| /* | 
 |  * Copyright (C) 2015 The Android Open Source Project | 
 |  * | 
 |  * Licensed under the Apache License, Version 2.0 (the "License"); | 
 |  * you may not use this file except in compliance with the License. | 
 |  * You may obtain a copy of the License at | 
 |  * | 
 |  *      http://www.apache.org/licenses/LICENSE-2.0 | 
 |  * | 
 |  * Unless required by applicable law or agreed to in writing, software | 
 |  * distributed under the License is distributed on an "AS IS" BASIS, | 
 |  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 |  * See the License for the specific language governing permissions and | 
 |  * limitations under the License. | 
 |  */ | 
 |  | 
 | #define TRACE_TAG TRACE_SYSDEPS | 
 |  | 
 | #include "sysdeps.h" | 
 |  | 
 | #include <winsock2.h> /* winsock.h *must* be included before windows.h. */ | 
 | #include <windows.h> | 
 |  | 
 | #include <errno.h> | 
 | #include <stdio.h> | 
 | #include <stdlib.h> | 
 |  | 
 | #include <memory> | 
 | #include <string> | 
 | #include <unordered_map> | 
 |  | 
 | #include <cutils/sockets.h> | 
 |  | 
 | #include <base/logging.h> | 
 | #include <base/stringprintf.h> | 
 | #include <base/strings.h> | 
 |  | 
 | #include "adb.h" | 
 |  | 
 | extern void fatal(const char *fmt, ...); | 
 |  | 
 | /* forward declarations */ | 
 |  | 
 | typedef const struct FHClassRec_* FHClass; | 
 | typedef struct FHRec_* FH; | 
 | typedef struct EventHookRec_* EventHook; | 
 |  | 
 | typedef struct FHClassRec_ { | 
 |     void (*_fh_init)(FH); | 
 |     int (*_fh_close)(FH); | 
 |     int (*_fh_lseek)(FH, int, int); | 
 |     int (*_fh_read)(FH, void*, int); | 
 |     int (*_fh_write)(FH, const void*, int); | 
 |     void (*_fh_hook)(FH, int, EventHook); | 
 | } FHClassRec; | 
 |  | 
 | static void _fh_file_init(FH); | 
 | static int _fh_file_close(FH); | 
 | static int _fh_file_lseek(FH, int, int); | 
 | static int _fh_file_read(FH, void*, int); | 
 | static int _fh_file_write(FH, const void*, int); | 
 | static void _fh_file_hook(FH, int, EventHook); | 
 |  | 
 | static const FHClassRec _fh_file_class = { | 
 |     _fh_file_init, | 
 |     _fh_file_close, | 
 |     _fh_file_lseek, | 
 |     _fh_file_read, | 
 |     _fh_file_write, | 
 |     _fh_file_hook | 
 | }; | 
 |  | 
 | static void _fh_socket_init(FH); | 
 | static int _fh_socket_close(FH); | 
 | static int _fh_socket_lseek(FH, int, int); | 
 | static int _fh_socket_read(FH, void*, int); | 
 | static int _fh_socket_write(FH, const void*, int); | 
 | static void _fh_socket_hook(FH, int, EventHook); | 
 |  | 
 | static const FHClassRec _fh_socket_class = { | 
 |     _fh_socket_init, | 
 |     _fh_socket_close, | 
 |     _fh_socket_lseek, | 
 |     _fh_socket_read, | 
 |     _fh_socket_write, | 
 |     _fh_socket_hook | 
 | }; | 
 |  | 
 | #define assert(cond)  do { if (!(cond)) fatal( "assertion failed '%s' on %s:%ld\n", #cond, __FILE__, __LINE__ ); } while (0) | 
 |  | 
 | std::string SystemErrorCodeToString(const DWORD error_code) { | 
 |   const int kErrorMessageBufferSize = 256; | 
 |   WCHAR msgbuf[kErrorMessageBufferSize]; | 
 |   DWORD flags = FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS; | 
 |   DWORD len = FormatMessageW(flags, nullptr, error_code, 0, msgbuf, | 
 |                              arraysize(msgbuf), nullptr); | 
 |   if (len == 0) { | 
 |     return android::base::StringPrintf( | 
 |         "Error (%lu) while retrieving error. (%lu)", GetLastError(), | 
 |         error_code); | 
 |   } | 
 |  | 
 |   // Convert UTF-16 to UTF-8. | 
 |   std::string msg(narrow(msgbuf)); | 
 |   // Messages returned by the system end with line breaks. | 
 |   msg = android::base::Trim(msg); | 
 |   // There are many Windows error messages compared to POSIX, so include the | 
 |   // numeric error code for easier, quicker, accurate identification. Use | 
 |   // decimal instead of hex because there are decimal ranges like 10000-11999 | 
 |   // for Winsock. | 
 |   android::base::StringAppendF(&msg, " (%lu)", error_code); | 
 |   return msg; | 
 | } | 
 |  | 
 | /**************************************************************************/ | 
 | /**************************************************************************/ | 
 | /*****                                                                *****/ | 
 | /*****      replaces libs/cutils/load_file.c                          *****/ | 
 | /*****                                                                *****/ | 
 | /**************************************************************************/ | 
 | /**************************************************************************/ | 
 |  | 
 | void *load_file(const char *fn, unsigned *_sz) | 
 | { | 
 |     HANDLE    file; | 
 |     char     *data; | 
 |     DWORD     file_size; | 
 |  | 
 |     file = CreateFileW( widen(fn).c_str(), | 
 |                         GENERIC_READ, | 
 |                         FILE_SHARE_READ, | 
 |                         NULL, | 
 |                         OPEN_EXISTING, | 
 |                         0, | 
 |                         NULL ); | 
 |  | 
 |     if (file == INVALID_HANDLE_VALUE) | 
 |         return NULL; | 
 |  | 
 |     file_size = GetFileSize( file, NULL ); | 
 |     data      = NULL; | 
 |  | 
 |     if (file_size > 0) { | 
 |         data = (char*) malloc( file_size + 1 ); | 
 |         if (data == NULL) { | 
 |             D("load_file: could not allocate %ld bytes\n", file_size ); | 
 |             file_size = 0; | 
 |         } else { | 
 |             DWORD  out_bytes; | 
 |  | 
 |             if ( !ReadFile( file, data, file_size, &out_bytes, NULL ) || | 
 |                  out_bytes != file_size ) | 
 |             { | 
 |                 D("load_file: could not read %ld bytes from '%s'\n", file_size, fn); | 
 |                 free(data); | 
 |                 data      = NULL; | 
 |                 file_size = 0; | 
 |             } | 
 |         } | 
 |     } | 
 |     CloseHandle( file ); | 
 |  | 
 |     *_sz = (unsigned) file_size; | 
 |     return  data; | 
 | } | 
 |  | 
 | /**************************************************************************/ | 
 | /**************************************************************************/ | 
 | /*****                                                                *****/ | 
 | /*****    common file descriptor handling                             *****/ | 
 | /*****                                                                *****/ | 
 | /**************************************************************************/ | 
 | /**************************************************************************/ | 
 |  | 
 | /* used to emulate unix-domain socket pairs */ | 
 | typedef struct SocketPairRec_*  SocketPair; | 
 |  | 
 | typedef struct FHRec_ | 
 | { | 
 |     FHClass    clazz; | 
 |     int        used; | 
 |     int        eof; | 
 |     union { | 
 |         HANDLE      handle; | 
 |         SOCKET      socket; | 
 |         SocketPair  pair; | 
 |     } u; | 
 |  | 
 |     HANDLE    event; | 
 |     int       mask; | 
 |  | 
 |     char  name[32]; | 
 |  | 
 | } FHRec; | 
 |  | 
 | #define  fh_handle  u.handle | 
 | #define  fh_socket  u.socket | 
 | #define  fh_pair    u.pair | 
 |  | 
 | #define  WIN32_FH_BASE    100 | 
 |  | 
 | #define  WIN32_MAX_FHS    128 | 
 |  | 
 | static adb_mutex_t   _win32_lock; | 
 | static  FHRec        _win32_fhs[ WIN32_MAX_FHS ]; | 
 | static  int          _win32_fh_next;  // where to start search for free FHRec | 
 |  | 
 | static FH | 
 | _fh_from_int( int   fd, const char*   func ) | 
 | { | 
 |     FH  f; | 
 |  | 
 |     fd -= WIN32_FH_BASE; | 
 |  | 
 |     if (fd < 0 || fd >= WIN32_MAX_FHS) { | 
 |         D( "_fh_from_int: invalid fd %d passed to %s\n", fd + WIN32_FH_BASE, | 
 |            func ); | 
 |         errno = EBADF; | 
 |         return NULL; | 
 |     } | 
 |  | 
 |     f = &_win32_fhs[fd]; | 
 |  | 
 |     if (f->used == 0) { | 
 |         D( "_fh_from_int: invalid fd %d passed to %s\n", fd + WIN32_FH_BASE, | 
 |            func ); | 
 |         errno = EBADF; | 
 |         return NULL; | 
 |     } | 
 |  | 
 |     return f; | 
 | } | 
 |  | 
 |  | 
 | static int | 
 | _fh_to_int( FH  f ) | 
 | { | 
 |     if (f && f->used && f >= _win32_fhs && f < _win32_fhs + WIN32_MAX_FHS) | 
 |         return (int)(f - _win32_fhs) + WIN32_FH_BASE; | 
 |  | 
 |     return -1; | 
 | } | 
 |  | 
 | static FH | 
 | _fh_alloc( FHClass  clazz ) | 
 | { | 
 |     FH   f = NULL; | 
 |  | 
 |     adb_mutex_lock( &_win32_lock ); | 
 |  | 
 |     // Search entire array, starting from _win32_fh_next. | 
 |     for (int nn = 0; nn < WIN32_MAX_FHS; nn++) { | 
 |         // Keep incrementing _win32_fh_next to avoid giving out an index that | 
 |         // was recently closed, to try to avoid use-after-free. | 
 |         const int index = _win32_fh_next++; | 
 |         // Handle wrap-around of _win32_fh_next. | 
 |         if (_win32_fh_next == WIN32_MAX_FHS) { | 
 |             _win32_fh_next = 0; | 
 |         } | 
 |         if (_win32_fhs[index].clazz == NULL) { | 
 |             f = &_win32_fhs[index]; | 
 |             goto Exit; | 
 |         } | 
 |     } | 
 |     D( "_fh_alloc: no more free file descriptors\n" ); | 
 |     errno = EMFILE;   // Too many open files | 
 | Exit: | 
 |     if (f) { | 
 |         f->clazz   = clazz; | 
 |         f->used    = 1; | 
 |         f->eof     = 0; | 
 |         f->name[0] = '\0'; | 
 |         clazz->_fh_init(f); | 
 |     } | 
 |     adb_mutex_unlock( &_win32_lock ); | 
 |     return f; | 
 | } | 
 |  | 
 |  | 
 | static int | 
 | _fh_close( FH   f ) | 
 | { | 
 |     // Use lock so that closing only happens once and so that _fh_alloc can't | 
 |     // allocate a FH that we're in the middle of closing. | 
 |     adb_mutex_lock(&_win32_lock); | 
 |     if (f->used) { | 
 |         f->clazz->_fh_close( f ); | 
 |         f->name[0] = '\0'; | 
 |         f->eof     = 0; | 
 |         f->used    = 0; | 
 |         f->clazz   = NULL; | 
 |     } | 
 |     adb_mutex_unlock(&_win32_lock); | 
 |     return 0; | 
 | } | 
 |  | 
 | // Deleter for unique_fh. | 
 | class fh_deleter { | 
 |  public: | 
 |   void operator()(struct FHRec_* fh) { | 
 |     // We're called from a destructor and destructors should not overwrite | 
 |     // errno because callers may do: | 
 |     //   errno = EBLAH; | 
 |     //   return -1; // calls destructor, which should not overwrite errno | 
 |     const int saved_errno = errno; | 
 |     _fh_close(fh); | 
 |     errno = saved_errno; | 
 |   } | 
 | }; | 
 |  | 
 | // Like std::unique_ptr, but calls _fh_close() instead of operator delete(). | 
 | typedef std::unique_ptr<struct FHRec_, fh_deleter> unique_fh; | 
 |  | 
 | /**************************************************************************/ | 
 | /**************************************************************************/ | 
 | /*****                                                                *****/ | 
 | /*****    file-based descriptor handling                              *****/ | 
 | /*****                                                                *****/ | 
 | /**************************************************************************/ | 
 | /**************************************************************************/ | 
 |  | 
 | static void _fh_file_init( FH  f ) { | 
 |     f->fh_handle = INVALID_HANDLE_VALUE; | 
 | } | 
 |  | 
 | static int _fh_file_close( FH  f ) { | 
 |     CloseHandle( f->fh_handle ); | 
 |     f->fh_handle = INVALID_HANDLE_VALUE; | 
 |     return 0; | 
 | } | 
 |  | 
 | static int _fh_file_read( FH  f,  void*  buf, int   len ) { | 
 |     DWORD  read_bytes; | 
 |  | 
 |     if ( !ReadFile( f->fh_handle, buf, (DWORD)len, &read_bytes, NULL ) ) { | 
 |         D( "adb_read: could not read %d bytes from %s\n", len, f->name ); | 
 |         errno = EIO; | 
 |         return -1; | 
 |     } else if (read_bytes < (DWORD)len) { | 
 |         f->eof = 1; | 
 |     } | 
 |     return (int)read_bytes; | 
 | } | 
 |  | 
 | static int _fh_file_write( FH  f,  const void*  buf, int   len ) { | 
 |     DWORD  wrote_bytes; | 
 |  | 
 |     if ( !WriteFile( f->fh_handle, buf, (DWORD)len, &wrote_bytes, NULL ) ) { | 
 |         D( "adb_file_write: could not write %d bytes from %s\n", len, f->name ); | 
 |         errno = EIO; | 
 |         return -1; | 
 |     } else if (wrote_bytes < (DWORD)len) { | 
 |         f->eof = 1; | 
 |     } | 
 |     return  (int)wrote_bytes; | 
 | } | 
 |  | 
 | static int _fh_file_lseek( FH  f, int  pos, int  origin ) { | 
 |     DWORD  method; | 
 |     DWORD  result; | 
 |  | 
 |     switch (origin) | 
 |     { | 
 |         case SEEK_SET:  method = FILE_BEGIN; break; | 
 |         case SEEK_CUR:  method = FILE_CURRENT; break; | 
 |         case SEEK_END:  method = FILE_END; break; | 
 |         default: | 
 |             errno = EINVAL; | 
 |             return -1; | 
 |     } | 
 |  | 
 |     result = SetFilePointer( f->fh_handle, pos, NULL, method ); | 
 |     if (result == INVALID_SET_FILE_POINTER) { | 
 |         errno = EIO; | 
 |         return -1; | 
 |     } else { | 
 |         f->eof = 0; | 
 |     } | 
 |     return (int)result; | 
 | } | 
 |  | 
 |  | 
 | /**************************************************************************/ | 
 | /**************************************************************************/ | 
 | /*****                                                                *****/ | 
 | /*****    file-based descriptor handling                              *****/ | 
 | /*****                                                                *****/ | 
 | /**************************************************************************/ | 
 | /**************************************************************************/ | 
 |  | 
 | int  adb_open(const char*  path, int  options) | 
 | { | 
 |     FH  f; | 
 |  | 
 |     DWORD  desiredAccess       = 0; | 
 |     DWORD  shareMode           = FILE_SHARE_READ | FILE_SHARE_WRITE; | 
 |  | 
 |     switch (options) { | 
 |         case O_RDONLY: | 
 |             desiredAccess = GENERIC_READ; | 
 |             break; | 
 |         case O_WRONLY: | 
 |             desiredAccess = GENERIC_WRITE; | 
 |             break; | 
 |         case O_RDWR: | 
 |             desiredAccess = GENERIC_READ | GENERIC_WRITE; | 
 |             break; | 
 |         default: | 
 |             D("adb_open: invalid options (0x%0x)\n", options); | 
 |             errno = EINVAL; | 
 |             return -1; | 
 |     } | 
 |  | 
 |     f = _fh_alloc( &_fh_file_class ); | 
 |     if ( !f ) { | 
 |         return -1; | 
 |     } | 
 |  | 
 |     f->fh_handle = CreateFileW( widen(path).c_str(), desiredAccess, shareMode, | 
 |                                 NULL, OPEN_EXISTING, 0, NULL ); | 
 |  | 
 |     if ( f->fh_handle == INVALID_HANDLE_VALUE ) { | 
 |         const DWORD err = GetLastError(); | 
 |         _fh_close(f); | 
 |         D( "adb_open: could not open '%s': ", path ); | 
 |         switch (err) { | 
 |             case ERROR_FILE_NOT_FOUND: | 
 |                 D( "file not found\n" ); | 
 |                 errno = ENOENT; | 
 |                 return -1; | 
 |  | 
 |             case ERROR_PATH_NOT_FOUND: | 
 |                 D( "path not found\n" ); | 
 |                 errno = ENOTDIR; | 
 |                 return -1; | 
 |  | 
 |             default: | 
 |                 D( "unknown error: %s\n", | 
 |                    SystemErrorCodeToString( err ).c_str() ); | 
 |                 errno = ENOENT; | 
 |                 return -1; | 
 |         } | 
 |     } | 
 |  | 
 |     snprintf( f->name, sizeof(f->name), "%d(%s)", _fh_to_int(f), path ); | 
 |     D( "adb_open: '%s' => fd %d\n", path, _fh_to_int(f) ); | 
 |     return _fh_to_int(f); | 
 | } | 
 |  | 
 | /* ignore mode on Win32 */ | 
 | int  adb_creat(const char*  path, int  mode) | 
 | { | 
 |     FH  f; | 
 |  | 
 |     f = _fh_alloc( &_fh_file_class ); | 
 |     if ( !f ) { | 
 |         return -1; | 
 |     } | 
 |  | 
 |     f->fh_handle = CreateFileW( widen(path).c_str(), GENERIC_WRITE, | 
 |                                 FILE_SHARE_READ | FILE_SHARE_WRITE, | 
 |                                 NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, | 
 |                                 NULL ); | 
 |  | 
 |     if ( f->fh_handle == INVALID_HANDLE_VALUE ) { | 
 |         const DWORD err = GetLastError(); | 
 |         _fh_close(f); | 
 |         D( "adb_creat: could not open '%s': ", path ); | 
 |         switch (err) { | 
 |             case ERROR_FILE_NOT_FOUND: | 
 |                 D( "file not found\n" ); | 
 |                 errno = ENOENT; | 
 |                 return -1; | 
 |  | 
 |             case ERROR_PATH_NOT_FOUND: | 
 |                 D( "path not found\n" ); | 
 |                 errno = ENOTDIR; | 
 |                 return -1; | 
 |  | 
 |             default: | 
 |                 D( "unknown error: %s\n", | 
 |                    SystemErrorCodeToString( err ).c_str() ); | 
 |                 errno = ENOENT; | 
 |                 return -1; | 
 |         } | 
 |     } | 
 |     snprintf( f->name, sizeof(f->name), "%d(%s)", _fh_to_int(f), path ); | 
 |     D( "adb_creat: '%s' => fd %d\n", path, _fh_to_int(f) ); | 
 |     return _fh_to_int(f); | 
 | } | 
 |  | 
 |  | 
 | int  adb_read(int  fd, void* buf, int len) | 
 | { | 
 |     FH     f = _fh_from_int(fd, __func__); | 
 |  | 
 |     if (f == NULL) { | 
 |         return -1; | 
 |     } | 
 |  | 
 |     return f->clazz->_fh_read( f, buf, len ); | 
 | } | 
 |  | 
 |  | 
 | int  adb_write(int  fd, const void*  buf, int  len) | 
 | { | 
 |     FH     f = _fh_from_int(fd, __func__); | 
 |  | 
 |     if (f == NULL) { | 
 |         return -1; | 
 |     } | 
 |  | 
 |     return f->clazz->_fh_write(f, buf, len); | 
 | } | 
 |  | 
 |  | 
 | int  adb_lseek(int  fd, int  pos, int  where) | 
 | { | 
 |     FH     f = _fh_from_int(fd, __func__); | 
 |  | 
 |     if (!f) { | 
 |         return -1; | 
 |     } | 
 |  | 
 |     return f->clazz->_fh_lseek(f, pos, where); | 
 | } | 
 |  | 
 |  | 
 | int  adb_close(int  fd) | 
 | { | 
 |     FH   f = _fh_from_int(fd, __func__); | 
 |  | 
 |     if (!f) { | 
 |         return -1; | 
 |     } | 
 |  | 
 |     D( "adb_close: %s\n", f->name); | 
 |     _fh_close(f); | 
 |     return 0; | 
 | } | 
 |  | 
 | /**************************************************************************/ | 
 | /**************************************************************************/ | 
 | /*****                                                                *****/ | 
 | /*****    socket-based file descriptors                               *****/ | 
 | /*****                                                                *****/ | 
 | /**************************************************************************/ | 
 | /**************************************************************************/ | 
