 | int32_t slow_muldiv(uint32_t a, uint32_t b, uint32_t c) | 
 | { | 
 | 	// first we compute a*b as a 64-bit integer | 
 |     // (GCC generates umull with the code below) | 
 |     uint64_t ab = uint64_t(a)*b; | 
 |     uint32_t hi = ab>>32; | 
 |     uint32_t lo = ab; | 
 |     uint32_t result; | 
 |  | 
 | 	// now perform the division | 
 | 	if (hi >= c) { | 
 | 	overflow: | 
 | 		result = 0x7fffffff;  // basic overflow | 
 | 	} else if (hi == 0) { | 
 | 		result = lo/c;  // note: c can't be 0 | 
 | 		if ((result >> 31) != 0)  // result must fit in 31 bits | 
 | 			goto overflow; | 
 | 	} else { | 
 | 		uint32_t r = hi; | 
 | 		int bits = 31; | 
 | 	    result = 0; | 
 | 		do { | 
 | 			r = (r << 1) | (lo >> 31); | 
 | 			lo <<= 1; | 
 | 			result <<= 1; | 
 | 			if (r >= c) { | 
 | 				r -= c; | 
 | 				result |= 1; | 
 | 			} | 
 | 		} while (bits--); | 
 | 	} | 
 | 	return int32_t(result); | 
 | } | 
 |  | 
 | // assumes a >= 0 and c >= b >= 0 | 
 | static inline | 
 | int32_t quick_muldiv(int32_t a, int32_t b, int32_t c) | 
 | { | 
 |     int32_t r = 0, q = 0, i; | 
 |     int leading = gglClz(a); | 
 |     i = 32 - leading; | 
 |     a <<= leading; | 
 |     do { | 
 |         r <<= 1; | 
 |         if (a < 0) | 
 |             r += b; | 
 |         a <<= 1; | 
 |         q <<= 1; | 
 |         if (r >= c) { | 
 |             r -= c; | 
 |             q++; | 
 |         } | 
 |         asm(""::); // gcc generates better code this way | 
 |         if (r >= c) { | 
 |             r -= c; | 
 |             q++; | 
 |         } | 
 |     } | 
 |     while (--i); | 
 |     return q; | 
 | } | 
 |  | 
 | // this function computes a*b/c with 64-bit intermediate accuracy | 
 | // overflows (e.g. division by 0) are handled and return INT_MAX | 
 |  | 
 | int32_t gglMulDivi(int32_t a, int32_t b, int32_t c) | 
 | { | 
 | 	int32_t result; | 
 | 	int32_t sign = a^b^c; | 
 |  | 
 | 	if (a < 0) a = -a; | 
 | 	if (b < 0) b = -b; | 
 | 	if (c < 0) c = -c; | 
 |  | 
 |     if (a < b) { | 
 |         swap(a, b); | 
 |     } | 
 |      | 
 | 	if (b <= c) result = quick_muldiv(a, b, c); | 
 | 	else        result = slow_muldiv((uint32_t)a, (uint32_t)b, (uint32_t)c); | 
 | 	 | 
 | 	if (sign < 0) | 
 | 		result = -result; | 
 | 	   | 
 |     return result; | 
 | } |