blob: 3eac78d110bbe1379237f95bc53662f674baaf75 [file] [log] [blame]
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "BpfLoader"
#include <errno.h>
#include <fcntl.h>
#include <linux/bpf.h>
#include <linux/elf.h>
#include <log/log.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sysexits.h>
#include <sys/stat.h>
#include <sys/utsname.h>
#include <sys/wait.h>
#include <unistd.h>
#include "BpfSyscallWrappers.h"
#include "bpf/BpfUtils.h"
#include "bpf_map_def.h"
#include "include/libbpf_android.h"
#include <cstdlib>
#include <fstream>
#include <iostream>
#include <optional>
#include <string>
#include <unordered_map>
#include <vector>
#include <android-base/cmsg.h>
#include <android-base/file.h>
#include <android-base/logging.h>
#include <android-base/strings.h>
#include <android-base/unique_fd.h>
#define BPF_FS_PATH "/sys/fs/bpf/"
// Size of the BPF log buffer for verifier logging
#define BPF_LOAD_LOG_SZ 0xfffff
using android::base::EndsWith;
using android::base::StartsWith;
using android::base::unique_fd;
using std::ifstream;
using std::ios;
using std::optional;
using std::strerror;
using std::string;
using std::vector;
namespace android {
namespace bpf {
static unsigned int page_size = static_cast<unsigned int>(getpagesize());
static string pathToObjName(const string& path) {
// extract everything after the final slash, ie. this is the filename 'foo@1.o' or 'bar.o'
string filename = android::base::Split(path, "/").back();
// strip off everything from the final period onwards (strip '.o' suffix), ie. 'foo@1' or 'bar'
string name = filename.substr(0, filename.find_last_of('.'));
// strip any potential @1 suffix, this will leave us with just 'foo' or 'bar'
// this can be used to provide duplicate programs (mux based on the bpfloader version)
return name.substr(0, name.find_last_of('@'));
}
typedef struct {
const char* name;
enum bpf_prog_type type;
} sectionType;
/*
* Map section name prefixes to program types, the section name will be:
* SECTION(<prefix>/<name-of-program>)
* For example:
* SECTION("tracepoint/sched_switch_func") where sched_switch_funcs
* is the name of the program, and tracepoint is the type.
*
* However, be aware that you should not be directly using the SECTION() macro.
* Instead use the DEFINE_(BPF|XDP)_(PROG|MAP)... & LICENSE/CRITICAL macros.
*/
sectionType sectionNameTypes[] = {
{"kprobe/", BPF_PROG_TYPE_KPROBE},
{"kretprobe/", BPF_PROG_TYPE_KPROBE},
{"perf_event/", BPF_PROG_TYPE_PERF_EVENT},
{"skfilter/", BPF_PROG_TYPE_SOCKET_FILTER},
{"tracepoint/", BPF_PROG_TYPE_TRACEPOINT},
{"uprobe/", BPF_PROG_TYPE_KPROBE},
{"uretprobe/", BPF_PROG_TYPE_KPROBE},
};
typedef struct {
enum bpf_prog_type type;
string name;
vector<char> data;
vector<char> rel_data;
optional<struct bpf_prog_def> prog_def;
unique_fd prog_fd; /* fd after loading */
} codeSection;
static int readElfHeader(ifstream& elfFile, Elf64_Ehdr* eh) {
elfFile.seekg(0);
if (elfFile.fail()) return -1;
if (!elfFile.read((char*)eh, sizeof(*eh))) return -1;
return 0;
}
/* Reads all section header tables into an Shdr array */
static int readSectionHeadersAll(ifstream& elfFile, vector<Elf64_Shdr>& shTable) {
Elf64_Ehdr eh;
int ret = 0;
ret = readElfHeader(elfFile, &eh);
if (ret) return ret;
elfFile.seekg(eh.e_shoff);
if (elfFile.fail()) return -1;
/* Read shdr table entries */
shTable.resize(eh.e_shnum);
if (!elfFile.read((char*)shTable.data(), (eh.e_shnum * eh.e_shentsize))) return -ENOMEM;
return 0;
}