 |  | 
 | #undef setsockopt | 
 |  | 
 | static void _socket_set_errno( const DWORD err ) { | 
 |     // The Windows C Runtime (MSVCRT.DLL) strerror() does not support a lot of | 
 |     // POSIX and socket error codes, so this can only meaningfully map so much. | 
 |     switch ( err ) { | 
 |     case 0:              errno = 0; break; | 
 |     // Mapping WSAEWOULDBLOCK to EAGAIN is absolutely critical because | 
 |     // non-blocking sockets can cause an error code of WSAEWOULDBLOCK and | 
 |     // callers check specifically for EAGAIN. | 
 |     case WSAEWOULDBLOCK: errno = EAGAIN; break; | 
 |     case WSAEINTR:       errno = EINTR; break; | 
 |     case WSAEFAULT:      errno = EFAULT; break; | 
 |     case WSAEINVAL:      errno = EINVAL; break; | 
 |     case WSAEMFILE:      errno = EMFILE; break; | 
 |     default: | 
 |         errno = EINVAL; | 
 |         D( "_socket_set_errno: mapping Windows error code %lu to errno %d\n", | 
 |            err, errno ); | 
 |     } | 
 | } | 
 |  | 
 | static void _fh_socket_init( FH  f ) { | 
 |     f->fh_socket = INVALID_SOCKET; | 
 |     f->event     = WSACreateEvent(); | 
 |     if (f->event == WSA_INVALID_EVENT) { | 
 |         D("WSACreateEvent failed: %s\n", | 
 |           SystemErrorCodeToString(WSAGetLastError()).c_str()); | 
 |  | 
 |         // _event_socket_start assumes that this field is INVALID_HANDLE_VALUE | 
 |         // on failure, instead of NULL which is what Windows really returns on | 
 |         // error. It might be better to change all the other code to look for | 
 |         // NULL, but that is a much riskier change. | 
 |         f->event = INVALID_HANDLE_VALUE; | 
 |     } | 
 |     f->mask      = 0; | 
 | } | 
 |  | 
 | static int _fh_socket_close( FH  f ) { | 
 |     if (f->fh_socket != INVALID_SOCKET) { | 
 |         /* gently tell any peer that we're closing the socket */ | 
 |         if (shutdown(f->fh_socket, SD_BOTH) == SOCKET_ERROR) { | 
 |             // If the socket is not connected, this returns an error. We want to | 
 |             // minimize logging spam, so don't log these errors for now. | 
 | #if 0 | 
 |             D("socket shutdown failed: %s\n", | 
 |               SystemErrorCodeToString(WSAGetLastError()).c_str()); | 
 | #endif | 
 |         } | 
 |         if (closesocket(f->fh_socket) == SOCKET_ERROR) { | 
 |             D("closesocket failed: %s\n", | 
 |               SystemErrorCodeToString(WSAGetLastError()).c_str()); | 
 |         } | 
 |         f->fh_socket = INVALID_SOCKET; | 
 |     } | 
 |     if (f->event != NULL) { | 
 |         if (!CloseHandle(f->event)) { | 
 |             D("CloseHandle failed: %s\n", | 
 |               SystemErrorCodeToString(GetLastError()).c_str()); | 
 |         } | 
 |         f->event = NULL; | 
 |     } | 
 |     f->mask = 0; | 
 |     return 0; | 
 | } | 
 |  | 
 | static int _fh_socket_lseek( FH  f, int pos, int origin ) { | 
 |     errno = EPIPE; | 
 |     return -1; | 
 | } | 
 |  | 
 | static int _fh_socket_read(FH f, void* buf, int len) { | 
 |     int  result = recv(f->fh_socket, reinterpret_cast<char*>(buf), len, 0); | 
 |     if (result == SOCKET_ERROR) { | 
 |         const DWORD err = WSAGetLastError(); | 
 |         // WSAEWOULDBLOCK is normal with a non-blocking socket, so don't trace | 
 |         // that to reduce spam and confusion. | 
 |         if (err != WSAEWOULDBLOCK) { | 
 |             D("recv fd %d failed: %s\n", _fh_to_int(f), | 
 |               SystemErrorCodeToString(err).c_str()); | 
 |         } | 
 |         _socket_set_errno(err); | 
 |         result = -1; | 
 |     } | 
 |     return  result; | 
 | } | 
 |  | 
 | static int _fh_socket_write(FH f, const void* buf, int len) { | 
 |     int  result = send(f->fh_socket, reinterpret_cast<const char*>(buf), len, 0); | 
 |     if (result == SOCKET_ERROR) { | 
 |         const DWORD err = WSAGetLastError(); | 
 |         D("send fd %d failed: %s\n", _fh_to_int(f), | 
 |           SystemErrorCodeToString(err).c_str()); | 
 |         _socket_set_errno(err); | 
 |         result = -1; | 
 |     } | 
 |     return result; | 
 | } | 
 |  | 
 | /**************************************************************************/ | 
 | /**************************************************************************/ | 
 | /*****                                                                *****/ | 
 | /*****    replacement for libs/cutils/socket_xxxx.c                   *****/ | 
 | /*****                                                                *****/ | 
 | /**************************************************************************/ | 
 | /**************************************************************************/ | 
 |  | 
 | #include <winsock2.h> | 
 |  | 
 | static int  _winsock_init; | 
 |  | 
 | static void | 
 | _init_winsock( void ) | 
 | { | 
 |     // TODO: Multiple threads calling this may potentially cause multiple calls | 
 |     // to WSAStartup() which offers no real benefit. | 
 |     if (!_winsock_init) { | 
 |         WSADATA  wsaData; | 
 |         int      rc = WSAStartup( MAKEWORD(2,2), &wsaData); | 
 |         if (rc != 0) { | 
 |             fatal( "adb: could not initialize Winsock: %s", | 
 |                    SystemErrorCodeToString( rc ).c_str()); | 
 |         } | 
 |         _winsock_init = 1; | 
 |  | 
 |         // Note that we do not call atexit() to register WSACleanup to be called | 
 |         // at normal process termination because: | 
 |         // 1) When exit() is called, there are still threads actively using | 
 |         //    Winsock because we don't cleanly shutdown all threads, so it | 
 |         //    doesn't make sense to call WSACleanup() and may cause problems | 
 |         //    with those threads. | 
 |         // 2) A deadlock can occur when exit() holds a C Runtime lock, then it | 
 |         //    calls WSACleanup() which tries to unload a DLL, which tries to | 
 |         //    grab the LoaderLock. This conflicts with the device_poll_thread | 
 |         //    which holds the LoaderLock because AdbWinApi.dll calls | 
 |         //    setupapi.dll which tries to load wintrust.dll which tries to load | 
 |         //    crypt32.dll which calls atexit() which tries to acquire the C | 
 |         //    Runtime lock that the other thread holds. | 
 |     } | 
 | } | 
 |  | 
 | int network_loopback_client(int port, int type, std::string* error) { | 
 |     struct sockaddr_in addr; | 
 |     SOCKET  s; | 
 |  | 
 |     unique_fh  f(_fh_alloc(&_fh_socket_class)); | 
 |     if (!f) { | 
 |         *error = strerror(errno); | 
 |         return -1; | 
 |     } | 
 |  | 
 |     if (!_winsock_init) | 
 |         _init_winsock(); | 
 |  | 
 |     memset(&addr, 0, sizeof(addr)); | 
 |     addr.sin_family = AF_INET; | 
 |     addr.sin_port = htons(port); | 
 |     addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK); | 
 |  | 
 |     s = socket(AF_INET, type, 0); | 
 |     if(s == INVALID_SOCKET) { | 
 |         *error = android::base::StringPrintf("cannot create socket: %s", | 
 |                 SystemErrorCodeToString(WSAGetLastError()).c_str()); | 
 |         D("%s\n", error->c_str()); | 
 |         return -1; | 
 |     } | 
 |     f->fh_socket = s; | 
 |  | 
 |     if(connect(s, (struct sockaddr *) &addr, sizeof(addr)) == SOCKET_ERROR) { | 
 |         // Save err just in case inet_ntoa() or ntohs() changes the last error. | 
 |         const DWORD err = WSAGetLastError(); | 
 |         *error = android::base::StringPrintf("cannot connect to %s:%u: %s", | 
 |                 inet_ntoa(addr.sin_addr), ntohs(addr.sin_port), | 
 |                 SystemErrorCodeToString(err).c_str()); | 
 |         D("could not connect to %s:%d: %s\n", | 
 |           type != SOCK_STREAM ? "udp" : "tcp", port, error->c_str()); | 
 |         return -1; | 
 |     } | 
 |  | 
 |     const int fd = _fh_to_int(f.get()); | 
 |     snprintf( f->name, sizeof(f->name), "%d(lo-client:%s%d)", fd, | 
 |               type != SOCK_STREAM ? "udp:" : "", port ); | 
 |     D( "port %d type %s => fd %d\n", port, type != SOCK_STREAM ? "udp" : "tcp", | 
 |        fd ); | 
 |     f.release(); | 
 |     return fd; | 
 | } | 
 |  | 
 | #define LISTEN_BACKLOG 4 | 
 |  | 
 | // interface_address is INADDR_LOOPBACK or INADDR_ANY. | 
 | static int _network_server(int port, int type, u_long interface_address, | 
 |                            std::string* error) { | 
 |     struct sockaddr_in addr; | 
 |     SOCKET  s; | 
 |     int  n; | 
 |  | 
 |     unique_fh   f(_fh_alloc(&_fh_socket_class)); | 
 |     if (!f) { | 
 |         *error = strerror(errno); | 
 |         return -1; | 
 |     } | 
 |  | 
 |     if (!_winsock_init) | 
 |         _init_winsock(); | 
 |  | 
 |     memset(&addr, 0, sizeof(addr)); | 
 |     addr.sin_family = AF_INET; | 
 |     addr.sin_port = htons(port); | 
 |     addr.sin_addr.s_addr = htonl(interface_address); | 
 |  | 
 |     // TODO: Consider using dual-stack socket that can simultaneously listen on | 
 |     // IPv4 and IPv6. | 
 |     s = socket(AF_INET, type, 0); | 
 |     if (s == INVALID_SOCKET) { | 
 |         *error = android::base::StringPrintf("cannot create socket: %s", | 
 |                 SystemErrorCodeToString(WSAGetLastError()).c_str()); | 
 |         D("%s\n", error->c_str()); | 
 |         return -1; | 
 |     } | 
 |  | 
 |     f->fh_socket = s; | 
 |  | 
 |     // Note: SO_REUSEADDR on Windows allows multiple processes to bind to the | 
 |     // same port, so instead use SO_EXCLUSIVEADDRUSE. | 
 |     n = 1; | 
 |     if (setsockopt(s, SOL_SOCKET, SO_EXCLUSIVEADDRUSE, (const char*)&n, | 
 |                    sizeof(n)) == SOCKET_ERROR) { | 
 |         *error = android::base::StringPrintf( | 
 |                 "cannot set socket option SO_EXCLUSIVEADDRUSE: %s", | 
 |                 SystemErrorCodeToString(WSAGetLastError()).c_str()); | 
 |         D("%s\n", error->c_str()); | 
 |         return -1; | 
 |     } | 
 |  | 
 |     if (bind(s, (struct sockaddr *) &addr, sizeof(addr)) == SOCKET_ERROR) { | 
 |         // Save err just in case inet_ntoa() or ntohs() changes the last error. | 
 |         const DWORD err = WSAGetLastError(); | 
 |         *error = android::base::StringPrintf("cannot bind to %s:%u: %s", | 
 |                 inet_ntoa(addr.sin_addr), ntohs(addr.sin_port), | 
 |                 SystemErrorCodeToString(err).c_str()); | 
 |         D("could not bind to %s:%d: %s\n", | 
 |           type != SOCK_STREAM ? "udp" : "tcp", port, error->c_str()); | 
 |         return -1; | 
 |     } | 
 |     if (type == SOCK_STREAM) { | 
 |         if (listen(s, LISTEN_BACKLOG) == SOCKET_ERROR) { | 
 |             *error = android::base::StringPrintf("cannot listen on socket: %s", | 
 |                     SystemErrorCodeToString(WSAGetLastError()).c_str()); | 
 |             D("could not listen on %s:%d: %s\n", | 
 |               type != SOCK_STREAM ? "udp" : "tcp", port, error->c_str()); | 
 |             return -1; | 
 |         } | 
 |     } | 
 |     const int fd = _fh_to_int(f.get()); | 
 |     snprintf( f->name, sizeof(f->name), "%d(%s-server:%s%d)", fd, | 
 |               interface_address == INADDR_LOOPBACK ? "lo" : "any", | 
 |               type != SOCK_STREAM ? "udp:" : "", port ); | 
 |     D( "port %d type %s => fd %d\n", port, type != SOCK_STREAM ? "udp" : "tcp", | 
 |        fd ); | 
 |     f.release(); | 
 |     return fd; | 
 | } | 
 |  | 
 | int network_loopback_server(int port, int type, std::string* error) { | 
 |     return _network_server(port, type, INADDR_LOOPBACK, error); | 
 | } | 
 |  | 
 | int network_inaddr_any_server(int port, int type, std::string* error) { | 
 |     return _network_server(port, type, INADDR_ANY, error); | 
 | } | 
 |  | 
 | int network_connect(const std::string& host, int port, int type, int timeout, std::string* error) { | 
 |     unique_fh f(_fh_alloc(&_fh_socket_class)); | 
 |     if (!f) { | 
 |         *error = strerror(errno); | 
 |         return -1; | 
 |     } | 
 |  | 
 |     if (!_winsock_init) _init_winsock(); | 
 |  | 
 |     struct addrinfo hints; | 
 |     memset(&hints, 0, sizeof(hints)); | 
 |     hints.ai_family = AF_UNSPEC; | 
 |     hints.ai_socktype = type; | 
 |  | 
 |     char port_str[16]; | 
 |     snprintf(port_str, sizeof(port_str), "%d", port); | 
 |  | 
 |     struct addrinfo* addrinfo_ptr = nullptr; | 
 |  | 
 | #if (NTDDI_VERSION >= NTDDI_WINXPSP2) || (_WIN32_WINNT >= _WIN32_WINNT_WS03) | 
 |     // TODO: When the Android SDK tools increases the Windows system | 
 |     // requirements >= WinXP SP2, switch to GetAddrInfoW(widen(host).c_str()). | 
 | #else | 
 |     // Otherwise, keep using getaddrinfo(), or do runtime API detection | 
 |     // with GetProcAddress("GetAddrInfoW"). | 
 | #endif | 
 |     if (getaddrinfo(host.c_str(), port_str, &hints, &addrinfo_ptr) != 0) { | 
 |         *error = android::base::StringPrintf( | 
 |                 "cannot resolve host '%s' and port %s: %s", host.c_str(), | 
 |                 port_str, SystemErrorCodeToString(WSAGetLastError()).c_str()); | 
 |         D("%s\n", error->c_str()); | 
 |         return -1; | 
 |     } | 
 |     std::unique_ptr<struct addrinfo, decltype(freeaddrinfo)*> | 
 |         addrinfo(addrinfo_ptr, freeaddrinfo); | 
 |     addrinfo_ptr = nullptr; | 
 |  | 
 |     // TODO: Try all the addresses if there's more than one? This just uses | 
 |     // the first. Or, could call WSAConnectByName() (Windows Vista and newer) | 
 |     // which tries all addresses, takes a timeout and more. | 
 |     SOCKET s = socket(addrinfo->ai_family, addrinfo->ai_socktype, | 
 |                       addrinfo->ai_protocol); | 
 |     if(s == INVALID_SOCKET) { | 
 |         *error = android::base::StringPrintf("cannot create socket: %s", | 
 |                 SystemErrorCodeToString(WSAGetLastError()).c_str()); | 
 |         D("%s\n", error->c_str()); | 
 |         return -1; | 
 |     } | 
 |     f->fh_socket = s; | 
 |  | 
 |     // TODO: Implement timeouts for Windows. Seems like the default in theory | 
 |     // (according to http://serverfault.com/a/671453) and in practice is 21 sec. | 
 |     if(connect(s, addrinfo->ai_addr, addrinfo->ai_addrlen) == SOCKET_ERROR) { | 
 |         // TODO: Use WSAAddressToString or inet_ntop on address. | 
 |         *error = android::base::StringPrintf("cannot connect to %s:%s: %s", | 
 |                 host.c_str(), port_str, | 
 |                 SystemErrorCodeToString(WSAGetLastError()).c_str()); | 
 |         D("could not connect to %s:%s:%s: %s\n", | 
 |           type != SOCK_STREAM ? "udp" : "tcp", host.c_str(), port_str, | 
 |           error->c_str()); | 
 |         return -1; | 
 |     } | 
 |  | 
 |     const int fd = _fh_to_int(f.get()); | 
 |     snprintf( f->name, sizeof(f->name), "%d(net-client:%s%d)", fd, | 
 |               type != SOCK_STREAM ? "udp:" : "", port ); | 
 |     D( "host '%s' port %d type %s => fd %d\n", host.c_str(), port, | 
 |        type != SOCK_STREAM ? "udp" : "tcp", fd ); | 
 |     f.release(); | 
 |     return fd; | 
 | } | 
 |  | 
 | #undef accept | 
 | int  adb_socket_accept(int  serverfd, struct sockaddr*  addr, socklen_t  *addrlen) | 
 | { | 
 |     FH   serverfh = _fh_from_int(serverfd, __func__); | 
 |  | 
 |     if ( !serverfh || serverfh->clazz != &_fh_socket_class ) { | 
 |         D("adb_socket_accept: invalid fd %d\n", serverfd); | 
 |         errno = EBADF; | 
 |         return -1; | 
 |     } | 
 |  | 
 |     unique_fh fh(_fh_alloc( &_fh_socket_class )); | 
 |     if (!fh) { | 
 |         PLOG(ERROR) << "adb_socket_accept: failed to allocate accepted socket " | 
 |                        "descriptor"; | 
 |         return -1; | 
 |     } | 
 |  | 
 |     fh->fh_socket = accept( serverfh->fh_socket, addr, addrlen ); | 
 |     if (fh->fh_socket == INVALID_SOCKET) { | 
 |         const DWORD err = WSAGetLastError(); | 
 |         LOG(ERROR) << "adb_socket_accept: accept on fd " << serverfd << | 
 |                       " failed: " + SystemErrorCodeToString(err); | 
 |         _socket_set_errno( err ); | 
 |         return -1; | 
 |     } | 
 |  | 
 |     const int fd = _fh_to_int(fh.get()); | 
 |     snprintf( fh->name, sizeof(fh->name), "%d(accept:%s)", fd, serverfh->name ); | 
 |     D( "adb_socket_accept on fd %d returns fd %d\n", serverfd, fd ); | 
 |     fh.release(); | 
 |     return  fd; | 
 | } | 
 |  | 
 |  | 
 | int  adb_setsockopt( int  fd, int  level, int  optname, const void*  optval, socklen_t  optlen ) | 
 | { | 
 |     FH   fh = _fh_from_int(fd, __func__); | 
 |  | 
 |     if ( !fh || fh->clazz != &_fh_socket_class ) { | 
 |         D("adb_setsockopt: invalid fd %d\n", fd); | 
 |         errno = EBADF; | 
 |         return -1; | 
 |     } | 
 |     int result = setsockopt( fh->fh_socket, level, optname, | 
 |                              reinterpret_cast<const char*>(optval), optlen ); | 
 |     if ( result == SOCKET_ERROR ) { | 
 |         const DWORD err = WSAGetLastError(); | 
 |         D( "adb_setsockopt: setsockopt on fd %d level %d optname %d " | 
 |            "failed: %s\n", fd, level, optname, | 
 |            SystemErrorCodeToString(err).c_str() ); | 
 |         _socket_set_errno( err ); | 
 |         result = -1; | 
 |     } | 
 |     return result; | 
 | } | 
 |  | 
 |  | 
 | int  adb_shutdown(int  fd) | 
 | { | 
 |     FH   f = _fh_from_int(fd, __func__); | 
 |  | 
 |     if (!f || f->clazz != &_fh_socket_class) { | 
 |         D("adb_shutdown: invalid fd %d\n", fd); | 
 |         errno = EBADF; | 
 |         return -1; | 
 |     } | 
 |  | 
 |     D( "adb_shutdown: %s\n", f->name); | 
 |     if (shutdown(f->fh_socket, SD_BOTH) == SOCKET_ERROR) { | 
 |         const DWORD err = WSAGetLastError(); | 
 |         D("socket shutdown fd %d failed: %s\n", fd, | 
 |           SystemErrorCodeToString(err).c_str()); | 
 |         _socket_set_errno(err); | 
 |         return -1; | 
 |     } | 
 |     return 0; | 
 | } | 
 |  | 
 | /**************************************************************************/ | 
 | /**************************************************************************/ | 
 | /*****                                                                *****/ | 
 | /*****    emulated socketpairs                                       *****/ | 
 | /*****                                                                *****/ | 
 | /**************************************************************************/ | 
 | /**************************************************************************/ | 
 |  | 
 | /* we implement socketpairs directly in use space for the following reasons: | 
 |  *   - it avoids copying data from/to the Nt kernel | 
 |  *   - it allows us to implement fdevent hooks easily and cheaply, something | 
 |  *     that is not possible with standard Win32 pipes !! | 
 |  * | 
 |  * basically, we use two circular buffers, each one corresponding to a given | 
 |  * direction. | 
 |  * | 
 |  * each buffer is implemented as two regions: | 
 |  * | 
 |  *   region A which is (a_start,a_end) | 
 |  *   region B which is (0, b_end)  with b_end <= a_start | 
 |  * | 
 |  * an empty buffer has:  a_start = a_end = b_end = 0 | 
 |  * | 
 |  * a_start is the pointer where we start reading data | 
 |  * a_end is the pointer where we start writing data, unless it is BUFFER_SIZE, | 
 |  * then you start writing at b_end | 
 |  * | 
 |  * the buffer is full when  b_end == a_start && a_end == BUFFER_SIZE | 
 |  * | 
 |  * there is room when b_end < a_start || a_end < BUFER_SIZE | 
 |  * | 
 |  * when reading, a_start is incremented, it a_start meets a_end, then | 
 |  * we do:  a_start = 0, a_end = b_end, b_end = 0, and keep going on.. | 
 |  */ | 
 |  | 
 | #define  BIP_BUFFER_SIZE   4096 | 
 |  | 
 | #if 0 | 
 | #include <stdio.h> | 
 | #  define  BIPD(x)      D x | 
 | #  define  BIPDUMP   bip_dump_hex | 
 |  | 
 | static void  bip_dump_hex( const unsigned char*  ptr, size_t  len ) | 
 | { | 
 |     int  nn, len2 = len; | 
 |  | 
 |     if (len2 > 8) len2 = 8; | 
 |  | 
 |     for (nn = 0; nn < len2; nn++) | 
 |         printf("%02x", ptr[nn]); | 
 |     printf("  "); | 
 |  | 
 |     for (nn = 0; nn < len2; nn++) { | 
 |         int  c = ptr[nn]; | 
 |         if (c < 32 || c > 127) | 
 |             c = '.'; | 
 |         printf("%c", c); | 
 |     } | 
 |     printf("\n"); | 
 |     fflush(stdout); | 
 | } | 
 |  | 
 | #else | 
 | #  define  BIPD(x)        do {} while (0) | 
 | #  define  BIPDUMP(p,l)   BIPD(p) | 
 | #endif | 
 |  | 
 | typedef struct BipBufferRec_ | 
 | { | 
 |     int                a_start; | 
 |     int                a_end; | 
 |     int                b_end; | 
 |     int                fdin; | 
 |     int                fdout; | 
 |     int                closed; | 
 |     int                can_write;  /* boolean */ | 
 |     HANDLE             evt_write;  /* event signaled when one can write to a buffer  */ | 
 |     int                can_read;   /* boolean */ | 
 |     HANDLE             evt_read;   /* event signaled when one can read from a buffer */ | 
 |     CRITICAL_SECTION  lock; | 
 |     unsigned char      buff[ BIP_BUFFER_SIZE ]; | 
 |  | 
 | } BipBufferRec, *BipBuffer; | 
 |  | 
 | static void | 
 | bip_buffer_init( BipBuffer  buffer ) | 
 | { | 
 |     D( "bit_buffer_init %p\n", buffer ); | 
 |     buffer->a_start   = 0; | 
 |     buffer->a_end     = 0; | 
 |     buffer->b_end     = 0; | 
 |     buffer->can_write = 1; | 
 |     buffer->can_read  = 0; | 
 |     buffer->fdin      = 0; | 
 |     buffer->fdout     = 0; | 
 |     buffer->closed    = 0; | 
 |     buffer->evt_write = CreateEvent( NULL, TRUE, TRUE, NULL ); | 
 |     buffer->evt_read  = CreateEvent( NULL, TRUE, FALSE, NULL ); | 
 |     InitializeCriticalSection( &buffer->lock ); | 
 | } | 
 |  | 
 | static void | 
 | bip_buffer_close( BipBuffer  bip ) | 
 | { | 
 |     bip->closed = 1; | 
 |  | 
 |     if (!bip->can_read) { | 
 |         SetEvent( bip->evt_read ); | 
 |     } | 
 |     if (!bip->can_write) { | 
 |         SetEvent( bip->evt_write ); | 
 |     } | 
 | } | 
 |  | 
 | static void | 
 | bip_buffer_done( BipBuffer  bip ) | 
 | { | 
 |     BIPD(( "bip_buffer_done: %d->%d\n", bip->fdin, bip->fdout )); | 
 |     CloseHandle( bip->evt_read ); | 
 |     CloseHandle( bip->evt_write ); | 
 |     DeleteCriticalSection( &bip->lock ); | 
 | } | 
 |  | 
 | static int | 
 | bip_buffer_write( BipBuffer  bip, const void* src, int  len ) | 
 | { | 
 |     int  avail, count = 0; | 
 |  | 
 |     if (len <= 0) | 
 |         return 0; | 
 |  | 
 |     BIPD(( "bip_buffer_write: enter %d->%d len %d\n", bip->fdin, bip->fdout, len )); | 
 |     BIPDUMP( src, len ); | 
 |  | 
 |     EnterCriticalSection( &bip->lock ); | 
 |  | 
 |     while (!bip->can_write) { | 
 |         int  ret; | 
 |         LeaveCriticalSection( &bip->lock ); | 
 |  | 
 |         if (bip->closed) { | 
 |             errno = EPIPE; | 
 |             return -1; | 
 |         } | 
 |         /* spinlocking here is probably unfair, but let's live with it */ | 
 |         ret = WaitForSingleObject( bip->evt_write, INFINITE ); | 
 |         if (ret != WAIT_OBJECT_0) {  /* buffer probably closed */ | 
 |             D( "bip_buffer_write: error %d->%d WaitForSingleObject returned %d, error %ld\n", bip->fdin, bip->fdout, ret, GetLastError() ); | 
 |             return 0; | 
 |         } | 
 |         if (bip->closed) { | 
 |             errno = EPIPE; | 
 |             return -1; | 
 |         } | 
 |         EnterCriticalSection( &bip->lock ); | 
 |     } | 
 |  | 
 |     BIPD(( "bip_buffer_write: exec %d->%d len %d\n", bip->fdin, bip->fdout, len )); | 
 |  | 
 |     avail = BIP_BUFFER_SIZE - bip->a_end; | 
 |     if (avail > 0) | 
 |     { | 
 |         /* we can append to region A */ | 
 |         if (avail > len) | 
 |             avail = len; | 
 |  | 
 |         memcpy( bip->buff + bip->a_end, src, avail ); | 
 |         src   = (const char *)src + avail; | 
 |         count += avail; | 
 |         len   -= avail; | 
 |  | 
 |         bip->a_end += avail; | 
 |         if (bip->a_end == BIP_BUFFER_SIZE && bip->a_start == 0) { | 
 |             bip->can_write = 0; | 
 |             ResetEvent( bip->evt_write ); | 
 |             goto Exit; | 
 |         } | 
 |     } | 
 |  | 
 |     if (len == 0) | 
 |         goto Exit; | 
 |  | 
 |     avail = bip->a_start - bip->b_end; | 
 |     assert( avail > 0 );  /* since can_write is TRUE */ | 
 |  | 
 |     if (avail > len) | 
 |         avail = len; | 
 |  | 
 |     memcpy( bip->buff + bip->b_end, src, avail ); | 
 |     count += avail; | 
 |     bip->b_end += avail; | 
 |  | 
 |     if (bip->b_end == bip->a_start) { | 
 |         bip->can_write = 0; | 
 |         ResetEvent( bip->evt_write ); | 
 |     } | 
 |  | 
 | Exit: | 
 |     assert( count > 0 ); | 
 |  | 
 |     if ( !bip->can_read ) { | 
 |         bip->can_read = 1; | 
 |         SetEvent( bip->evt_read ); | 
 |     } | 
 |  | 
 |     BIPD(( "bip_buffer_write: exit %d->%d count %d (as=%d ae=%d be=%d cw=%d cr=%d\n", | 
 |             bip->fdin, bip->fdout, count, bip->a_start, bip->a_end, bip->b_end, bip->can_write, bip->can_read )); | 
 |     LeaveCriticalSection( &bip->lock ); | 
 |  | 
 |     return count; | 
 |  } | 
 |  | 
 | static int | 
 | bip_buffer_read( BipBuffer  bip, void*  dst, int  len ) | 
 | { | 
 |     int  avail, count = 0; | 
 |  | 
 |     if (len <= 0) | 
 |         return 0; | 
 |  | 
 |     BIPD(( "bip_buffer_read: enter %d->%d len %d\n", bip->fdin, bip->fdout, len )); | 
 |  | 
 |     EnterCriticalSection( &bip->lock ); | 
 |     while ( !bip->can_read ) | 
 |     { | 
 | #if 0 | 
 |         LeaveCriticalSection( &bip->lock ); | 
 |         errno = EAGAIN; | 
 |         return -1; | 
 | #else | 
 |         int  ret; | 
 |         LeaveCriticalSection( &bip->lock ); | 
 |  | 
 |         if (bip->closed) { | 
 |             errno = EPIPE; | 
 |             return -1; | 
 |         } | 
 |  | 
 |         ret = WaitForSingleObject( bip->evt_read, INFINITE ); | 
 |         if (ret != WAIT_OBJECT_0) { /* probably closed buffer */ | 
 |             D( "bip_buffer_read: error %d->%d WaitForSingleObject returned %d, error %ld\n", bip->fdin, bip->fdout, ret, GetLastError()); | 
 |             return 0; | 
 |         } | 
 |         if (bip->closed) { | 
 |             errno = EPIPE; | 
 |             return -1; | 
 |         } | 
 |         EnterCriticalSection( &bip->lock ); | 
 | #endif | 
 |     } | 
 |  | 
 |     BIPD(( "bip_buffer_read: exec %d->%d len %d\n", bip->fdin, bip->fdout, len )); | 
 |  | 
 |     avail = bip->a_end - bip->a_start; | 
 |     assert( avail > 0 );  /* since can_read is TRUE */ | 
 |  | 
 |     if (avail > len) | 
 |         avail = len; | 
 |  | 
 |     memcpy( dst, bip->buff + bip->a_start, avail ); | 
 |     dst   = (char *)dst + avail; | 
 |     count += avail; | 
 |     len   -= avail; | 
 |  | 
 |     bip->a_start += avail; | 
 |     if (bip->a_start < bip->a_end) | 
 |         goto Exit; | 
 |  | 
 |     bip->a_start = 0; | 
 |     bip->a_end   = bip->b_end; | 
 |     bip->b_end   = 0; | 
 |  | 
 |     avail = bip->a_end; | 
 |     if (avail > 0) { | 
 |         if (avail > len) | 
 |             avail = len; | 
 |         memcpy( dst, bip->buff, avail ); | 
 |         count += avail; | 
 |         bip->a_start += avail; | 
 |  | 
 |         if ( bip->a_start < bip->a_end ) | 
 |             goto Exit; | 
 |  | 
 |         bip->a_start = bip->a_end = 0; | 
 |     } | 
 |  | 
 |     bip->can_read = 0; | 
 |     ResetEvent( bip->evt_read ); | 
 |  | 
 | Exit: | 
 |     assert( count > 0 ); | 
 |  | 
 |     if (!bip->can_write ) { | 
 |         bip->can_write = 1; | 
 |         SetEvent( bip->evt_write ); | 
 |     } | 
 |  | 
 |     BIPDUMP( (const unsigned char*)dst - count, count ); | 
 |     BIPD(( "bip_buffer_read: exit %d->%d count %d (as=%d ae=%d be=%d cw=%d cr=%d\n", | 
 |             bip->fdin, bip->fdout, count, bip->a_start, bip->a_end, bip->b_end, bip->can_write, bip->can_read )); | 
 |     LeaveCriticalSection( &bip->lock ); | 
 |  | 
 |     return count; | 
 | } | 
 |  | 
 | typedef struct SocketPairRec_ | 
 | { | 
 |     BipBufferRec  a2b_bip; | 
 |     BipBufferRec  b2a_bip; | 
 |     FH            a_fd; | 
 |     int           used; | 
 |  | 
 | } SocketPairRec; | 
 |  | 
 | void _fh_socketpair_init( FH  f ) | 
 | { | 
 |     f->fh_pair = NULL; | 
 | } | 
 |  | 
 | static int | 
 | _fh_socketpair_close( FH  f ) | 
 | { | 
 |     if ( f->fh_pair ) { | 
 |         SocketPair  pair = f->fh_pair; | 
 |  | 
 |         if ( f == pair->a_fd ) { | 
 |             pair->a_fd = NULL; | 
 |         } | 
 |  | 
 |         bip_buffer_close( &pair->b2a_bip ); | 
 |         bip_buffer_close( &pair->a2b_bip ); | 
 |  | 
 |         if ( --pair->used == 0 ) { | 
 |             bip_buffer_done( &pair->b2a_bip ); | 
 |             bip_buffer_done( &pair->a2b_bip ); | 
 |             free( pair ); | 
 |         } | 
 |         f->fh_pair = NULL; | 
 |     } | 
 |     return 0; | 
 | } | 
 |  | 
 | static int | 
 | _fh_socketpair_lseek( FH  f, int pos, int  origin ) | 
 | { | 
 |     errno = ESPIPE; | 
 |     return -1; | 
 | } | 
 |  | 
 | static int | 
 | _fh_socketpair_read( FH  f, void* buf, int  len ) | 
 | { | 
 |     SocketPair  pair = f->fh_pair; | 
 |     BipBuffer   bip; | 
 |  | 
 |     if (!pair) | 
 |         return -1; | 
 |  | 
 |     if ( f == pair->a_fd ) | 
 |         bip = &pair->b2a_bip; | 
 |     else | 
 |         bip = &pair->a2b_bip; | 
 |  | 
 |     return bip_buffer_read( bip, buf, len ); | 
 | } | 
 |  | 
 | static int | 
 | _fh_socketpair_write( FH  f, const void*  buf, int  len ) | 
 | { | 
 |     SocketPair  pair = f->fh_pair; | 
 |     BipBuffer   bip; | 
 |  | 
 |     if (!pair) | 
 |         return -1; | 
 |  | 
 |     if ( f == pair->a_fd ) | 
 |         bip = &pair->a2b_bip; | 
 |     else | 
 |         bip = &pair->b2a_bip; | 
 |  | 
 |     return bip_buffer_write( bip, buf, len ); | 
 | } | 
 |  | 
 |  | 
 | static void  _fh_socketpair_hook( FH  f, int  event, EventHook  hook );  /* forward */ | 
 |  | 
 | static const FHClassRec  _fh_socketpair_class = | 
 | { | 
 |     _fh_socketpair_init, | 
 |     _fh_socketpair_close, | 
 |     _fh_socketpair_lseek, | 
 |     _fh_socketpair_read, | 
 |     _fh_socketpair_write, | 
 |     _fh_socketpair_hook | 
 | }; | 
 |  | 
 |  | 
 | int  adb_socketpair(int sv[2]) { | 
 |     SocketPair pair; | 
 |  | 
 |     unique_fh fa(_fh_alloc(&_fh_socketpair_class)); | 
 |     if (!fa) { | 
 |         return -1; | 
 |     } | 
 |     unique_fh fb(_fh_alloc(&_fh_socketpair_class)); | 
 |     if (!fb) { | 
 |         return -1; | 
 |     } | 
 |  | 
 |     pair = reinterpret_cast<SocketPair>(malloc(sizeof(*pair))); | 
 |     if (pair == NULL) { | 
 |         D("adb_socketpair: not enough memory to allocate pipes\n" ); | 
 |         return -1; | 
 |     } | 
 |  | 
 |     bip_buffer_init( &pair->a2b_bip ); | 
 |     bip_buffer_init( &pair->b2a_bip ); | 
 |  | 
 |     fa->fh_pair = pair; | 
 |     fb->fh_pair = pair; | 
 |     pair->used  = 2; | 
 |     pair->a_fd  = fa.get(); | 
 |  | 
 |     sv[0] = _fh_to_int(fa.get()); | 
 |     sv[1] = _fh_to_int(fb.get()); | 
 |  | 
 |     pair->a2b_bip.fdin  = sv[0]; | 
 |     pair->a2b_bip.fdout = sv[1]; | 
 |     pair->b2a_bip.fdin  = sv[1]; | 
 |     pair->b2a_bip.fdout = sv[0]; | 
 |  | 
 |     snprintf( fa->name, sizeof(fa->name), "%d(pair:%d)", sv[0], sv[1] ); | 
 |     snprintf( fb->name, sizeof(fb->name), "%d(pair:%d)", sv[1], sv[0] ); | 
 |     D( "adb_socketpair: returns (%d, %d)\n", sv[0], sv[1] ); | 
 |     fa.release(); | 
 |     fb.release(); | 
 |     return 0; | 
 | } | 
 |  | 
 | /**************************************************************************/ | 
 | /**************************************************************************/ | 
 | /*****                                                                *****/ | 
 | /*****    fdevents emulation                                          *****/ | 
 | /*****                                                                *****/ | 
 | /*****   this is a very simple implementation, we rely on the fact    *****/ | 
 | /*****   that ADB doesn't use FDE_ERROR.                              *****/ | 
 | /*****                                                                *****/ | 
 | /**************************************************************************/ | 
 | /**************************************************************************/ | 
 |  | 
 | #define FATAL(x...) fatal(__FUNCTION__, x) | 
 |  | 
 | #if DEBUG | 
 | static void dump_fde(fdevent *fde, const char *info) | 
 | { | 
 |     fprintf(stderr,"FDE #%03d %c%c%c %s\n", fde->fd, | 
 |             fde->state & FDE_READ ? 'R' : ' ', | 
 |             fde->state & FDE_WRITE ? 'W' : ' ', | 
 |             fde->state & FDE_ERROR ? 'E' : ' ', | 
 |             info); | 
 | } | 
 | #else | 
 | #define dump_fde(fde, info) do { } while(0) | 
 | #endif | 
 |  | 
 | #define FDE_EVENTMASK  0x00ff | 
 | #define FDE_STATEMASK  0xff00 | 
 |  | 
 | #define FDE_ACTIVE     0x0100 | 
 | #define FDE_PENDING    0x0200 | 
 | #define FDE_CREATED    0x0400 | 
 |  | 
 | static void fdevent_plist_enqueue(fdevent *node); | 
 | static void fdevent_plist_remove(fdevent *node); | 
 | static fdevent *fdevent_plist_dequeue(void); | 
 |  | 
 | static fdevent list_pending = { | 
 |     .next = &list_pending, | 
 |     .prev = &list_pending, | 
 | }; | 
 |  | 
 | static fdevent **fd_table = 0; | 
 | static int       fd_table_max = 0; | 
 |  | 
 | typedef struct EventLooperRec_*  EventLooper; | 
 |  | 
 | typedef struct EventHookRec_ | 
 | { | 
 |     EventHook    next; | 
 |     FH           fh; | 
 |     HANDLE       h; | 
 |     int          wanted;   /* wanted event flags */ | 
 |     int          ready;    /* ready event flags  */ | 
 |     void*        aux; | 
 |     void        (*prepare)( EventHook  hook ); | 
 |     int         (*start)  ( EventHook  hook ); | 
 |     void        (*stop)   ( EventHook  hook ); | 
 |     int         (*check)  ( EventHook  hook ); | 
 |     int         (*peek)   ( EventHook  hook ); | 
 | } EventHookRec; | 
 |  | 
 | static EventHook  _free_hooks; | 
 |  | 
 | static EventHook | 
 | event_hook_alloc(FH fh) { | 
 |     EventHook hook = _free_hooks; | 
 |     if (hook != NULL) { | 
 |         _free_hooks = hook->next; | 
 |     } else { | 
 |         hook = reinterpret_cast<EventHook>(malloc(sizeof(*hook))); | 
 |         if (hook == NULL) | 
 |             fatal( "could not allocate event hook\n" ); | 
 |     } | 
 |     hook->next   = NULL; | 
 |     hook->fh     = fh; | 
 |     hook->wanted = 0; | 
 |     hook->ready  = 0; | 
 |     hook->h      = INVALID_HANDLE_VALUE; | 
 |     hook->aux    = NULL; | 
 |  | 
 |     hook->prepare = NULL; | 
 |     hook->start   = NULL; | 
 |     hook->stop    = NULL; | 
 |     hook->check   = NULL; | 
 |     hook->peek    = NULL; | 
 |  | 
 |     return hook; | 
 | } | 
 |  | 
 | static void | 
 | event_hook_free( EventHook  hook ) | 
 | { | 
 |     hook->fh     = NULL; | 
 |     hook->wanted = 0; | 
 |     hook->ready  = 0; | 
 |     hook->next   = _free_hooks; | 
 |     _free_hooks  = hook; | 
 | } | 
 |  | 
 |  | 
 | static void | 
 | event_hook_signal( EventHook  hook ) | 
 | { | 
 |     FH        f   = hook->fh; | 
 |     int       fd  = _fh_to_int(f); | 
 |     fdevent*  fde = fd_table[ fd - WIN32_FH_BASE ]; | 
 |  | 
 |     if (fde != NULL && fde->fd == fd) { | 
 |         if ((fde->state & FDE_PENDING) == 0) { | 
 |             fde->state |= FDE_PENDING; | 
 |             fdevent_plist_enqueue( fde ); | 
 |         } | 
 |         fde->events |= hook->wanted; | 
 |     } | 
 | } | 
 |  | 
 |  | 
 | #define  MAX_LOOPER_HANDLES  WIN32_MAX_FHS | 
 |  | 
 | typedef struct EventLooperRec_ | 
 | { | 
 |     EventHook    hooks; | 
 |     HANDLE       htab[ MAX_LOOPER_HANDLES ]; | 
 |     int          htab_count; | 
 |  | 
 | } EventLooperRec; | 
 |  | 
 | static EventHook* | 
 | event_looper_find_p( EventLooper  looper, FH  fh ) | 
 | { | 
 |     EventHook  *pnode = &looper->hooks; | 
 |     EventHook   node  = *pnode; | 
 |     for (;;) { | 
 |         if ( node == NULL || node->fh == fh ) | 
 |             break; | 
 |         pnode = &node->next; | 
 |         node  = *pnode; | 
 |     } | 
 |     return  pnode; | 
 | } | 
 |  | 
 | static void | 
 | event_looper_hook( EventLooper  looper, int  fd, int  events ) | 
 | { | 
 |     FH          f = _fh_from_int(fd, __func__); | 
 |     EventHook  *pnode; | 
 |     EventHook   node; | 
 |  | 
 |     if (f == NULL)  /* invalid arg */ { | 
 |         D("event_looper_hook: invalid fd=%d\n", fd); | 
 |         return; | 
 |     } | 
 |  | 
 |     pnode = event_looper_find_p( looper, f ); | 
 |     node  = *pnode; | 
 |     if ( node == NULL ) { | 
 |         node       = event_hook_alloc( f ); | 
 |         node->next = *pnode; | 
 |         *pnode     = node; | 
 |     } | 
 |  | 
 |     if ( (node->wanted & events) != events ) { | 
 |         /* this should update start/stop/check/peek */ | 
 |         D("event_looper_hook: call hook for %d (new=%x, old=%x)\n", | 
 |            fd, node->wanted, events); | 
 |         f->clazz->_fh_hook( f, events & ~node->wanted, node ); | 
 |         node->wanted |= events; | 
 |     } else { | 
 |         D("event_looper_hook: ignoring events %x for %d wanted=%x)\n", | 
 |            events, fd, node->wanted); | 
 |     } | 
 | } | 
 |  | 
 | static void | 
 | event_looper_unhook( EventLooper  looper, int  fd, int  events ) | 
 | { | 
 |     FH          fh    = _fh_from_int(fd, __func__); | 
 |     EventHook  *pnode = event_looper_find_p( looper, fh ); | 
 |     EventHook   node  = *pnode; | 
 |  | 
 |     if (node != NULL) { | 
 |         int  events2 = events & node->wanted; | 