/* Read a section by its index - for ex to get sec hdr strtab blob */
static int readSectionByIdx(ifstream& elfFile, int id, vector<char>& sec) {
vector<Elf64_Shdr> shTable;
int ret = readSectionHeadersAll(elfFile, shTable);
if (ret) return ret;
elfFile.seekg(shTable[id].sh_offset);
if (elfFile.fail()) return -1;
sec.resize(shTable[id].sh_size);
if (!elfFile.read(sec.data(), shTable[id].sh_size)) return -1;
return 0;
}
/* Read whole section header string table */
static int readSectionHeaderStrtab(ifstream& elfFile, vector<char>& strtab) {
Elf64_Ehdr eh;
int ret = readElfHeader(elfFile, &eh);
if (ret) return ret;
ret = readSectionByIdx(elfFile, eh.e_shstrndx, strtab);
if (ret) return ret;
return 0;
}
/* Get name from offset in strtab */
static int getSymName(ifstream& elfFile, int nameOff, string& name) {
int ret;
vector<char> secStrTab;
ret = readSectionHeaderStrtab(elfFile, secStrTab);
if (ret) return ret;
if (nameOff >= (int)secStrTab.size()) return -1;
name = string((char*)secStrTab.data() + nameOff);
return 0;
}
/* Reads a full section by name - example to get the GPL license */
static int readSectionByName(const char* name, ifstream& elfFile, vector<char>& data) {
vector<char> secStrTab;
vector<Elf64_Shdr> shTable;
int ret;
ret = readSectionHeadersAll(elfFile, shTable);
if (ret) return ret;
ret = readSectionHeaderStrtab(elfFile, secStrTab);
if (ret) return ret;
for (int i = 0; i < (int)shTable.size(); i++) {
char* secname = secStrTab.data() + shTable[i].sh_name;
if (!secname) continue;
if (!strcmp(secname, name)) {
vector<char> dataTmp;
dataTmp.resize(shTable[i].sh_size);
elfFile.seekg(shTable[i].sh_offset);
if (elfFile.fail()) return -1;
if (!elfFile.read((char*)dataTmp.data(), shTable[i].sh_size)) return -1;
data = dataTmp;
return 0;
}
}
return -2;
}
unsigned int readSectionUint(const char* name, ifstream& elfFile, unsigned int defVal) {
vector<char> theBytes;
int ret = readSectionByName(name, elfFile, theBytes);
if (ret) {
ALOGV("Couldn't find section %s (defaulting to %u [0x%x]).", name, defVal, defVal);
return defVal;
} else if (theBytes.size() < sizeof(unsigned int)) {
ALOGE("Section %s too short (defaulting to %u [0x%x]).", name, defVal, defVal);
return defVal;
} else {
// decode first 4 bytes as LE32 uint, there will likely be more bytes due to alignment.
unsigned int value = static_cast<unsigned char>(theBytes[3]);
value <<= 8;
value += static_cast<unsigned char>(theBytes[2]);
value <<= 8;
value += static_cast<unsigned char>(theBytes[1]);
value <<= 8;
value += static_cast<unsigned char>(theBytes[0]);
ALOGV("Section %s value is %u [0x%x]", name, value, value);
return value;
}
}
static int readSectionByType(ifstream& elfFile, int type, vector<char>& data) {
int ret;
vector<Elf64_Shdr> shTable;
ret = readSectionHeadersAll(elfFile, shTable);
if (ret) return ret;
for (int i = 0; i < (int)shTable.size(); i++) {
if ((int)shTable[i].sh_type != type) continue;
vector<char> dataTmp;
dataTmp.resize(shTable[i].sh_size);
elfFile.seekg(shTable[i].sh_offset);
if (elfFile.fail()) return -1;
if (!elfFile.read((char*)dataTmp.data(), shTable[i].sh_size)) return -1;
data = dataTmp;
return 0;
}
return -2;
}
static bool symCompare(Elf64_Sym a, Elf64_Sym b) {
return (a.st_value < b.st_value);
}
static int readSymTab(ifstream& elfFile, int sort, vector<Elf64_Sym>& data) {
int ret, numElems;
Elf64_Sym* buf;
vector<char> secData;
ret = readSectionByType(elfFile, SHT_SYMTAB, secData);
if (ret) return ret;