 |         if ( events2 == 0 ) { | 
 |             D( "event_looper_unhook: events %x not registered for fd %d\n", events, fd ); | 
 |             return; | 
 |         } | 
 |         node->wanted &= ~events2; | 
 |         if (!node->wanted) { | 
 |             *pnode = node->next; | 
 |             event_hook_free( node ); | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | /* | 
 |  * A fixer for WaitForMultipleObjects on condition that there are more than 64 | 
 |  * handles to wait on. | 
 |  * | 
 |  * In cetain cases DDMS may establish more than 64 connections with ADB. For | 
 |  * instance, this may happen if there are more than 64 processes running on a | 
 |  * device, or there are multiple devices connected (including the emulator) with | 
 |  * the combined number of running processes greater than 64. In this case using | 
 |  * WaitForMultipleObjects to wait on connection events simply wouldn't cut, | 
 |  * because of the API limitations (64 handles max). So, we need to provide a way | 
 |  * to scale WaitForMultipleObjects to accept an arbitrary number of handles. The | 
 |  * easiest (and "Microsoft recommended") way to do that would be dividing the | 
 |  * handle array into chunks with the chunk size less than 64, and fire up as many | 
 |  * waiting threads as there are chunks. Then each thread would wait on a chunk of | 
 |  * handles, and will report back to the caller which handle has been set. | 
 |  * Here is the implementation of that algorithm. | 
 |  */ | 
 |  | 
 | /* Number of handles to wait on in each wating thread. */ | 
 | #define WAIT_ALL_CHUNK_SIZE 63 | 
 |  | 
 | /* Descriptor for a wating thread */ | 
 | typedef struct WaitForAllParam { | 
 |     /* A handle to an event to signal when waiting is over. This handle is shared | 
 |      * accross all the waiting threads, so each waiting thread knows when any | 
 |      * other thread has exited, so it can exit too. */ | 
 |     HANDLE          main_event; | 
 |     /* Upon exit from a waiting thread contains the index of the handle that has | 
 |      * been signaled. The index is an absolute index of the signaled handle in | 
 |      * the original array. This pointer is shared accross all the waiting threads | 
 |      * and it's not guaranteed (due to a race condition) that when all the | 
 |      * waiting threads exit, the value contained here would indicate the first | 
 |      * handle that was signaled. This is fine, because the caller cares only | 
 |      * about any handle being signaled. It doesn't care about the order, nor | 
 |      * about the whole list of handles that were signaled. */ | 
 |     LONG volatile   *signaled_index; | 
 |     /* Array of handles to wait on in a waiting thread. */ | 
 |     HANDLE*         handles; | 
 |     /* Number of handles in 'handles' array to wait on. */ | 
 |     int             handles_count; | 
 |     /* Index inside the main array of the first handle in the 'handles' array. */ | 
 |     int             first_handle_index; | 
 |     /* Waiting thread handle. */ | 
 |     HANDLE          thread; | 
 | } WaitForAllParam; | 
 |  | 
 | /* Waiting thread routine. */ | 
 | static unsigned __stdcall | 
 | _in_waiter_thread(void*  arg) | 
 | { | 
 |     HANDLE wait_on[WAIT_ALL_CHUNK_SIZE + 1]; | 
 |     int res; | 
 |     WaitForAllParam* const param = (WaitForAllParam*)arg; | 
 |  | 
 |     /* We have to wait on the main_event in order to be notified when any of the | 
 |      * sibling threads is exiting. */ | 
 |     wait_on[0] = param->main_event; | 
 |     /* The rest of the handles go behind the main event handle. */ | 
 |     memcpy(wait_on + 1, param->handles, param->handles_count * sizeof(HANDLE)); | 
 |  | 
 |     res = WaitForMultipleObjects(param->handles_count + 1, wait_on, FALSE, INFINITE); | 
 |     if (res > 0 && res < (param->handles_count + 1)) { | 
 |         /* One of the original handles got signaled. Save its absolute index into | 
 |          * the output variable. */ | 
 |         InterlockedCompareExchange(param->signaled_index, | 
 |                                    res - 1L + param->first_handle_index, -1L); | 
 |     } | 
 |  | 
 |     /* Notify the caller (and the siblings) that the wait is over. */ | 
 |     SetEvent(param->main_event); | 
 |  | 
 |     _endthreadex(0); | 
 |     return 0; | 
 | } | 
 |  | 
 | /* WaitForMultipeObjects fixer routine. | 
 |  * Param: | 
 |  *  handles Array of handles to wait on. | 
 |  *  handles_count Number of handles in the array. | 
 |  * Return: | 
 |  *  (>= 0 && < handles_count) - Index of the signaled handle in the array, or | 
 |  *  WAIT_FAILED on an error. | 
 |  */ | 
 | static int | 
 | _wait_for_all(HANDLE* handles, int handles_count) | 
 | { | 
 |     WaitForAllParam* threads; | 
 |     HANDLE main_event; | 
 |     int chunks, chunk, remains; | 
 |  | 
 |     /* This variable is going to be accessed by several threads at the same time, | 
 |      * this is bound to fail randomly when the core is run on multi-core machines. | 
 |      * To solve this, we need to do the following (1 _and_ 2): | 
 |      * 1. Use the "volatile" qualifier to ensure the compiler doesn't optimize | 
 |      *    out the reads/writes in this function unexpectedly. | 
 |      * 2. Ensure correct memory ordering. The "simple" way to do that is to wrap | 
 |      *    all accesses inside a critical section. But we can also use | 
 |      *    InterlockedCompareExchange() which always provide a full memory barrier | 
 |      *    on Win32. | 
 |      */ | 
 |     volatile LONG sig_index = -1; | 
 |  | 
 |     /* Calculate number of chunks, and allocate thread param array. */ | 
 |     chunks = handles_count / WAIT_ALL_CHUNK_SIZE; | 
 |     remains = handles_count % WAIT_ALL_CHUNK_SIZE; | 
 |     threads = (WaitForAllParam*)malloc((chunks + (remains ? 1 : 0)) * | 
 |                                         sizeof(WaitForAllParam)); | 
 |     if (threads == NULL) { | 
 |         D("Unable to allocate thread array for %d handles.\n", handles_count); | 
 |         return (int)WAIT_FAILED; | 
 |     } | 
 |  | 
 |     /* Create main event to wait on for all waiting threads. This is a "manualy | 
 |      * reset" event that will remain set once it was set. */ | 
 |     main_event = CreateEvent(NULL, TRUE, FALSE, NULL); | 
 |     if (main_event == NULL) { | 
 |         D("Unable to create main event. Error: %ld\n", GetLastError()); | 
 |         free(threads); | 
 |         return (int)WAIT_FAILED; | 
 |     } | 
 |  | 
 |     /* | 
 |      * Initialize waiting thread parameters. | 
 |      */ | 
 |  | 
 |     for (chunk = 0; chunk < chunks; chunk++) { | 
 |         threads[chunk].main_event = main_event; | 
 |         threads[chunk].signaled_index = &sig_index; | 
 |         threads[chunk].first_handle_index = WAIT_ALL_CHUNK_SIZE * chunk; | 
 |         threads[chunk].handles = handles + threads[chunk].first_handle_index; | 
 |         threads[chunk].handles_count = WAIT_ALL_CHUNK_SIZE; | 
 |     } | 
 |     if (remains) { | 
 |         threads[chunk].main_event = main_event; | 
 |         threads[chunk].signaled_index = &sig_index; | 
 |         threads[chunk].first_handle_index = WAIT_ALL_CHUNK_SIZE * chunk; | 
 |         threads[chunk].handles = handles + threads[chunk].first_handle_index; | 
 |         threads[chunk].handles_count = remains; | 
 |         chunks++; | 
 |     } | 
 |  | 
 |     /* Start the waiting threads. */ | 
 |     for (chunk = 0; chunk < chunks; chunk++) { | 
 |         /* Note that using adb_thread_create is not appropriate here, since we | 
 |          * need a handle to wait on for thread termination. */ | 
 |         threads[chunk].thread = (HANDLE)_beginthreadex(NULL, 0, _in_waiter_thread, | 
 |                                                        &threads[chunk], 0, NULL); | 
 |         if (threads[chunk].thread == NULL) { | 
 |             /* Unable to create a waiter thread. Collapse. */ | 
 |             D("Unable to create a waiting thread %d of %d. errno=%d\n", | 
 |               chunk, chunks, errno); | 
 |             chunks = chunk; | 
 |             SetEvent(main_event); | 
 |             break; | 
 |         } | 
 |     } | 
 |  | 
 |     /* Wait on any of the threads to get signaled. */ | 
 |     WaitForSingleObject(main_event, INFINITE); | 
 |  | 
 |     /* Wait on all the waiting threads to exit. */ | 
 |     for (chunk = 0; chunk < chunks; chunk++) { | 
 |         WaitForSingleObject(threads[chunk].thread, INFINITE); | 
 |         CloseHandle(threads[chunk].thread); | 
 |     } | 
 |  | 
 |     CloseHandle(main_event); | 
 |     free(threads); | 
 |  | 
 |  | 
 |     const int ret = (int)InterlockedCompareExchange(&sig_index, -1, -1); | 
 |     return (ret >= 0) ? ret : (int)WAIT_FAILED; | 
 | } | 
 |  | 
 | static EventLooperRec  win32_looper; | 
 |  | 
 | static void fdevent_init(void) | 
 | { | 
 |     win32_looper.htab_count = 0; | 
 |     win32_looper.hooks      = NULL; | 
 | } | 
 |  | 
 | static void fdevent_connect(fdevent *fde) | 
 | { | 
 |     EventLooper  looper = &win32_looper; | 
 |     int          events = fde->state & FDE_EVENTMASK; | 
 |  | 
 |     if (events != 0) | 
 |         event_looper_hook( looper, fde->fd, events ); | 
 | } | 
 |  | 
 | static void fdevent_disconnect(fdevent *fde) | 
 | { | 
 |     EventLooper  looper = &win32_looper; | 
 |     int          events = fde->state & FDE_EVENTMASK; | 
 |  | 
 |     if (events != 0) | 
 |         event_looper_unhook( looper, fde->fd, events ); | 
 | } | 
 |  | 
 | static void fdevent_update(fdevent *fde, unsigned events) | 
 | { | 
 |     EventLooper  looper  = &win32_looper; | 
 |     unsigned     events0 = fde->state & FDE_EVENTMASK; | 
 |  | 
 |     if (events != events0) { | 
 |         int  removes = events0 & ~events; | 
 |         int  adds    = events  & ~events0; | 
 |         if (removes) { | 
 |             D("fdevent_update: remove %x from %d\n", removes, fde->fd); | 
 |             event_looper_unhook( looper, fde->fd, removes ); | 
 |         } | 
 |         if (adds) { | 
 |             D("fdevent_update: add %x to %d\n", adds, fde->fd); | 
 |             event_looper_hook  ( looper, fde->fd, adds ); | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | static void fdevent_process() | 
 | { | 
 |     EventLooper  looper = &win32_looper; | 
 |     EventHook    hook; | 
 |     int          gotone = 0; | 
 |  | 
 |     /* if we have at least one ready hook, execute it/them */ | 
 |     for (hook = looper->hooks; hook; hook = hook->next) { | 
 |         hook->ready = 0; | 
 |         if (hook->prepare) { | 
 |             hook->prepare(hook); | 
 |             if (hook->ready != 0) { | 
 |                 event_hook_signal( hook ); | 
 |                 gotone = 1; | 
 |             } | 
 |         } | 
 |     } | 
 |  | 
 |     /* nothing's ready yet, so wait for something to happen */ | 
 |     if (!gotone) | 
 |     { | 
 |         looper->htab_count = 0; | 
 |  | 
 |         for (hook = looper->hooks; hook; hook = hook->next) | 
 |         { | 
 |             if (hook->start && !hook->start(hook)) { | 
 |                 D( "fdevent_process: error when starting a hook\n" ); | 
 |                 return; | 
 |             } | 
 |             if (hook->h != INVALID_HANDLE_VALUE) { | 
 |                 int  nn; | 
 |  | 
 |                 for (nn = 0; nn < looper->htab_count; nn++) | 
 |                 { | 
 |                     if ( looper->htab[nn] == hook->h ) | 
 |                         goto DontAdd; | 
 |                 } | 
 |                 looper->htab[ looper->htab_count++ ] = hook->h; | 
 |             DontAdd: | 
 |                 ; | 
 |             } | 
 |         } | 
 |  | 
 |         if (looper->htab_count == 0) { | 
 |             D( "fdevent_process: nothing to wait for !!\n" ); | 
 |             return; | 
 |         } | 
 |  | 
 |         do | 
 |         { | 
 |             int   wait_ret; | 
 |  | 
 |             D( "adb_win32: waiting for %d events\n", looper->htab_count ); | 
 |             if (looper->htab_count > MAXIMUM_WAIT_OBJECTS) { | 
 |                 D("handle count %d exceeds MAXIMUM_WAIT_OBJECTS.\n", looper->htab_count); | 
 |                 wait_ret = _wait_for_all(looper->htab, looper->htab_count); | 
 |             } else { | 
 |                 wait_ret = WaitForMultipleObjects( looper->htab_count, looper->htab, FALSE, INFINITE ); | 
 |             } | 
 |             if (wait_ret == (int)WAIT_FAILED) { | 
 |                 D( "adb_win32: wait failed, error %ld\n", GetLastError() ); | 
 |             } else { | 
 |                 D( "adb_win32: got one (index %d)\n", wait_ret ); | 
 |  | 
 |                 /* according to Cygwin, some objects like consoles wake up on "inappropriate" events | 
 |                  * like mouse movements. we need to filter these with the "check" function | 
 |                  */ | 
 |                 if ((unsigned)wait_ret < (unsigned)looper->htab_count) | 
 |                 { | 
 |                     for (hook = looper->hooks; hook; hook = hook->next) | 
 |                     { | 
 |                         if ( looper->htab[wait_ret] == hook->h       && | 
 |                          (!hook->check || hook->check(hook)) ) | 
 |                         { | 
 |                             D( "adb_win32: signaling %s for %x\n", hook->fh->name, hook->ready ); | 
 |                             event_hook_signal( hook ); | 
 |                             gotone = 1; | 
 |                             break; | 
 |                         } | 
 |                     } | 
 |                 } | 
 |             } | 
 |         } | 
 |         while (!gotone); | 
 |  | 
 |         for (hook = looper->hooks; hook; hook = hook->next) { | 
 |             if (hook->stop) | 
 |                 hook->stop( hook ); | 
 |         } | 
 |     } | 
 |  | 
 |     for (hook = looper->hooks; hook; hook = hook->next) { | 
 |         if (hook->peek && hook->peek(hook)) | 
 |                 event_hook_signal( hook ); | 
 |     } | 
 | } | 
 |  | 
 |  | 
 | static void fdevent_register(fdevent *fde) | 
 | { | 
 |     int  fd = fde->fd - WIN32_FH_BASE; | 
 |  | 
 |     if(fd < 0) { | 
 |         FATAL("bogus negative fd (%d)\n", fde->fd); | 
 |     } | 
 |  | 
 |     if(fd >= fd_table_max) { | 
 |         int oldmax = fd_table_max; | 
 |         if(fde->fd > 32000) { | 
 |             FATAL("bogus huuuuge fd (%d)\n", fde->fd); | 
 |         } | 
 |         if(fd_table_max == 0) { | 
 |             fdevent_init(); | 
 |             fd_table_max = 256; | 
 |         } | 
 |         while(fd_table_max <= fd) { | 
 |             fd_table_max *= 2; | 
 |         } | 
 |         fd_table = reinterpret_cast<fdevent**>(realloc(fd_table, sizeof(fdevent*) * fd_table_max)); | 
 |         if(fd_table == 0) { | 
 |             FATAL("could not expand fd_table to %d entries\n", fd_table_max); | 
 |         } | 
 |         memset(fd_table + oldmax, 0, sizeof(int) * (fd_table_max - oldmax)); | 
 |     } | 
 |  | 
 |     fd_table[fd] = fde; | 
 | } | 
 |  | 
 | static void fdevent_unregister(fdevent *fde) | 
 | { | 
 |     int  fd = fde->fd - WIN32_FH_BASE; | 
 |  | 
 |     if((fd < 0) || (fd >= fd_table_max)) { | 
 |         FATAL("fd out of range (%d)\n", fde->fd); | 
 |     } | 
 |  | 
 |     if(fd_table[fd] != fde) { | 
 |         FATAL("fd_table out of sync"); | 
 |     } | 
 |  | 
 |     fd_table[fd] = 0; | 
 |  | 
 |     if(!(fde->state & FDE_DONT_CLOSE)) { | 
 |         dump_fde(fde, "close"); | 
 |         adb_close(fde->fd); | 
 |     } | 
 | } | 
 |  | 
 | static void fdevent_plist_enqueue(fdevent *node) | 
 | { | 
 |     fdevent *list = &list_pending; | 
 |  | 
 |     node->next = list; | 
 |     node->prev = list->prev; | 
 |     node->prev->next = node; | 
 |     list->prev = node; | 
 | } | 
 |  | 
 | static void fdevent_plist_remove(fdevent *node) | 
 | { | 
 |     node->prev->next = node->next; | 
 |     node->next->prev = node->prev; | 
 |     node->next = 0; | 
 |     node->prev = 0; | 
 | } | 
 |  | 
 | static fdevent *fdevent_plist_dequeue(void) | 
 | { | 
 |     fdevent *list = &list_pending; | 
 |     fdevent *node = list->next; | 
 |  | 
 |     if(node == list) return 0; | 
 |  | 
 |     list->next = node->next; | 
 |     list->next->prev = list; | 
 |     node->next = 0; | 
 |     node->prev = 0; | 
 |  | 
 |     return node; | 
 | } | 
 |  | 
 | fdevent *fdevent_create(int fd, fd_func func, void *arg) | 
 | { | 
 |     fdevent *fde = (fdevent*) malloc(sizeof(fdevent)); | 
 |     if(fde == 0) return 0; | 
 |     fdevent_install(fde, fd, func, arg); | 
 |     fde->state |= FDE_CREATED; | 
 |     return fde; | 
 | } | 
 |  | 
 | void fdevent_destroy(fdevent *fde) | 
 | { | 
 |     if(fde == 0) return; | 
 |     if(!(fde->state & FDE_CREATED)) { | 
 |         FATAL("fde %p not created by fdevent_create()\n", fde); | 
 |     } | 
 |     fdevent_remove(fde); | 
 | } | 
 |  | 
 | void fdevent_install(fdevent *fde, int fd, fd_func func, void *arg) | 
 | { | 
 |     memset(fde, 0, sizeof(fdevent)); | 
 |     fde->state = FDE_ACTIVE; | 
 |     fde->fd = fd; | 
 |     fde->func = func; | 
 |     fde->arg = arg; | 
 |  | 
 |     fdevent_register(fde); | 
 |     dump_fde(fde, "connect"); | 
 |     fdevent_connect(fde); | 
 |     fde->state |= FDE_ACTIVE; | 
 | } | 
 |  | 
 | void fdevent_remove(fdevent *fde) | 
 | { | 
 |     if(fde->state & FDE_PENDING) { | 
 |         fdevent_plist_remove(fde); | 
 |     } | 
 |  | 
 |     if(fde->state & FDE_ACTIVE) { | 
 |         fdevent_disconnect(fde); | 
 |         dump_fde(fde, "disconnect"); | 
 |         fdevent_unregister(fde); | 
 |     } | 
 |  | 
 |     fde->state = 0; | 
 |     fde->events = 0; | 
 | } | 
 |  | 
 |  | 
 | void fdevent_set(fdevent *fde, unsigned events) | 
 | { | 
 |     events &= FDE_EVENTMASK; | 
 |  | 
 |     if((fde->state & FDE_EVENTMASK) == (int)events) return; | 
 |  | 
 |     if(fde->state & FDE_ACTIVE) { | 
 |         fdevent_update(fde, events); | 
 |         dump_fde(fde, "update"); | 
 |     } | 
 |  | 
 |     fde->state = (fde->state & FDE_STATEMASK) | events; | 
 |  | 
 |     if(fde->state & FDE_PENDING) { | 
 |             /* if we're pending, make sure | 
 |             ** we don't signal an event that | 
 |             ** is no longer wanted. | 
 |             */ | 
 |         fde->events &= (~events); | 
 |         if(fde->events == 0) { | 
 |             fdevent_plist_remove(fde); | 
 |             fde->state &= (~FDE_PENDING); | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | void fdevent_add(fdevent *fde, unsigned events) | 
 | { | 
 |     fdevent_set( | 
 |         fde, (fde->state & FDE_EVENTMASK) | (events & FDE_EVENTMASK)); | 
 | } | 
 |  | 
 | void fdevent_del(fdevent *fde, unsigned events) | 
 | { | 
 |     fdevent_set( | 
 |         fde, (fde->state & FDE_EVENTMASK) & (~(events & FDE_EVENTMASK))); | 
 | } | 
 |  | 
 | void fdevent_loop() | 
 | { | 
 |     fdevent *fde; | 
 |  | 
 |     for(;;) { | 
 | #if DEBUG | 
 |         fprintf(stderr,"--- ---- waiting for events\n"); | 
 | #endif | 
 |         fdevent_process(); | 
 |  | 
 |         while((fde = fdevent_plist_dequeue())) { | 
 |             unsigned events = fde->events; | 
 |             fde->events = 0; | 
 |             fde->state &= (~FDE_PENDING); | 
 |             dump_fde(fde, "callback"); | 
 |             fde->func(fde->fd, events, fde->arg); | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | /**  FILE EVENT HOOKS | 
 |  **/ | 
 |  | 
 | static void  _event_file_prepare( EventHook  hook ) | 
 | { | 
 |     if (hook->wanted & (FDE_READ|FDE_WRITE)) { | 
 |         /* we can always read/write */ | 
 |         hook->ready |= hook->wanted & (FDE_READ|FDE_WRITE); | 
 |     } | 
 | } | 
 |  | 
 | static int  _event_file_peek( EventHook  hook ) | 
 | { | 
 |     return (hook->wanted & (FDE_READ|FDE_WRITE)); | 
 | } | 
 |  | 
 | static void  _fh_file_hook( FH  f, int  events, EventHook  hook ) | 
 | { | 
 |     hook->h       = f->fh_handle; | 
 |     hook->prepare = _event_file_prepare; | 
 |     hook->peek    = _event_file_peek; | 
 | } | 
 |  | 
 | /** SOCKET EVENT HOOKS | 
 |  **/ | 
 |  | 
 | static void  _event_socket_verify( EventHook  hook, WSANETWORKEVENTS*  evts ) | 
 | { | 
 |     if ( evts->lNetworkEvents & (FD_READ|FD_ACCEPT|FD_CLOSE) ) { | 
 |         if (hook->wanted & FDE_READ) | 
 |             hook->ready |= FDE_READ; | 
 |         if ((evts->iErrorCode[FD_READ] != 0) && hook->wanted & FDE_ERROR) | 
 |             hook->ready |= FDE_ERROR; | 
 |     } | 
 |     if ( evts->lNetworkEvents & (FD_WRITE|FD_CONNECT|FD_CLOSE) ) { | 
 |         if (hook->wanted & FDE_WRITE) | 
 |             hook->ready |= FDE_WRITE; | 
 |         if ((evts->iErrorCode[FD_WRITE] != 0) && hook->wanted & FDE_ERROR) | 
 |             hook->ready |= FDE_ERROR; | 
 |     } | 
 |     if ( evts->lNetworkEvents & FD_OOB ) { | 
 |         if (hook->wanted & FDE_ERROR) | 
 |             hook->ready |= FDE_ERROR; | 
 |     } | 
 | } | 
 |  | 
 | static void  _event_socket_prepare( EventHook  hook ) | 
 | { | 
 |     WSANETWORKEVENTS  evts; | 
 |  | 
 |     /* look if some of the events we want already happened ? */ | 
 |     if (!WSAEnumNetworkEvents( hook->fh->fh_socket, NULL, &evts )) | 
 |         _event_socket_verify( hook, &evts ); | 
 | } | 
 |  | 
 | static int  _socket_wanted_to_flags( int  wanted ) | 
 | { | 
 |     int  flags = 0; | 
 |     if (wanted & FDE_READ) | 
 |         flags |= FD_READ | FD_ACCEPT | FD_CLOSE; | 
 |  | 
 |     if (wanted & FDE_WRITE) | 
 |         flags |= FD_WRITE | FD_CONNECT | FD_CLOSE; | 
 |  | 
 |     if (wanted & FDE_ERROR) | 
 |         flags |= FD_OOB; | 
 |  | 
 |     return flags; | 
 | } | 
 |  | 
 | static int _event_socket_start( EventHook  hook ) | 
 | { | 
 |     /* create an event which we're going to wait for */ | 
 |     FH    fh    = hook->fh; | 
 |     long  flags = _socket_wanted_to_flags( hook->wanted ); | 
 |  | 
 |     hook->h = fh->event; | 
 |     if (hook->h == INVALID_HANDLE_VALUE) { | 
 |         D( "_event_socket_start: no event for %s\n", fh->name ); | 
 |         return 0; | 
 |     } | 
 |  | 
 |     if ( flags != fh->mask ) { | 
 |         D( "_event_socket_start: hooking %s for %x (flags %ld)\n", hook->fh->name, hook->wanted, flags ); | 
 |         if ( WSAEventSelect( fh->fh_socket, hook->h, flags ) ) { | 
 |             D( "_event_socket_start: WSAEventSelect() for %s failed, error %d\n", hook->fh->name, WSAGetLastError() ); | 
 |             CloseHandle( hook->h ); | 
 |             hook->h = INVALID_HANDLE_VALUE; | 
 |             exit(1); | 
 |             return 0; | 
 |         } | 
 |         fh->mask = flags; | 
 |     } | 
 |     return 1; | 
 | } | 
 |  | 
 | static void _event_socket_stop( EventHook  hook ) | 
 | { | 
 |     hook->h = INVALID_HANDLE_VALUE; | 
 | } | 
 |  | 
 | static int  _event_socket_check( EventHook  hook ) | 
 | { | 
 |     int               result = 0; | 
 |     FH                fh = hook->fh; | 
 |     WSANETWORKEVENTS  evts; | 
 |  | 
 |     if (!WSAEnumNetworkEvents( fh->fh_socket, hook->h, &evts ) ) { | 
 |         _event_socket_verify( hook, &evts ); | 
 |         result = (hook->ready != 0); | 
 |         if (result) { | 
 |             ResetEvent( hook->h ); | 
 |         } | 
 |     } | 
 |     D( "_event_socket_check %s returns %d\n", fh->name, result ); | 
 |     return  result; | 
 | } | 
 |  | 
 | static int  _event_socket_peek( EventHook  hook ) | 
 | { | 
 |     WSANETWORKEVENTS  evts; | 
 |     FH                fh = hook->fh; | 
 |  | 
 |     /* look if some of the events we want already happened ? */ | 
 |     if (!WSAEnumNetworkEvents( fh->fh_socket, NULL, &evts )) { | 
 |         _event_socket_verify( hook, &evts ); | 
 |         if (hook->ready) | 
 |             ResetEvent( hook->h ); | 
 |     } | 
 |  | 
 |     return hook->ready != 0; | 
 | } | 
 |  | 
 |  | 
 |  | 
 | static void  _fh_socket_hook( FH  f, int  events, EventHook  hook ) | 
 | { | 
 |     hook->prepare = _event_socket_prepare; | 
 |     hook->start   = _event_socket_start; | 
 |     hook->stop    = _event_socket_stop; | 
 |     hook->check   = _event_socket_check; | 
 |     hook->peek    = _event_socket_peek; | 
 |  | 
 |     // TODO: check return value? | 
 |     _event_socket_start( hook ); | 
 | } | 
 |  | 
 | /** SOCKETPAIR EVENT HOOKS | 
 |  **/ | 
 |  | 
 | static void  _event_socketpair_prepare( EventHook  hook ) | 
 | { | 
 |     FH          fh   = hook->fh; | 
 |     SocketPair  pair = fh->fh_pair; | 
 |     BipBuffer   rbip = (pair->a_fd == fh) ? &pair->b2a_bip : &pair->a2b_bip; | 
 |     BipBuffer   wbip = (pair->a_fd == fh) ? &pair->a2b_bip : &pair->b2a_bip; | 
 |  | 
 |     if (hook->wanted & FDE_READ && rbip->can_read) | 
 |         hook->ready |= FDE_READ; | 
 |  | 
 |     if (hook->wanted & FDE_WRITE && wbip->can_write) | 
 |         hook->ready |= FDE_WRITE; | 
 |  } | 
 |  | 
 |  static int  _event_socketpair_start( EventHook  hook ) | 
 |  { | 
 |     FH          fh   = hook->fh; | 
 |     SocketPair  pair = fh->fh_pair; | 
 |     BipBuffer   rbip = (pair->a_fd == fh) ? &pair->b2a_bip : &pair->a2b_bip; | 
 |     BipBuffer   wbip = (pair->a_fd == fh) ? &pair->a2b_bip : &pair->b2a_bip; | 
 |  | 
 |     if (hook->wanted == FDE_READ) | 
 |         hook->h = rbip->evt_read; | 
 |  | 
 |     else if (hook->wanted == FDE_WRITE) | 
 |         hook->h = wbip->evt_write; | 
 |  | 
 |     else { | 
 |         D("_event_socketpair_start: can't handle FDE_READ+FDE_WRITE\n" ); | 
 |         return 0; | 
 |     } | 
 |     D( "_event_socketpair_start: hook %s for %x wanted=%x\n", | 
 |        hook->fh->name, _fh_to_int(fh), hook->wanted); | 
 |     return 1; | 
 | } | 
 |  | 
 | static int  _event_socketpair_peek( EventHook  hook ) | 
 | { | 
 |     _event_socketpair_prepare( hook ); | 
 |     return hook->ready != 0; | 
 | } | 
 |  | 
 | static void  _fh_socketpair_hook( FH  fh, int  events, EventHook  hook ) | 
 | { | 
 |     hook->prepare = _event_socketpair_prepare; | 
 |     hook->start   = _event_socketpair_start; | 
 |     hook->peek    = _event_socketpair_peek; | 
 | } | 
 |  | 
 |  | 
 | void | 
 | adb_sysdeps_init( void ) | 
 | { | 
 | #define  ADB_MUTEX(x)  InitializeCriticalSection( & x ); | 
 | #include "mutex_list.h" | 
 |     InitializeCriticalSection( &_win32_lock ); | 
 | } | 
 |  | 
 | /**************************************************************************/ | 
 | /**************************************************************************/ | 
 | /*****                                                                *****/ | 
 | /*****      Console Window Terminal Emulation                         *****/ | 
 | /*****                                                                *****/ | 
 | /**************************************************************************/ | 
 | /**************************************************************************/ | 
 |  | 
 | // This reads input from a Win32 console window and translates it into Unix | 
 | // terminal-style sequences. This emulates mostly Gnome Terminal (in Normal | 
 | // mode, not Application mode), which itself emulates xterm. Gnome Terminal | 
 | // is emulated instead of xterm because it is probably more popular than xterm: | 
 | // Ubuntu's default Ctrl-Alt-T shortcut opens Gnome Terminal, Gnome Terminal | 
 | // supports modern fonts, etc. It seems best to emulate the terminal that most | 
 | // Android developers use because they'll fix apps (the shell, etc.) to keep | 
 | // working with that terminal's emulation. | 
 | // | 
 | // The point of this emulation is not to be perfect or to solve all issues with | 
 | // console windows on Windows, but to be better than the original code which | 
 | // just called read() (which called ReadFile(), which called ReadConsoleA()) | 
 | // which did not support Ctrl-C, tab completion, shell input line editing | 
 | // keys, server echo, and more. | 
 | // | 
 | // This implementation reconfigures the console with SetConsoleMode(), then | 
 | // calls ReadConsoleInput() to get raw input which it remaps to Unix | 
 | // terminal-style sequences which is returned via unix_read() which is used | 
 | // by the 'adb shell' command. | 
 | // | 
 | // Code organization: | 
 | // | 
 | // * stdin_raw_init() and stdin_raw_restore() reconfigure the console. | 
 | // * unix_read() detects console windows (as opposed to pipes, files, etc.). | 
 | // * _console_read() is the main code of the emulation. | 
 |  | 
 |  | 
 | // Read an input record from the console; one that should be processed. | 
 | static bool _get_interesting_input_record_uncached(const HANDLE console, | 
 |     INPUT_RECORD* const input_record) { | 
 |     for (;;) { | 
 |         DWORD read_count = 0; | 
 |         memset(input_record, 0, sizeof(*input_record)); | 
 |         if (!ReadConsoleInputA(console, input_record, 1, &read_count)) { | 
 |             D("_get_interesting_input_record_uncached: ReadConsoleInputA() " | 
 |               "failed: %s\n", SystemErrorCodeToString(GetLastError()).c_str()); | 
 |             errno = EIO; | 
 |             return false; | 
 |         } | 
 |  | 
 |         if (read_count == 0) {   // should be impossible | 
 |             fatal("ReadConsoleInputA returned 0"); | 
 |         } | 
 |  | 
 |         if (read_count != 1) {   // should be impossible | 
 |             fatal("ReadConsoleInputA did not return one input record"); | 
 |         } | 
 |  | 
 |         if ((input_record->EventType == KEY_EVENT) && | 
 |             (input_record->Event.KeyEvent.bKeyDown)) { | 
 |             if (input_record->Event.KeyEvent.wRepeatCount == 0) { | 
 |                 fatal("ReadConsoleInputA returned a key event with zero repeat" | 
 |                       " count"); | 
 |             } | 
 |  | 
 |             // Got an interesting INPUT_RECORD, so return | 
 |             return true; | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | // Cached input record (in case _console_read() is passed a buffer that doesn't | 
 | // have enough space to fit wRepeatCount number of key sequences). A non-zero | 
 | // wRepeatCount indicates that a record is cached. | 
 | static INPUT_RECORD _win32_input_record; | 
 |  | 
 | // Get the next KEY_EVENT_RECORD that should be processed. | 
 | static KEY_EVENT_RECORD* _get_key_event_record(const HANDLE console) { | 
 |     // If nothing cached, read directly from the console until we get an | 
 |     // interesting record. | 
 |     if (_win32_input_record.Event.KeyEvent.wRepeatCount == 0) { | 
 |         if (!_get_interesting_input_record_uncached(console, | 
 |             &_win32_input_record)) { | 
 |             // There was an error, so make sure wRepeatCount is zero because | 
 |             // that signifies no cached input record. | 
 |             _win32_input_record.Event.KeyEvent.wRepeatCount = 0; | 
 |             return NULL; | 
 |         } | 
 |     } | 
 |  | 
 |     return &_win32_input_record.Event.KeyEvent; | 
 | } | 
 |  | 
 | static __inline__ bool _is_shift_pressed(const DWORD control_key_state) { | 
 |     return (control_key_state & SHIFT_PRESSED) != 0; | 
 | } | 
 |  | 
 | static __inline__ bool _is_ctrl_pressed(const DWORD control_key_state) { | 
 |     return (control_key_state & (LEFT_CTRL_PRESSED | RIGHT_CTRL_PRESSED)) != 0; | 
 | } | 
 |  | 
 | static __inline__ bool _is_alt_pressed(const DWORD control_key_state) { | 
 |     return (control_key_state & (LEFT_ALT_PRESSED | RIGHT_ALT_PRESSED)) != 0; | 
 | } | 
 |  | 
 | static __inline__ bool _is_numlock_on(const DWORD control_key_state) { | 
 |     return (control_key_state & NUMLOCK_ON) != 0; | 
 | } | 
 |  | 
 | static __inline__ bool _is_capslock_on(const DWORD control_key_state) { | 
 |     return (control_key_state & CAPSLOCK_ON) != 0; | 
 | } | 
 |  | 
 | static __inline__ bool _is_enhanced_key(const DWORD control_key_state) { | 
 |     return (control_key_state & ENHANCED_KEY) != 0; | 
 | } | 
 |  | 
 | // Constants from MSDN for ToAscii(). | 
 | static const BYTE TOASCII_KEY_OFF = 0x00; | 
 | static const BYTE TOASCII_KEY_DOWN = 0x80; | 
 | static const BYTE TOASCII_KEY_TOGGLED_ON = 0x01;   // for CapsLock | 
 |  | 
 | // Given a key event, ignore a modifier key and return the character that was | 
 | // entered without the modifier. Writes to *ch and returns the number of bytes | 
 | // written. | 
 | static size_t _get_char_ignoring_modifier(char* const ch, | 
 |     const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state, | 
 |     const WORD modifier) { | 
 |     // If there is no character from Windows, try ignoring the specified | 
 |     // modifier and look for a character. Note that if AltGr is being used, | 
 |     // there will be a character from Windows. | 
 |     if (key_event->uChar.AsciiChar == '\0') { | 
 |         // Note that we read the control key state from the passed in argument | 
 |         // instead of from key_event since the argument has been normalized. | 
 |         if (((modifier == VK_SHIFT)   && | 
 |             _is_shift_pressed(control_key_state)) || | 
 |             ((modifier == VK_CONTROL) && | 
 |             _is_ctrl_pressed(control_key_state)) || | 
 |             ((modifier == VK_MENU)    && _is_alt_pressed(control_key_state))) { | 
 |  | 
 |             BYTE key_state[256]   = {0}; | 
 |             key_state[VK_SHIFT]   = _is_shift_pressed(control_key_state) ? | 
 |                 TOASCII_KEY_DOWN : TOASCII_KEY_OFF; | 
 |             key_state[VK_CONTROL] = _is_ctrl_pressed(control_key_state)  ? | 
 |                 TOASCII_KEY_DOWN : TOASCII_KEY_OFF; | 
 |             key_state[VK_MENU]    = _is_alt_pressed(control_key_state)   ? | 
 |                 TOASCII_KEY_DOWN : TOASCII_KEY_OFF; | 
 |             key_state[VK_CAPITAL] = _is_capslock_on(control_key_state)   ? | 
 |                 TOASCII_KEY_TOGGLED_ON : TOASCII_KEY_OFF; | 
 |  | 
 |             // cause this modifier to be ignored | 
 |             key_state[modifier]   = TOASCII_KEY_OFF; | 
 |  | 
 |             WORD translated = 0; | 
 |             if (ToAscii(key_event->wVirtualKeyCode, | 
 |                 key_event->wVirtualScanCode, key_state, &translated, 0) == 1) { | 
 |                 // Ignoring the modifier, we found a character. | 
 |                 *ch = (CHAR)translated; | 
 |                 return 1; | 
 |             } | 
 |         } | 
 |     } | 
 |  | 
 |     // Just use whatever Windows told us originally. | 
 |     *ch = key_event->uChar.AsciiChar; | 
 |  | 
 |     // If the character from Windows is NULL, return a size of zero. | 
 |     return (*ch == '\0') ? 0 : 1; | 
 | } | 
 |  | 
 | // If a Ctrl key is pressed, lookup the character, ignoring the Ctrl key, | 
 | // but taking into account the shift key. This is because for a sequence like | 
 | // Ctrl-Alt-0, we want to find the character '0' and for Ctrl-Alt-Shift-0, | 
 | // we want to find the character ')'. | 
 | // | 
 | // Note that Windows doesn't seem to pass bKeyDown for Ctrl-Shift-NoAlt-0 | 
 | // because it is the default key-sequence to switch the input language. | 
 | // This is configurable in the Region and Language control panel. | 
 | static __inline__ size_t _get_non_control_char(char* const ch, | 
 |     const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state) { | 
 |     return _get_char_ignoring_modifier(ch, key_event, control_key_state, | 
 |         VK_CONTROL); | 
 | } | 
 |  | 
 | // Get without Alt. | 
 | static __inline__ size_t _get_non_alt_char(char* const ch, | 
 |     const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state) { | 
 |     return _get_char_ignoring_modifier(ch, key_event, control_key_state, | 
 |         VK_MENU); | 
 | } | 
 |  | 
 | // Ignore the control key, find the character from Windows, and apply any | 
 | // Control key mappings (for example, Ctrl-2 is a NULL character). Writes to | 
 | // *pch and returns number of bytes written. | 
 | static size_t _get_control_character(char* const pch, | 
 |     const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state) { | 
 |     const size_t len = _get_non_control_char(pch, key_event, | 
 |         control_key_state); | 
 |  | 
 |     if ((len == 1) && _is_ctrl_pressed(control_key_state)) { | 
 |         char ch = *pch; | 
 |         switch (ch) { | 
 |         case '2': | 
 |         case '@': | 
 |         case '`': | 
 |             ch = '\0'; | 
 |             break; | 
 |         case '3': | 
 |         case '[': | 
 |         case '{': | 
 |             ch = '\x1b'; | 
 |             break; | 
 |         case '4': | 
 |         case '\\': | 
 |         case '|': | 
 |             ch = '\x1c'; | 
 |             break; | 
 |         case '5': | 
 |         case ']': | 
 |         case '}': | 
 |             ch = '\x1d'; | 
 |             break; | 
 |         case '6': | 
 |         case '^': | 
 |         case '~': | 
 |             ch = '\x1e'; | 
 |             break; | 
 |         case '7': | 
 |         case '-': | 
 |         case '_': | 
 |             ch = '\x1f'; | 
 |             break; | 
 |         case '8': | 
 |             ch = '\x7f'; | 
 |             break; | 
 |         case '/': | 
 |             if (!_is_alt_pressed(control_key_state)) { | 
 |                 ch = '\x1f'; | 
 |             } | 
 |             break; | 
 |         case '?': | 
 |             if (!_is_alt_pressed(control_key_state)) { | 
 |                 ch = '\x7f'; | 
 |             } | 
 |             break; | 
 |         } | 
 |         *pch = ch; | 
 |     } | 
 |  | 
 |     return len; | 
 | } | 
 |  | 
 | static DWORD _normalize_altgr_control_key_state( | 
 |     const KEY_EVENT_RECORD* const key_event) { | 
 |     DWORD control_key_state = key_event->dwControlKeyState; | 
 |  | 
 |     // If we're in an AltGr situation where the AltGr key is down (depending on | 