buf = (Elf64_Sym*)secData.data();
numElems = (secData.size() / sizeof(Elf64_Sym));
data.assign(buf, buf + numElems);
if (sort) std::sort(data.begin(), data.end(), symCompare);
return 0;
}
static enum bpf_prog_type getFuseProgType() {
int result = BPF_PROG_TYPE_UNSPEC;
ifstream("/sys/fs/fuse/bpf_prog_type_fuse") >> result;
return static_cast<bpf_prog_type>(result);
}
static enum bpf_prog_type getSectionType(string& name) {
for (auto& snt : sectionNameTypes)
if (StartsWith(name, snt.name)) return snt.type;
// TODO Remove this code when fuse-bpf is upstream and this BPF_PROG_TYPE_FUSE is fixed
if (StartsWith(name, "fuse/")) return getFuseProgType();
return BPF_PROG_TYPE_UNSPEC;
}
static string getSectionName(enum bpf_prog_type type)
{
for (auto& snt : sectionNameTypes)
if (snt.type == type)
return string(snt.name);
return "UNKNOWN SECTION NAME " + std::to_string(type);
}
static int readProgDefs(ifstream& elfFile, vector<struct bpf_prog_def>& pd) {
vector<char> pdData;
int ret = readSectionByName("progs", elfFile, pdData);
if (ret) return ret;
if (pdData.size() % sizeof(struct bpf_prog_def)) {
ALOGE("readProgDefs failed due to improper sized progs section, %zu %% %zu != 0",
pdData.size(), sizeof(struct bpf_prog_def));
return -1;
};
pd.resize(pdData.size() / sizeof(struct bpf_prog_def));
memcpy(pd.data(), pdData.data(), pdData.size());
return 0;
}
static int getSectionSymNames(ifstream& elfFile, const string& sectionName, vector<string>& names,
optional<unsigned> symbolType = std::nullopt) {
int ret;
string name;
vector<Elf64_Sym> symtab;
vector<Elf64_Shdr> shTable;
ret = readSymTab(elfFile, 1 /* sort */, symtab);
if (ret) return ret;
/* Get index of section */
ret = readSectionHeadersAll(elfFile, shTable);
if (ret) return ret;
int sec_idx = -1;
for (int i = 0; i < (int)shTable.size(); i++) {
ret = getSymName(elfFile, shTable[i].sh_name, name);
if (ret) return ret;
if (!name.compare(sectionName)) {
sec_idx = i;
break;
}
}
/* No section found with matching name*/
if (sec_idx == -1) {
ALOGW("No %s section could be found in elf object", sectionName.c_str());
return -1;
}
for (int i = 0; i < (int)symtab.size(); i++) {
if (symbolType.has_value() && ELF_ST_TYPE(symtab[i].st_info) != symbolType) continue;
if (symtab[i].st_shndx == sec_idx) {
string s;
ret = getSymName(elfFile, symtab[i].st_name, s);
if (ret) return ret;
names.push_back(s);
}
}
return 0;
}
static bool IsAllowed(bpf_prog_type type, const bpf_prog_type* allowed, size_t numAllowed) {
if (allowed == nullptr) return true;
for (size_t i = 0; i < numAllowed; i++) {
if (allowed[i] == BPF_PROG_TYPE_UNSPEC) {
if (type == getFuseProgType()) return true;
} else if (type == allowed[i])
return true;
}
return false;
}
/* Read a section by its index - for ex to get sec hdr strtab blob */
static int readCodeSections(ifstream& elfFile, vector<codeSection>& cs,
const bpf_prog_type* allowed, size_t numAllowed) {
vector<Elf64_Shdr> shTable;
int entries, ret = 0;
ret = readSectionHeadersAll(elfFile, shTable);
if (ret) return ret;
entries = shTable.size();
vector<struct bpf_prog_def> pd;
ret = readProgDefs(elfFile, pd);
if (ret) return ret;
vector<string> progDefNames;
ret = getSectionSymNames(elfFile, "progs", progDefNames);
if (!pd.empty() && ret) return ret;
for (int i = 0; i < entries; i++) {
string name;
codeSection cs_temp;
cs_temp.type = BPF_PROG_TYPE_UNSPEC;
ret = getSymName(elfFile, shTable[i].sh_name, name);
if (ret) return ret;