 |     // the keyboard layout, that might be the physical right alt key which | 
 |     // produces a control_key_state where Right-Alt and Left-Ctrl are down) or | 
 |     // AltGr-equivalent keys are down (any Ctrl key + any Alt key), and we have | 
 |     // a character (which indicates that there was an AltGr mapping), then act | 
 |     // as if alt and control are not really down for the purposes of modifiers. | 
 |     // This makes it so that if the user with, say, a German keyboard layout | 
 |     // presses AltGr-] (which we see as Right-Alt + Left-Ctrl + key), we just | 
 |     // output the key and we don't see the Alt and Ctrl keys. | 
 |     if (_is_ctrl_pressed(control_key_state) && | 
 |         _is_alt_pressed(control_key_state) | 
 |         && (key_event->uChar.AsciiChar != '\0')) { | 
 |         // Try to remove as few bits as possible to improve our chances of | 
 |         // detecting combinations like Left-Alt + AltGr, Right-Ctrl + AltGr, or | 
 |         // Left-Alt + Right-Ctrl + AltGr. | 
 |         if ((control_key_state & RIGHT_ALT_PRESSED) != 0) { | 
 |             // Remove Right-Alt. | 
 |             control_key_state &= ~RIGHT_ALT_PRESSED; | 
 |             // If uChar is set, a Ctrl key is pressed, and Right-Alt is | 
 |             // pressed, Left-Ctrl is almost always set, except if the user | 
 |             // presses Right-Ctrl, then AltGr (in that specific order) for | 
 |             // whatever reason. At any rate, make sure the bit is not set. | 
 |             control_key_state &= ~LEFT_CTRL_PRESSED; | 
 |         } else if ((control_key_state & LEFT_ALT_PRESSED) != 0) { | 
 |             // Remove Left-Alt. | 
 |             control_key_state &= ~LEFT_ALT_PRESSED; | 
 |             // Whichever Ctrl key is down, remove it from the state. We only | 
 |             // remove one key, to improve our chances of detecting the | 
 |             // corner-case of Left-Ctrl + Left-Alt + Right-Ctrl. | 
 |             if ((control_key_state & LEFT_CTRL_PRESSED) != 0) { | 
 |                 // Remove Left-Ctrl. | 
 |                 control_key_state &= ~LEFT_CTRL_PRESSED; | 
 |             } else if ((control_key_state & RIGHT_CTRL_PRESSED) != 0) { | 
 |                 // Remove Right-Ctrl. | 
 |                 control_key_state &= ~RIGHT_CTRL_PRESSED; | 
 |             } | 
 |         } | 
 |  | 
 |         // Note that this logic isn't 100% perfect because Windows doesn't | 
 |         // allow us to detect all combinations because a physical AltGr key | 
 |         // press shows up as two bits, plus some combinations are ambiguous | 
 |         // about what is actually physically pressed. | 
 |     } | 
 |  | 
 |     return control_key_state; | 
 | } | 
 |  | 
 | // If NumLock is on and Shift is pressed, SHIFT_PRESSED is not set in | 
 | // dwControlKeyState for the following keypad keys: period, 0-9. If we detect | 
 | // this scenario, set the SHIFT_PRESSED bit so we can add modifiers | 
 | // appropriately. | 
 | static DWORD _normalize_keypad_control_key_state(const WORD vk, | 
 |     const DWORD control_key_state) { | 
 |     if (!_is_numlock_on(control_key_state)) { | 
 |         return control_key_state; | 
 |     } | 
 |     if (!_is_enhanced_key(control_key_state)) { | 
 |         switch (vk) { | 
 |             case VK_INSERT: // 0 | 
 |             case VK_DELETE: // . | 
 |             case VK_END:    // 1 | 
 |             case VK_DOWN:   // 2 | 
 |             case VK_NEXT:   // 3 | 
 |             case VK_LEFT:   // 4 | 
 |             case VK_CLEAR:  // 5 | 
 |             case VK_RIGHT:  // 6 | 
 |             case VK_HOME:   // 7 | 
 |             case VK_UP:     // 8 | 
 |             case VK_PRIOR:  // 9 | 
 |                 return control_key_state | SHIFT_PRESSED; | 
 |         } | 
 |     } | 
 |  | 
 |     return control_key_state; | 
 | } | 
 |  | 
 | static const char* _get_keypad_sequence(const DWORD control_key_state, | 
 |     const char* const normal, const char* const shifted) { | 
 |     if (_is_shift_pressed(control_key_state)) { | 
 |         // Shift is pressed and NumLock is off | 
 |         return shifted; | 
 |     } else { | 
 |         // Shift is not pressed and NumLock is off, or, | 
 |         // Shift is pressed and NumLock is on, in which case we want the | 
 |         // NumLock and Shift to neutralize each other, thus, we want the normal | 
 |         // sequence. | 
 |         return normal; | 
 |     } | 
 |     // If Shift is not pressed and NumLock is on, a different virtual key code | 
 |     // is returned by Windows, which can be taken care of by a different case | 
 |     // statement in _console_read(). | 
 | } | 
 |  | 
 | // Write sequence to buf and return the number of bytes written. | 
 | static size_t _get_modifier_sequence(char* const buf, const WORD vk, | 
 |     DWORD control_key_state, const char* const normal) { | 
 |     // Copy the base sequence into buf. | 
 |     const size_t len = strlen(normal); | 
 |     memcpy(buf, normal, len); | 
 |  | 
 |     int code = 0; | 
 |  | 
 |     control_key_state = _normalize_keypad_control_key_state(vk, | 
 |         control_key_state); | 
 |  | 
 |     if (_is_shift_pressed(control_key_state)) { | 
 |         code |= 0x1; | 
 |     } | 
 |     if (_is_alt_pressed(control_key_state)) {   // any alt key pressed | 
 |         code |= 0x2; | 
 |     } | 
 |     if (_is_ctrl_pressed(control_key_state)) {  // any control key pressed | 
 |         code |= 0x4; | 
 |     } | 
 |     // If some modifier was held down, then we need to insert the modifier code | 
 |     if (code != 0) { | 
 |         if (len == 0) { | 
 |             // Should be impossible because caller should pass a string of | 
 |             // non-zero length. | 
 |             return 0; | 
 |         } | 
 |         size_t index = len - 1; | 
 |         const char lastChar = buf[index]; | 
 |         if (lastChar != '~') { | 
 |             buf[index++] = '1'; | 
 |         } | 
 |         buf[index++] = ';';         // modifier separator | 
 |         // 2 = shift, 3 = alt, 4 = shift & alt, 5 = control, | 
 |         // 6 = shift & control, 7 = alt & control, 8 = shift & alt & control | 
 |         buf[index++] = '1' + code; | 
 |         buf[index++] = lastChar;    // move ~ (or other last char) to the end | 
 |         return index; | 
 |     } | 
 |     return len; | 
 | } | 
 |  | 
 | // Write sequence to buf and return the number of bytes written. | 
 | static size_t _get_modifier_keypad_sequence(char* const buf, const WORD vk, | 
 |     const DWORD control_key_state, const char* const normal, | 
 |     const char shifted) { | 
 |     if (_is_shift_pressed(control_key_state)) { | 
 |         // Shift is pressed and NumLock is off | 
 |         if (shifted != '\0') { | 
 |             buf[0] = shifted; | 
 |             return sizeof(buf[0]); | 
 |         } else { | 
 |             return 0; | 
 |         } | 
 |     } else { | 
 |         // Shift is not pressed and NumLock is off, or, | 
 |         // Shift is pressed and NumLock is on, in which case we want the | 
 |         // NumLock and Shift to neutralize each other, thus, we want the normal | 
 |         // sequence. | 
 |         return _get_modifier_sequence(buf, vk, control_key_state, normal); | 
 |     } | 
 |     // If Shift is not pressed and NumLock is on, a different virtual key code | 
 |     // is returned by Windows, which can be taken care of by a different case | 
 |     // statement in _console_read(). | 
 | } | 
 |  | 
 | // The decimal key on the keypad produces a '.' for U.S. English and a ',' for | 
 | // Standard German. Figure this out at runtime so we know what to output for | 
 | // Shift-VK_DELETE. | 
 | static char _get_decimal_char() { | 
 |     return (char)MapVirtualKeyA(VK_DECIMAL, MAPVK_VK_TO_CHAR); | 
 | } | 
 |  | 
 | // Prefix the len bytes in buf with the escape character, and then return the | 
 | // new buffer length. | 
 | size_t _escape_prefix(char* const buf, const size_t len) { | 
 |     // If nothing to prefix, don't do anything. We might be called with | 
 |     // len == 0, if alt was held down with a dead key which produced nothing. | 
 |     if (len == 0) { | 
 |         return 0; | 
 |     } | 
 |  | 
 |     memmove(&buf[1], buf, len); | 
 |     buf[0] = '\x1b'; | 
 |     return len + 1; | 
 | } | 
 |  | 
 | // Writes to buffer buf (of length len), returning number of bytes written or | 
 | // -1 on error. Never returns zero because Win32 consoles are never 'closed' | 
 | // (as far as I can tell). | 
 | static int _console_read(const HANDLE console, void* buf, size_t len) { | 
 |     for (;;) { | 
 |         KEY_EVENT_RECORD* const key_event = _get_key_event_record(console); | 
 |         if (key_event == NULL) { | 
 |             return -1; | 
 |         } | 
 |  | 
 |         const WORD vk = key_event->wVirtualKeyCode; | 
 |         const CHAR ch = key_event->uChar.AsciiChar; | 
 |         const DWORD control_key_state = _normalize_altgr_control_key_state( | 
 |             key_event); | 
 |  | 
 |         // The following emulation code should write the output sequence to | 
 |         // either seqstr or to seqbuf and seqbuflen. | 
 |         const char* seqstr = NULL;  // NULL terminated C-string | 
 |         // Enough space for max sequence string below, plus modifiers and/or | 
 |         // escape prefix. | 
 |         char seqbuf[16]; | 
 |         size_t seqbuflen = 0;       // Space used in seqbuf. | 
 |  | 
 | #define MATCH(vk, normal) \ | 
 |             case (vk): \ | 
 |             { \ | 
 |                 seqstr = (normal); \ | 
 |             } \ | 
 |             break; | 
 |  | 
 |         // Modifier keys should affect the output sequence. | 
 | #define MATCH_MODIFIER(vk, normal) \ | 
 |             case (vk): \ | 
 |             { \ | 
 |                 seqbuflen = _get_modifier_sequence(seqbuf, (vk), \ | 
 |                     control_key_state, (normal)); \ | 
 |             } \ | 
 |             break; | 
 |  | 
 |         // The shift key should affect the output sequence. | 
 | #define MATCH_KEYPAD(vk, normal, shifted) \ | 
 |             case (vk): \ | 
 |             { \ | 
 |                 seqstr = _get_keypad_sequence(control_key_state, (normal), \ | 
 |                     (shifted)); \ | 
 |             } \ | 
 |             break; | 
 |  | 
 |         // The shift key and other modifier keys should affect the output | 
 |         // sequence. | 
 | #define MATCH_MODIFIER_KEYPAD(vk, normal, shifted) \ | 
 |             case (vk): \ | 
 |             { \ | 
 |                 seqbuflen = _get_modifier_keypad_sequence(seqbuf, (vk), \ | 
 |                     control_key_state, (normal), (shifted)); \ | 
 |             } \ | 
 |             break; | 
 |  | 
 | #define ESC "\x1b" | 
 | #define CSI ESC "[" | 
 | #define SS3 ESC "O" | 
 |  | 
 |         // Only support normal mode, not application mode. | 
 |  | 
 |         // Enhanced keys: | 
 |         // * 6-pack: insert, delete, home, end, page up, page down | 
 |         // * cursor keys: up, down, right, left | 
 |         // * keypad: divide, enter | 
 |         // * Undocumented: VK_PAUSE (Ctrl-NumLock), VK_SNAPSHOT, | 
 |         //   VK_CANCEL (Ctrl-Pause/Break), VK_NUMLOCK | 
 |         if (_is_enhanced_key(control_key_state)) { | 
 |             switch (vk) { | 
 |                 case VK_RETURN: // Enter key on keypad | 
 |                     if (_is_ctrl_pressed(control_key_state)) { | 
 |                         seqstr = "\n"; | 
 |                     } else { | 
 |                         seqstr = "\r"; | 
 |                     } | 
 |                     break; | 
 |  | 
 |                 MATCH_MODIFIER(VK_PRIOR, CSI "5~"); // Page Up | 
 |                 MATCH_MODIFIER(VK_NEXT,  CSI "6~"); // Page Down | 
 |  | 
 |                 // gnome-terminal currently sends SS3 "F" and SS3 "H", but that | 
 |                 // will be fixed soon to match xterm which sends CSI "F" and | 
 |                 // CSI "H". https://bugzilla.redhat.com/show_bug.cgi?id=1119764 | 
 |                 MATCH(VK_END,  CSI "F"); | 
 |                 MATCH(VK_HOME, CSI "H"); | 
 |  | 
 |                 MATCH_MODIFIER(VK_LEFT,  CSI "D"); | 
 |                 MATCH_MODIFIER(VK_UP,    CSI "A"); | 
 |                 MATCH_MODIFIER(VK_RIGHT, CSI "C"); | 
 |                 MATCH_MODIFIER(VK_DOWN,  CSI "B"); | 
 |  | 
 |                 MATCH_MODIFIER(VK_INSERT, CSI "2~"); | 
 |                 MATCH_MODIFIER(VK_DELETE, CSI "3~"); | 
 |  | 
 |                 MATCH(VK_DIVIDE, "/"); | 
 |             } | 
 |         } else {    // Non-enhanced keys: | 
 |             switch (vk) { | 
 |                 case VK_BACK:   // backspace | 
 |                     if (_is_alt_pressed(control_key_state)) { | 
 |                         seqstr = ESC "\x7f"; | 
 |                     } else { | 
 |                         seqstr = "\x7f"; | 
 |                     } | 
 |                     break; | 
 |  | 
 |                 case VK_TAB: | 
 |                     if (_is_shift_pressed(control_key_state)) { | 
 |                         seqstr = CSI "Z"; | 
 |                     } else { | 
 |                         seqstr = "\t"; | 
 |                     } | 
 |                     break; | 
 |  | 
 |                 // Number 5 key in keypad when NumLock is off, or if NumLock is | 
 |                 // on and Shift is down. | 
 |                 MATCH_KEYPAD(VK_CLEAR, CSI "E", "5"); | 
 |  | 
 |                 case VK_RETURN:     // Enter key on main keyboard | 
 |                     if (_is_alt_pressed(control_key_state)) { | 
 |                         seqstr = ESC "\n"; | 
 |                     } else if (_is_ctrl_pressed(control_key_state)) { | 
 |                         seqstr = "\n"; | 
 |                     } else { | 
 |                         seqstr = "\r"; | 
 |                     } | 
 |                     break; | 
 |  | 
 |                 // VK_ESCAPE: Don't do any special handling. The OS uses many | 
 |                 // of the sequences with Escape and many of the remaining | 
 |                 // sequences don't produce bKeyDown messages, only !bKeyDown | 
 |                 // for whatever reason. | 
 |  | 
 |                 case VK_SPACE: | 
 |                     if (_is_alt_pressed(control_key_state)) { | 
 |                         seqstr = ESC " "; | 
 |                     } else if (_is_ctrl_pressed(control_key_state)) { | 
 |                         seqbuf[0] = '\0';   // NULL char | 
 |                         seqbuflen = 1; | 
 |                     } else { | 
 |                         seqstr = " "; | 
 |                     } | 
 |                     break; | 
 |  | 
 |                 MATCH_MODIFIER_KEYPAD(VK_PRIOR, CSI "5~", '9'); // Page Up | 
 |                 MATCH_MODIFIER_KEYPAD(VK_NEXT,  CSI "6~", '3'); // Page Down | 
 |  | 
 |                 MATCH_KEYPAD(VK_END,  CSI "4~", "1"); | 
 |                 MATCH_KEYPAD(VK_HOME, CSI "1~", "7"); | 
 |  | 
 |                 MATCH_MODIFIER_KEYPAD(VK_LEFT,  CSI "D", '4'); | 
 |                 MATCH_MODIFIER_KEYPAD(VK_UP,    CSI "A", '8'); | 
 |                 MATCH_MODIFIER_KEYPAD(VK_RIGHT, CSI "C", '6'); | 
 |                 MATCH_MODIFIER_KEYPAD(VK_DOWN,  CSI "B", '2'); | 
 |  | 
 |                 MATCH_MODIFIER_KEYPAD(VK_INSERT, CSI "2~", '0'); | 
 |                 MATCH_MODIFIER_KEYPAD(VK_DELETE, CSI "3~", | 
 |                     _get_decimal_char()); | 
 |  | 
 |                 case 0x30:          // 0 | 
 |                 case 0x31:          // 1 | 
 |                 case 0x39:          // 9 | 
 |                 case VK_OEM_1:      // ;: | 
 |                 case VK_OEM_PLUS:   // =+ | 
 |                 case VK_OEM_COMMA:  // ,< | 
 |                 case VK_OEM_PERIOD: // .> | 
 |                 case VK_OEM_7:      // '" | 
 |                 case VK_OEM_102:    // depends on keyboard, could be <> or \| | 
 |                 case VK_OEM_2:      // /? | 
 |                 case VK_OEM_3:      // `~ | 
 |                 case VK_OEM_4:      // [{ | 
 |                 case VK_OEM_5:      // \| | 
 |                 case VK_OEM_6:      // ]} | 
 |                 { | 
 |                     seqbuflen = _get_control_character(seqbuf, key_event, | 
 |                         control_key_state); | 
 |  | 
 |                     if (_is_alt_pressed(control_key_state)) { | 
 |                         seqbuflen = _escape_prefix(seqbuf, seqbuflen); | 
 |                     } | 
 |                 } | 
 |                 break; | 
 |  | 
 |                 case 0x32:          // 2 | 
 |                 case 0x36:          // 6 | 
 |                 case VK_OEM_MINUS:  // -_ | 
 |                 { | 
 |                     seqbuflen = _get_control_character(seqbuf, key_event, | 
 |                         control_key_state); | 
 |  | 
 |                     // If Alt is pressed and it isn't Ctrl-Alt-ShiftUp, then | 
 |                     // prefix with escape. | 
 |                     if (_is_alt_pressed(control_key_state) && | 
 |                         !(_is_ctrl_pressed(control_key_state) && | 
 |                         !_is_shift_pressed(control_key_state))) { | 
 |                         seqbuflen = _escape_prefix(seqbuf, seqbuflen); | 
 |                     } | 
 |                 } | 
 |                 break; | 
 |  | 
 |                 case 0x33:  // 3 | 
 |                 case 0x34:  // 4 | 
 |                 case 0x35:  // 5 | 
 |                 case 0x37:  // 7 | 
 |                 case 0x38:  // 8 | 
 |                 { | 
 |                     seqbuflen = _get_control_character(seqbuf, key_event, | 
 |                         control_key_state); | 
 |  | 
 |                     // If Alt is pressed and it isn't Ctrl-Alt-ShiftUp, then | 
 |                     // prefix with escape. | 
 |                     if (_is_alt_pressed(control_key_state) && | 
 |                         !(_is_ctrl_pressed(control_key_state) && | 
 |                         !_is_shift_pressed(control_key_state))) { | 
 |                         seqbuflen = _escape_prefix(seqbuf, seqbuflen); | 
 |                     } | 
 |                 } | 
 |                 break; | 
 |  | 
 |                 case 0x41:  // a | 
 |                 case 0x42:  // b | 
 |                 case 0x43:  // c | 
 |                 case 0x44:  // d | 
 |                 case 0x45:  // e | 
 |                 case 0x46:  // f | 
 |                 case 0x47:  // g | 
 |                 case 0x48:  // h | 
 |                 case 0x49:  // i | 
 |                 case 0x4a:  // j | 
 |                 case 0x4b:  // k | 
 |                 case 0x4c:  // l | 
 |                 case 0x4d:  // m | 
 |                 case 0x4e:  // n | 
 |                 case 0x4f:  // o | 
 |                 case 0x50:  // p | 
 |                 case 0x51:  // q | 
 |                 case 0x52:  // r | 
 |                 case 0x53:  // s | 
 |                 case 0x54:  // t | 
 |                 case 0x55:  // u | 
 |                 case 0x56:  // v | 
 |                 case 0x57:  // w | 
 |                 case 0x58:  // x | 
 |                 case 0x59:  // y | 
 |                 case 0x5a:  // z | 
 |                 { | 
 |                     seqbuflen = _get_non_alt_char(seqbuf, key_event, | 
 |                         control_key_state); | 
 |  | 
 |                     // If Alt is pressed, then prefix with escape. | 
 |                     if (_is_alt_pressed(control_key_state)) { | 
 |                         seqbuflen = _escape_prefix(seqbuf, seqbuflen); | 
 |                     } | 
 |                 } | 
 |                 break; | 
 |  | 
 |                 // These virtual key codes are generated by the keys on the | 
 |                 // keypad *when NumLock is on* and *Shift is up*. | 
 |                 MATCH(VK_NUMPAD0, "0"); | 
 |                 MATCH(VK_NUMPAD1, "1"); | 
 |                 MATCH(VK_NUMPAD2, "2"); | 
 |                 MATCH(VK_NUMPAD3, "3"); | 
 |                 MATCH(VK_NUMPAD4, "4"); | 
 |                 MATCH(VK_NUMPAD5, "5"); | 
 |                 MATCH(VK_NUMPAD6, "6"); | 
 |                 MATCH(VK_NUMPAD7, "7"); | 
 |                 MATCH(VK_NUMPAD8, "8"); | 
 |                 MATCH(VK_NUMPAD9, "9"); | 
 |  | 
 |                 MATCH(VK_MULTIPLY, "*"); | 
 |                 MATCH(VK_ADD,      "+"); | 
 |                 MATCH(VK_SUBTRACT, "-"); | 
 |                 // VK_DECIMAL is generated by the . key on the keypad *when | 
 |                 // NumLock is on* and *Shift is up* and the sequence is not | 
 |                 // Ctrl-Alt-NoShift-. (which causes Ctrl-Alt-Del and the | 
 |                 // Windows Security screen to come up). | 
 |                 case VK_DECIMAL: | 
 |                     // U.S. English uses '.', Germany German uses ','. | 
 |                     seqbuflen = _get_non_control_char(seqbuf, key_event, | 
 |                         control_key_state); | 
 |                     break; | 
 |  | 
 |                 MATCH_MODIFIER(VK_F1,  SS3 "P"); | 
 |                 MATCH_MODIFIER(VK_F2,  SS3 "Q"); | 
 |                 MATCH_MODIFIER(VK_F3,  SS3 "R"); | 
 |                 MATCH_MODIFIER(VK_F4,  SS3 "S"); | 
 |                 MATCH_MODIFIER(VK_F5,  CSI "15~"); | 
 |                 MATCH_MODIFIER(VK_F6,  CSI "17~"); | 
 |                 MATCH_MODIFIER(VK_F7,  CSI "18~"); | 
 |                 MATCH_MODIFIER(VK_F8,  CSI "19~"); | 
 |                 MATCH_MODIFIER(VK_F9,  CSI "20~"); | 
 |                 MATCH_MODIFIER(VK_F10, CSI "21~"); | 
 |                 MATCH_MODIFIER(VK_F11, CSI "23~"); | 
 |                 MATCH_MODIFIER(VK_F12, CSI "24~"); | 
 |  | 
 |                 MATCH_MODIFIER(VK_F13, CSI "25~"); | 
 |                 MATCH_MODIFIER(VK_F14, CSI "26~"); | 
 |                 MATCH_MODIFIER(VK_F15, CSI "28~"); | 
 |                 MATCH_MODIFIER(VK_F16, CSI "29~"); | 
 |                 MATCH_MODIFIER(VK_F17, CSI "31~"); | 
 |                 MATCH_MODIFIER(VK_F18, CSI "32~"); | 
 |                 MATCH_MODIFIER(VK_F19, CSI "33~"); | 
 |                 MATCH_MODIFIER(VK_F20, CSI "34~"); | 
 |  | 
 |                 // MATCH_MODIFIER(VK_F21, ???); | 
 |                 // MATCH_MODIFIER(VK_F22, ???); | 
 |                 // MATCH_MODIFIER(VK_F23, ???); | 
 |                 // MATCH_MODIFIER(VK_F24, ???); | 
 |             } | 
 |         } | 
 |  | 
 | #undef MATCH | 
 | #undef MATCH_MODIFIER | 
 | #undef MATCH_KEYPAD | 
 | #undef MATCH_MODIFIER_KEYPAD | 
 | #undef ESC | 
 | #undef CSI | 
 | #undef SS3 | 
 |  | 
 |         const char* out; | 
 |         size_t outlen; | 
 |  | 
 |         // Check for output in any of: | 
 |         // * seqstr is set (and strlen can be used to determine the length). | 
 |         // * seqbuf and seqbuflen are set | 
 |         // Fallback to ch from Windows. | 
 |         if (seqstr != NULL) { | 
 |             out = seqstr; | 
 |             outlen = strlen(seqstr); | 
 |         } else if (seqbuflen > 0) { | 
 |             out = seqbuf; | 
 |             outlen = seqbuflen; | 
 |         } else if (ch != '\0') { | 
 |             // Use whatever Windows told us it is. | 
 |             seqbuf[0] = ch; | 
 |             seqbuflen = 1; | 
 |             out = seqbuf; | 
 |             outlen = seqbuflen; | 
 |         } else { | 
 |             // No special handling for the virtual key code and Windows isn't | 
 |             // telling us a character code, then we don't know how to translate | 
 |             // the key press. | 
 |             // | 
 |             // Consume the input and 'continue' to cause us to get a new key | 
 |             // event. | 
 |             D("_console_read: unknown virtual key code: %d, enhanced: %s\n", | 
 |                 vk, _is_enhanced_key(control_key_state) ? "true" : "false"); | 
 |             key_event->wRepeatCount = 0; | 
 |             continue; | 
 |         } | 
 |  | 
 |         int bytesRead = 0; | 
 |  | 
 |         // put output wRepeatCount times into buf/len | 
 |         while (key_event->wRepeatCount > 0) { | 
 |             if (len >= outlen) { | 
 |                 // Write to buf/len | 
 |                 memcpy(buf, out, outlen); | 
 |                 buf = (void*)((char*)buf + outlen); | 
 |                 len -= outlen; | 
 |                 bytesRead += outlen; | 
 |  | 
 |                 // consume the input | 
 |                 --key_event->wRepeatCount; | 
 |             } else { | 
 |                 // Not enough space, so just leave it in _win32_input_record | 
 |                 // for a subsequent retrieval. | 
 |                 if (bytesRead == 0) { | 
 |                     // We didn't write anything because there wasn't enough | 
 |                     // space to even write one sequence. This should never | 
 |                     // happen if the caller uses sensible buffer sizes | 
 |                     // (i.e. >= maximum sequence length which is probably a | 
 |                     // few bytes long). | 
 |                     D("_console_read: no buffer space to write one sequence; " | 
 |                         "buffer: %ld, sequence: %ld\n", (long)len, | 
 |                         (long)outlen); | 
 |                     errno = ENOMEM; | 
 |                     return -1; | 
 |                 } else { | 
 |                     // Stop trying to write to buf/len, just return whatever | 
 |                     // we wrote so far. | 
 |                     break; | 
 |                 } | 
 |             } | 
 |         } | 
 |  | 
 |         return bytesRead; | 
 |     } | 
 | } | 
 |  | 
 | static DWORD _old_console_mode; // previous GetConsoleMode() result | 
 | static HANDLE _console_handle;  // when set, console mode should be restored | 
 |  | 
 | void stdin_raw_init(const int fd) { | 
 |     if (STDIN_FILENO == fd) { | 
 |         const HANDLE in = GetStdHandle(STD_INPUT_HANDLE); | 
 |         if ((in == INVALID_HANDLE_VALUE) || (in == NULL)) { | 
 |             return; | 
 |         } | 
 |  | 
 |         if (GetFileType(in) != FILE_TYPE_CHAR) { | 
 |             // stdin might be a file or pipe. | 
 |             return; | 
 |         } | 
 |  | 
 |         if (!GetConsoleMode(in, &_old_console_mode)) { | 
 |             // If GetConsoleMode() fails, stdin is probably is not a console. | 
 |             return; | 
 |         } | 
 |  | 
 |         // Disable ENABLE_PROCESSED_INPUT so that Ctrl-C is read instead of | 
 |         // calling the process Ctrl-C routine (configured by | 
 |         // SetConsoleCtrlHandler()). | 
 |         // Disable ENABLE_LINE_INPUT so that input is immediately sent. | 
 |         // Disable ENABLE_ECHO_INPUT to disable local echo. Disabling this | 
 |         // flag also seems necessary to have proper line-ending processing. | 
 |         if (!SetConsoleMode(in, _old_console_mode & ~(ENABLE_PROCESSED_INPUT | | 
 |             ENABLE_LINE_INPUT | ENABLE_ECHO_INPUT))) { | 
 |             // This really should not fail. | 
 |             D("stdin_raw_init: SetConsoleMode() failed: %s\n", | 
 |               SystemErrorCodeToString(GetLastError()).c_str()); | 
 |         } | 
 |  | 
 |         // Once this is set, it means that stdin has been configured for | 
 |         // reading from and that the old console mode should be restored later. | 
 |         _console_handle = in; | 
 |  | 
 |         // Note that we don't need to configure C Runtime line-ending | 
 |         // translation because _console_read() does not call the C Runtime to | 
 |         // read from the console. | 
 |     } | 
 | } | 
 |  | 
 | void stdin_raw_restore(const int fd) { | 
 |     if (STDIN_FILENO == fd) { | 
 |         if (_console_handle != NULL) { | 
 |             const HANDLE in = _console_handle; | 
 |             _console_handle = NULL;  // clear state | 
 |  | 
 |             if (!SetConsoleMode(in, _old_console_mode)) { | 
 |                 // This really should not fail. | 
 |                 D("stdin_raw_restore: SetConsoleMode() failed: %s\n", | 
 |                   SystemErrorCodeToString(GetLastError()).c_str()); | 
 |             } | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | // Called by 'adb shell' and 'adb exec-in' to read from stdin. | 
 | int unix_read(int fd, void* buf, size_t len) { | 
 |     if ((fd == STDIN_FILENO) && (_console_handle != NULL)) { | 
 |         // If it is a request to read from stdin, and stdin_raw_init() has been | 
 |         // called, and it successfully configured the console, then read from | 
 |         // the console using Win32 console APIs and partially emulate a unix | 
 |         // terminal. | 
 |         return _console_read(_console_handle, buf, len); | 
 |     } else { | 
 |         // Just call into C Runtime which can read from pipes/files and which | 
 |         // can do LF/CR translation (which is overridable with _setmode()). | 
 |         // Undefine the macro that is set in sysdeps.h which bans calls to | 
 |         // plain read() in favor of unix_read() or adb_read(). | 
 | #pragma push_macro("read") | 
 | #undef read | 
 |         return read(fd, buf, len); | 
 | #pragma pop_macro("read") | 
 |     } | 
 | } | 
 |  | 
 | /**************************************************************************/ | 
 | /**************************************************************************/ | 
 | /*****                                                                *****/ | 
 | /*****      Unicode support                                           *****/ | 
 | /*****                                                                *****/ | 
 | /**************************************************************************/ | 
 | /**************************************************************************/ | 
 |  | 
 | // This implements support for using files with Unicode filenames and for | 
 | // outputting Unicode text to a Win32 console window. This is inspired from | 
 | // http://utf8everywhere.org/. | 
 | // | 
 | // Background | 
 | // ---------- | 
 | // | 
 | // On POSIX systems, to deal with files with Unicode filenames, just pass UTF-8 | 
 | // filenames to APIs such as open(). This works because filenames are largely | 
 | // opaque 'cookies' (perhaps excluding path separators). | 
 | // | 
 | // On Windows, the native file APIs such as CreateFileW() take 2-byte wchar_t | 
 | // UTF-16 strings. There is an API, CreateFileA() that takes 1-byte char | 
 | // strings, but the strings are in the ANSI codepage and not UTF-8. (The | 
 | // CreateFile() API is really just a macro that adds the W/A based on whether | 
 | // the UNICODE preprocessor symbol is defined). | 
 | // | 
 | // Options | 
 | // ------- | 
 | // | 
 | // Thus, to write a portable program, there are a few options: | 
 | // | 
 | // 1. Write the program with wchar_t filenames (wchar_t path[256];). | 
 | //    For Windows, just call CreateFileW(). For POSIX, write a wrapper openW() | 
 | //    that takes a wchar_t string, converts it to UTF-8 and then calls the real | 
 | //    open() API. | 
 | // | 
 | // 2. Write the program with a TCHAR typedef that is 2 bytes on Windows and | 
 | //    1 byte on POSIX. Make T-* wrappers for various OS APIs and call those, | 
 | //    potentially touching a lot of code. | 
 | // | 
 | // 3. Write the program with a 1-byte char filenames (char path[256];) that are | 
 | //    UTF-8. For POSIX, just call open(). For Windows, write a wrapper that | 
 | //    takes a UTF-8 string, converts it to UTF-16 and then calls the real OS | 
 | //    or C Runtime API. | 
 | // | 
 | // The Choice | 
 | // ---------- | 
 | // | 
 | // The code below chooses option 3, the UTF-8 everywhere strategy. It | 
 | // introduces narrow() which converts UTF-16 to UTF-8. This is used by the | 
 | // NarrowArgs helper class that is used to convert wmain() args into UTF-8 | 
 | // args that are passed to main() at the beginning of program startup. We also | 
 | // introduce widen() which converts from UTF-8 to UTF-16. This is used to | 
 | // implement wrappers below that call UTF-16 OS and C Runtime APIs. | 
 | // | 
 | // Unicode console output | 
 | // ---------------------- | 
 | // | 
 | // The way to output Unicode to a Win32 console window is to call | 
 | // WriteConsoleW() with UTF-16 text. (The user must also choose a proper font | 
 | // such as Lucida Console or Consolas, and in the case of East Asian languages | 
 | // (such as Chinese, Japanese, Korean), the user must go to the Control Panel | 
 | // and change the "system locale" to Chinese, etc., which allows a Chinese, etc. | 
 | // font to be used in console windows.) | 
 | // | 
 | // The problem is getting the C Runtime to make fprintf and related APIs call | 
 | // WriteConsoleW() under the covers. The C Runtime API, _setmode() sounds | 
 | // promising, but the various modes have issues: | 
 | // | 
 | // 1. _setmode(_O_TEXT) (the default) does not use WriteConsoleW() so UTF-8 and | 
 | //    UTF-16 do not display properly. | 
 | // 2. _setmode(_O_BINARY) does not use WriteConsoleW() and the text comes out | 
 | //    totally wrong. | 
 | // 3. _setmode(_O_U8TEXT) seems to cause the C Runtime _invalid_parameter | 
 | //    handler to be called (upon a later I/O call), aborting the process. | 
 | // 4. _setmode(_O_U16TEXT) and _setmode(_O_WTEXT) cause non-wide printf/fprintf | 
 | //    to output nothing. | 
 | // | 
 | // So the only solution is to write our own adb_fprintf() that converts UTF-8 | 
 | // to UTF-16 and then calls WriteConsoleW(). | 
 |  | 
 |  | 
 | // Function prototype because attributes cannot be placed on func definitions. | 
 | static void _widen_fatal(const char *fmt, ...) | 
 |     __attribute__((__format__(ADB_FORMAT_ARCHETYPE, 1, 2))); | 
 |  | 
 | // A version of fatal() that does not call adb_(v)fprintf(), so it can be | 
 | // called from those functions. | 
 | static void _widen_fatal(const char *fmt, ...) { | 
 |     va_list ap; | 
 |     va_start(ap, fmt); | 
 |     // If (v)fprintf are macros that point to adb_(v)fprintf, when random adb | 
 |     // code calls (v)fprintf, it may end up calling adb_(v)fprintf, which then | 
 |     // calls _widen_fatal(). So then how does _widen_fatal() output a error? | 
 |     // By directly calling real C Runtime APIs that don't properly output | 
 |     // Unicode, but will be able to get a comprehendible message out. To do | 
 |     // this, make sure we don't call (v)fprintf macros by undefining them. | 
 | #pragma push_macro("fprintf") | 
 | #pragma push_macro("vfprintf") | 
 | #undef fprintf | 
 | #undef vfprintf | 
 |     fprintf(stderr, "error: "); | 
 |     vfprintf(stderr, fmt, ap); | 
 |     fprintf(stderr, "\n"); | 
 | #pragma pop_macro("vfprintf") | 
 | #pragma pop_macro("fprintf") | 
 |     va_end(ap); | 
 |     exit(-1); | 
 | } | 
 |  | 
 | // TODO: Consider implementing widen() and narrow() out of std::wstring_convert | 
 | // once libcxx is supported on Windows. Or, consider libutils/Unicode.cpp. | 
 |  | 
 | // Convert from UTF-8 to UTF-16. A size of -1 specifies a NULL terminated | 
 | // string. Any other size specifies the number of chars to convert, excluding | 
 | // any NULL terminator (if you're passing an explicit size, you probably don't | 
 | // have a NULL terminated string in the first place). | 
 | std::wstring widen(const char* utf8, const int size) { | 
 |     // Note: Do not call SystemErrorCodeToString() from widen() because | 
 |     // SystemErrorCodeToString() calls narrow() which may call fatal() which | 
 |     // calls adb_vfprintf() which calls widen(), potentially causing infinite | 
 |     // recursion. | 
 |     const int chars_to_convert = MultiByteToWideChar(CP_UTF8, 0, utf8, size, | 
 |                                                      NULL, 0); | 
 |     if (chars_to_convert <= 0) { | 
 |         // UTF-8 to UTF-16 should be lossless, so we don't expect this to fail. | 
 |         _widen_fatal("MultiByteToWideChar failed counting: %d, " | 
 |                      "GetLastError: %lu", chars_to_convert, GetLastError()); | 
 |     } | 
 |  | 
 |     std::wstring utf16; | 
 |     size_t chars_to_allocate = chars_to_convert; | 
 |     if (size == -1) { | 
 |         // chars_to_convert includes a NULL terminator, so subtract space | 
 |         // for that because resize() includes that itself. | 
 |         --chars_to_allocate; | 
 |     } | 
 |     utf16.resize(chars_to_allocate); | 
 |  | 
 |     // This uses &string[0] to get write-access to the entire string buffer | 
 |     // which may be assuming that the chars are all contiguous, but it seems | 
 |     // to work and saves us the hassle of using a temporary | 
 |     // std::vector<wchar_t>. | 
 |     const int result = MultiByteToWideChar(CP_UTF8, 0, utf8, size, &utf16[0], | 
 |                                            chars_to_convert); | 
 |     if (result != chars_to_convert) { | 
 |         // UTF-8 to UTF-16 should be lossless, so we don't expect this to fail. | 
 |         _widen_fatal("MultiByteToWideChar failed conversion: %d, " | 
 |                      "GetLastError: %lu", result, GetLastError()); | 
 |     } | 
 |  | 
 |     // If a size was passed in (size != -1), then the string is NULL terminated | 
 |     // by a NULL char that was written by std::string::resize(). If size == -1, | 
 |     // then MultiByteToWideChar() read a NULL terminator from the original | 
 |     // string and converted it to a NULL UTF-16 char in the output. | 
 |  | 
 |     return utf16; | 
 | } | 
 |  | 
 | // Convert a NULL terminated string from UTF-8 to UTF-16. | 
 | std::wstring widen(const char* utf8) { | 
 |     // Pass -1 to let widen() determine the string length. | 
 |     return widen(utf8, -1); | 
 | } | 
 |  | 
 | // Convert from UTF-8 to UTF-16. | 
 | std::wstring widen(const std::string& utf8) { | 
 |     return widen(utf8.c_str(), utf8.length()); | 
 | } | 
 |  | 
 | // Convert from UTF-16 to UTF-8. | 
 | std::string narrow(const std::wstring& utf16) { | 
 |     return narrow(utf16.c_str()); | 
 | } | 
 |  | 
 | // Convert from UTF-16 to UTF-8. | 
 | std::string narrow(const wchar_t* utf16) { | 
 |     // Note: Do not call SystemErrorCodeToString() from narrow() because | 
 |     // SystemErrorCodeToString() calls narrow() and we don't want potential | 
 |     // infinite recursion. | 
 |     const int chars_required = WideCharToMultiByte(CP_UTF8, 0, utf16, -1, NULL, | 
 |                                                    0, NULL, NULL); | 
 |     if (chars_required <= 0) { | 
 |         // UTF-16 to UTF-8 should be lossless, so we don't expect this to fail. | 
 |         fatal("WideCharToMultiByte failed counting: %d, GetLastError: %lu", | 
 |               chars_required, GetLastError()); | 
 |     } | 
 |  | 
 |     std::string utf8; | 
 |     // Subtract space for the NULL terminator because resize() includes | 
 |     // that itself. Note that this could potentially throw a std::bad_alloc | 
 |     // exception. | 
 |     utf8.resize(chars_required - 1); | 
 |  | 
 |     // This uses &string[0] to get write-access to the entire string buffer | 
 |     // which may be assuming that the chars are all contiguous, but it seems | 
 |     // to work and saves us the hassle of using a temporary | 
 |     // std::vector<char>. | 
 |     const int result = WideCharToMultiByte(CP_UTF8, 0, utf16, -1, &utf8[0], | 
 |                                            chars_required, NULL, NULL); | 
 |     if (result != chars_required) { | 
 |         // UTF-16 to UTF-8 should be lossless, so we don't expect this to fail. | 
 |         fatal("WideCharToMultiByte failed conversion: %d, GetLastError: %lu", | 
 |               result, GetLastError()); | 
 |     } | 
 |  | 
 |     return utf8; | 
 | } | 
 |  | 
 | // Constructor for helper class to convert wmain() UTF-16 args to UTF-8 to | 
 | // be passed to main(). | 
 | NarrowArgs::NarrowArgs(const int argc, wchar_t** const argv) { | 
 |     narrow_args = new char*[argc + 1]; | 
 |  | 
 |     for (int i = 0; i < argc; ++i) { | 
 |         narrow_args[i] = strdup(narrow(argv[i]).c_str()); | 
 |     } | 
 |     narrow_args[argc] = nullptr;   // terminate | 
 | } | 
 |  | 
 | NarrowArgs::~NarrowArgs() { | 
 |     if (narrow_args != nullptr) { | 
 |         for (char** argp = narrow_args; *argp != nullptr; ++argp) { | 
 |             free(*argp); | 
 |         } | 
 |         delete[] narrow_args; | 
 |         narrow_args = nullptr; | 
 |     } | 
 | } | 
 |  | 
 | int unix_open(const char* path, int options, ...) { | 
 |     if ((options & O_CREAT) == 0) { | 
 |         return _wopen(widen(path).c_str(), options); | 
 |     } else { | 
 |         int      mode; | 
 |         va_list  args; | 
 |         va_start(args, options); | 
 |         mode = va_arg(args, int); | 
 |         va_end(args); | 
 |         return _wopen(widen(path).c_str(), options, mode); | 
 |     } | 
 | } | 
 |  | 
 | // Version of stat() that takes a UTF-8 path. | 
 | int adb_stat(const char* f, struct adb_stat* s) { | 
 | #pragma push_macro("wstat") | 
 | // This definition of wstat seems to be missing from <sys/stat.h>. | 
 | #if defined(_FILE_OFFSET_BITS) && (_FILE_OFFSET_BITS == 64) | 
 | #ifdef _USE_32BIT_TIME_T | 
 | #define wstat _wstat32i64 | 
 | #else | 
 | #define wstat _wstat64 | 
 | #endif | 
 | #else | 
 | // <sys/stat.h> has a function prototype for wstat() that should be available. | 
 | #endif | 
 |  | 
 |     return wstat(widen(f).c_str(), s); | 
 |  | 
 | #pragma pop_macro("wstat") | 
 | } | 
 |  | 
 | // Version of opendir() that takes a UTF-8 path. | 
 | DIR* adb_opendir(const char* name) { | 
 |     // Just cast _WDIR* to DIR*. This doesn't work if the caller reads any of | 
 |     // the fields, but right now all the callers treat the structure as | 
 |     // opaque. | 
 |     return reinterpret_cast<DIR*>(_wopendir(widen(name).c_str())); | 
 | } | 
 |  | 
 | // Version of readdir() that returns UTF-8 paths. | 
 | struct dirent* adb_readdir(DIR* dir) { | 
 |     _WDIR* const wdir = reinterpret_cast<_WDIR*>(dir); | 
 |     struct _wdirent* const went = _wreaddir(wdir); | 
 |     if (went == nullptr) { | 
 |         return nullptr; | 
 |     } | 
 |     // Convert from UTF-16 to UTF-8. | 
 |     const std::string name_utf8(narrow(went->d_name)); | 
 |  | 
 |     // Cast the _wdirent* to dirent* and overwrite the d_name field (which has | 
 |     // space for UTF-16 wchar_t's) with UTF-8 char's. | 
 |     struct dirent* ent = reinterpret_cast<struct dirent*>(went); | 
 |  | 
 |     if (name_utf8.length() + 1 > sizeof(went->d_name)) { | 
 |         // Name too big to fit in existing buffer. | 
 |         errno = ENOMEM; | 
 |         return nullptr; | 
 |     } | 
 |  | 
 |     // Note that sizeof(_wdirent::d_name) is bigger than sizeof(dirent::d_name) | 
 |     // because _wdirent contains wchar_t instead of char. So even if name_utf8 | 
 |     // can fit in _wdirent::d_name, the resulting dirent::d_name field may be | 
 |     // bigger than the caller expects because they expect a dirent structure | 
 |     // which has a smaller d_name field. Ignore this since the caller should be | 
 |     // resilient. | 
 |  | 
 |     // Rewrite the UTF-16 d_name field to UTF-8. | 
 |     strcpy(ent->d_name, name_utf8.c_str()); | 
 |  | 
 |     return ent; | 
 | } | 
 |  | 
 | // Version of closedir() to go with our version of adb_opendir(). | 
 | int adb_closedir(DIR* dir) { | 
 |     return _wclosedir(reinterpret_cast<_WDIR*>(dir)); | 
 | } | 
 |  | 
 | // Version of unlink() that takes a UTF-8 path. | 
 | int adb_unlink(const char* path) { | 
 |     const std::wstring wpath(widen(path)); | 
 |  | 
 |     int  rc = _wunlink(wpath.c_str()); | 
 |  | 
 |     if (rc == -1 && errno == EACCES) { | 
 |         /* unlink returns EACCES when the file is read-only, so we first */ | 
 |         /* try to make it writable, then unlink again...                 */ | 
 |         rc = _wchmod(wpath.c_str(), _S_IREAD | _S_IWRITE); | 
 |         if (rc == 0) | 
 |             rc = _wunlink(wpath.c_str()); | 
 |     } | 
 |     return rc; | 
 | } | 
 |  | 
 | // Version of mkdir() that takes a UTF-8 path. | 
 | int adb_mkdir(const std::string& path, int mode) { | 
 |     return _wmkdir(widen(path.c_str()).c_str()); | 
 | } | 
 |  | 
 | // Version of utime() that takes a UTF-8 path. | 
 | int adb_utime(const char* path, struct utimbuf* u) { | 
 |     static_assert(sizeof(struct utimbuf) == sizeof(struct _utimbuf), | 
 |         "utimbuf and _utimbuf should be the same size because they both " | 
 |         "contain the same types, namely time_t"); | 
 |     return _wutime(widen(path).c_str(), reinterpret_cast<struct _utimbuf*>(u)); | 
 | } | 
 |  | 
 | // Version of chmod() that takes a UTF-8 path. | 
 | int adb_chmod(const char* path, int mode) { | 
 |     return _wchmod(widen(path).c_str(), mode); | 
 | } | 
 |  | 
 | // Internal function to get a Win32 console HANDLE from a C Runtime FILE*. | 
 | static HANDLE _get_console_handle(FILE* const stream) { | 
 |     // Get a C Runtime file descriptor number from the FILE* structure. | 
 |     const int fd = fileno(stream); | 
 |     if (fd < 0) { | 
 |         return NULL; | 
 |     } | 
 |  | 
 |     // If it is not a "character device", it is probably a file and not a | 
 |     // console. Do this check early because it is probably cheap. Still do more | 
 |     // checks after this since there are devices that pass this test, but are | 
 |     // not a console, such as NUL, the Windows /dev/null equivalent (I think). | 
 |     if (!isatty(fd)) { | 
 |         return NULL; | 
 |     } | 
 |  | 
 |     // Given a C Runtime file descriptor number, get the underlying OS | 
 |     // file handle. | 
 |     const intptr_t osfh = _get_osfhandle(fd); | 
 |     if (osfh == -1) { | 
 |         return NULL; | 
 |     } | 
 |  | 
 |     const HANDLE h = reinterpret_cast<const HANDLE>(osfh); | 
 |  | 
 |     DWORD old_mode = 0; | 
 |     if (!GetConsoleMode(h, &old_mode)) { | 
 |         return NULL; | 
 |     } | 
 |  | 
 |     // If GetConsoleMode() was successful, assume this is a console. | 
 |     return h; | 
 | } | 
 |  | 
 | // Internal helper function to write UTF-8 bytes to a console. Returns -1 | 
 | // on error. | 
 | static int _console_write_utf8(const char* buf, size_t size, FILE* stream, | 
 |                                HANDLE console) { | 
 |     // Convert from UTF-8 to UTF-16. | 
 |     // This could throw std::bad_alloc. | 
 |     const std::wstring output(widen(buf, size)); | 
 |  | 
 |     // Note that this does not do \n => \r\n translation because that | 
 |     // doesn't seem necessary for the Windows console. For the Windows | 
 |     // console \r moves to the beginning of the line and \n moves to a new | 
 |     // line. | 
 |  | 
 |     // Flush any stream buffering so that our output is afterwards which | 
 |     // makes sense because our call is afterwards. | 
 |     (void)fflush(stream); | 
 |  | 
 |     // Write UTF-16 to the console. | 
 |     DWORD written = 0; | 
 |     if (!WriteConsoleW(console, output.c_str(), output.length(), &written, | 
 |                        NULL)) { | 
 |         errno = EIO; | 
 |         return -1; | 
 |     } | 
 |  | 
 |     // This is the number of UTF-16 chars written, which might be different | 
 |     // than the number of UTF-8 chars passed in. It doesn't seem practical to | 
 |     // get this count correct. | 
 |     return written; | 
 | } | 
 |  | 
 | // Function prototype because attributes cannot be placed on func definitions. | 
 | static int _console_vfprintf(const HANDLE console, FILE* stream, | 
 |                              const char *format, va_list ap) | 
 |     __attribute__((__format__(ADB_FORMAT_ARCHETYPE, 3, 0))); | 
 |  | 
 | // Internal function to format a UTF-8 string and write it to a Win32 console. | 
 | // Returns -1 on error. | 
 | static int _console_vfprintf(const HANDLE console, FILE* stream, | 
 |                              const char *format, va_list ap) { | 
 |     std::string output_utf8; | 
 |  | 
 |     // Format the string. | 
 |     // This could throw std::bad_alloc. | 
 |     android::base::StringAppendV(&output_utf8, format, ap); | 
 |  | 
 |     return _console_write_utf8(output_utf8.c_str(), output_utf8.length(), | 
 |                                stream, console); | 
 | } | 
 |  | 
 | // Version of vfprintf() that takes UTF-8 and can write Unicode to a | 
 | // Windows console. | 
 | int adb_vfprintf(FILE *stream, const char *format, va_list ap) { | 
 |     const HANDLE console = _get_console_handle(stream); | 
 |  | 
 |     // If there is an associated Win32 console, write to it specially, | 
 |     // otherwise defer to the regular C Runtime, passing it UTF-8. | 
 |     if (console != NULL) { | 
 |         return _console_vfprintf(console, stream, format, ap); | 
 |     } else { | 
 |         // If vfprintf is a macro, undefine it, so we can call the real | 
 |         // C Runtime API. | 
 | #pragma push_macro("vfprintf") | 
 | #undef vfprintf | 
 |         return vfprintf(stream, format, ap); | 
 | #pragma pop_macro("vfprintf") | 
 |     } | 
 | } | 
 |  | 
 | // Version of fprintf() that takes UTF-8 and can write Unicode to a | 
 | // Windows console. | 
 | int adb_fprintf(FILE *stream, const char *format, ...) { | 
 |     va_list ap; | 
 |     va_start(ap, format); | 
 |     const int result = adb_vfprintf(stream, format, ap); | 
 |     va_end(ap); | 
 |  | 
 |     return result; | 
 | } | 
 |  | 
 | // Version of printf() that takes UTF-8 and can write Unicode to a | 
 | // Windows console. | 
 | int adb_printf(const char *format, ...) { | 
 |     va_list ap; | 
 |     va_start(ap, format); | 
 |     const int result = adb_vfprintf(stdout, format, ap); | 
 |     va_end(ap); | 
 |  | 
 |     return result; | 
 | } | 
 |  | 
 | // Version of fputs() that takes UTF-8 and can write Unicode to a | 
 | // Windows console. | 
 | int adb_fputs(const char* buf, FILE* stream) { | 
 |     // adb_fprintf returns -1 on error, which is conveniently the same as EOF | 
 |     // which fputs (and hence adb_fputs) should return on error. | 
 |     return adb_fprintf(stream, "%s", buf); | 
 | } | 
 |  | 
 | // Version of fputc() that takes UTF-8 and can write Unicode to a | 
 | // Windows console. | 
 | int adb_fputc(int ch, FILE* stream) { | 
 |     const int result = adb_fprintf(stream, "%c", ch); | 
 |     if (result <= 0) { | 
 |         // If there was an error, or if nothing was printed (which should be an | 
 |         // error), return an error, which fprintf signifies with EOF. | 
 |         return EOF; | 
 |     } | 
 |     // For success, fputc returns the char, cast to unsigned char, then to int. | 
 |     return static_cast<unsigned char>(ch); | 
 | } | 
 |  | 
 | // Internal function to write UTF-8 to a Win32 console. Returns the number of | 
 | // items (of length size) written. On error, returns a short item count or 0. | 
 | static size_t _console_fwrite(const void* ptr, size_t size, size_t nmemb, | 
 |                               FILE* stream, HANDLE console) { | 
 |     // TODO: Note that a Unicode character could be several UTF-8 bytes. But | 
 |     // if we're passed only some of the bytes of a character (for example, from | 
 |     // the network socket for adb shell), we won't be able to convert the char | 
 |     // to a complete UTF-16 char (or surrogate pair), so the output won't look | 
 |     // right. | 
 |     // | 
 |     // To fix this, see libutils/Unicode.cpp for hints on decoding UTF-8. | 
 |     // | 
 |     // For now we ignore this problem because the alternative is that we'd have | 
 |     // to parse UTF-8 and buffer things up (doable). At least this is better | 
 |     // than what we had before -- always incorrect multi-byte UTF-8 output. | 
 |     int result = _console_write_utf8(reinterpret_cast<const char*>(ptr), | 
 |                                      size * nmemb, stream, console); | 
 |     if (result == -1) { | 
 |         return 0; | 
 |     } | 
 |     return result / size; | 
 | } | 
 |  | 
 | // Version of fwrite() that takes UTF-8 and can write Unicode to a | 
 | // Windows console. | 
 | size_t adb_fwrite(const void* ptr, size_t size, size_t nmemb, FILE* stream) { | 
 |     const HANDLE console = _get_console_handle(stream); | 
 |  | 
 |     // If there is an associated Win32 console, write to it specially, | 
 |     // otherwise defer to the regular C Runtime, passing it UTF-8. | 
 |     if (console != NULL) { | 
 |         return _console_fwrite(ptr, size, nmemb, stream, console); | 
 |     } else { | 
 |         // If fwrite is a macro, undefine it, so we can call the real | 
 |         // C Runtime API. | 
 | #pragma push_macro("fwrite") | 
 | #undef fwrite | 
 |         return fwrite(ptr, size, nmemb, stream); | 
 | #pragma pop_macro("fwrite") | 
 |     } | 
 | } | 
 |  | 
 | // Version of fopen() that takes a UTF-8 filename and can access a file with | 
 | // a Unicode filename. | 
 | FILE* adb_fopen(const char* f, const char* m) { | 
 |     return _wfopen(widen(f).c_str(), widen(m).c_str()); | 
 | } | 
 |  | 
 | // Shadow UTF-8 environment variable name/value pairs that are created from | 
 | // _wenviron the first time that adb_getenv() is called. Note that this is not | 
 | // currently updated if putenv, setenv, unsetenv are called. Note that no | 
 | // thread synchronization is done, but we're called early enough in | 
 | // single-threaded startup that things work ok. | 
 | static std::unordered_map<std::string, char*> g_environ_utf8; | 
 |  | 
 | // Make sure that shadow UTF-8 environment variables are setup. | 
 | static void _ensure_env_setup() { | 
 |     // If some name/value pairs exist, then we've already done the setup below. | 
 |     if (g_environ_utf8.size() != 0) { | 
 |         return; | 
 |     } | 
 |  | 
 |     // Read name/value pairs from UTF-16 _wenviron and write new name/value | 
 |     // pairs to UTF-8 g_environ_utf8. Note that it probably does not make sense | 
 |     // to use the D() macro here because that tracing only works if the | 
 |     // ADB_TRACE environment variable is setup, but that env var can't be read | 
 |     // until this code completes. | 
 |     for (wchar_t** env = _wenviron; *env != nullptr; ++env) { | 
 |         wchar_t* const equal = wcschr(*env, L'='); | 
 |         if (equal == nullptr) { | 
 |             // Malformed environment variable with no equal sign. Shouldn't | 
 |             // really happen, but we should be resilient to this. | 
 |             continue; | 
 |         } | 
 |  | 
 |         const std::string name_utf8(narrow(std::wstring(*env, equal - *env))); | 
 |         char* const value_utf8 = strdup(narrow(equal + 1).c_str()); | 
 |  | 
 |         // Overwrite any duplicate name, but there shouldn't be a dup in the | 
 |         // first place. | 
 |         g_environ_utf8[name_utf8] = value_utf8; | 
 |     } | 
 | } | 
 |  | 
 | // Version of getenv() that takes a UTF-8 environment variable name and | 
 | // retrieves a UTF-8 value. | 
 | char* adb_getenv(const char* name) { | 
 |     _ensure_env_setup(); | 
 |  | 
 |     const auto it = g_environ_utf8.find(std::string(name)); | 
 |     if (it == g_environ_utf8.end()) { | 
 |         return nullptr; | 
 |     } | 
 |  | 
 |     return it->second; | 
 | } | 
 |  | 
 | // Version of getcwd() that returns the current working directory in UTF-8. | 
 | char* adb_getcwd(char* buf, int size) { | 
 |     wchar_t* wbuf = _wgetcwd(nullptr, 0); | 
 |     if (wbuf == nullptr) { | 
 |         return nullptr; | 
 |     } | 
 |  | 
 |     const std::string buf_utf8(narrow(wbuf)); | 
 |     free(wbuf); | 
 |     wbuf = nullptr; | 
 |  | 
 |     // If size was specified, make sure all the chars will fit. | 
 |     if (size != 0) { | 
 |         if (size < static_cast<int>(buf_utf8.length() + 1)) { | 
 |             errno = ERANGE; | 
 |             return nullptr; | 
 |         } | 
 |     } | 
 |  | 
 |     // If buf was not specified, allocate storage. | 
 |     if (buf == nullptr) { | 
 |         if (size == 0) { | 
 |             size = buf_utf8.length() + 1; | 
 |         } | 
 |         buf = reinterpret_cast<char*>(malloc(size)); | 
 |         if (buf == nullptr) { | 
 |             return nullptr; | 
 |         } | 
 |     } | 
 |  | 
 |     // Destination buffer was allocated with enough space, or we've already | 
 |     // checked an existing buffer size for enough space. | 
 |     strcpy(buf, buf_utf8.c_str()); | 
 |  | 
 |     return buf; | 
 | } |