enum bpf_prog_type ptype = getSectionType(name);
if (ptype == BPF_PROG_TYPE_UNSPEC) continue;
if (!IsAllowed(ptype, allowed, numAllowed)) {
ALOGE("Program type %s not permitted here", getSectionName(ptype).c_str());
return -1;
}
string oldName = name;
// convert all slashes to underscores
std::replace(name.begin(), name.end(), '/', '_');
cs_temp.type = ptype;
cs_temp.name = name;
ret = readSectionByIdx(elfFile, i, cs_temp.data);
if (ret) return ret;
ALOGV("Loaded code section %d (%s)", i, name.c_str());
vector<string> csSymNames;
ret = getSectionSymNames(elfFile, oldName, csSymNames, STT_FUNC);
if (ret || !csSymNames.size()) return ret;
for (size_t i = 0; i < progDefNames.size(); ++i) {
if (!progDefNames[i].compare(csSymNames[0] + "_def")) {
cs_temp.prog_def = pd[i];
break;
}
}
/* Check for rel section */
if (cs_temp.data.size() > 0 && i < entries) {
ret = getSymName(elfFile, shTable[i + 1].sh_name, name);
if (ret) return ret;
if (name == (".rel" + oldName)) {
ret = readSectionByIdx(elfFile, i + 1, cs_temp.rel_data);
if (ret) return ret;
ALOGV("Loaded relo section %d (%s)", i, name.c_str());
}
}
if (cs_temp.data.size() > 0) {
cs.push_back(std::move(cs_temp));
ALOGV("Adding section %d to cs list", i);
}
}
return 0;
}
static int getSymNameByIdx(ifstream& elfFile, int index, string& name) {
vector<Elf64_Sym> symtab;
int ret = 0;
ret = readSymTab(elfFile, 0 /* !sort */, symtab);
if (ret) return ret;
if (index >= (int)symtab.size()) return -1;
return getSymName(elfFile, symtab[index].st_name, name);
}
static bool mapMatchesExpectations(const unique_fd& fd, const string& mapName,
const struct bpf_map_def& mapDef, const enum bpf_map_type type) {
// Assuming fd is a valid Bpf Map file descriptor then
// all the following should always succeed on a 4.14+ kernel.
// If they somehow do fail, they'll return -1 (and set errno),
// which should then cause (among others) a key_size mismatch.
int fd_type = bpfGetFdMapType(fd);
int fd_key_size = bpfGetFdKeySize(fd);
int fd_value_size = bpfGetFdValueSize(fd);
int fd_max_entries = bpfGetFdMaxEntries(fd);
int fd_map_flags = bpfGetFdMapFlags(fd);
// DEVMAPs are readonly from the bpf program side's point of view, as such
// the kernel in kernel/bpf/devmap.c dev_map_init_map() will set the flag
int desired_map_flags = (int)mapDef.map_flags;
if (type == BPF_MAP_TYPE_DEVMAP || type == BPF_MAP_TYPE_DEVMAP_HASH)
desired_map_flags |= BPF_F_RDONLY_PROG;
// The .h file enforces that this is a power of two, and page size will
// also always be a power of two, so this logic is actually enough to
// force it to be a multiple of the page size, as required by the kernel.
unsigned int desired_max_entries = mapDef.max_entries;
if (type == BPF_MAP_TYPE_RINGBUF) {
if (desired_max_entries < page_size) desired_max_entries = page_size;
}
// The following checks should *never* trigger, if one of them somehow does,
// it probably means a bpf .o file has been changed/replaced at runtime
// and bpfloader was manually rerun (normally it should only run *once*
// early during the boot process).
// Another possibility is that something is misconfigured in the code:
// most likely a shared map is declared twice differently.
// But such a change should never be checked into the source tree...
if ((fd_type == type) &&
(fd_key_size == (int)mapDef.key_size) &&
(fd_value_size == (int)mapDef.value_size) &&
(fd_max_entries == (int)desired_max_entries) &&
(fd_map_flags == desired_map_flags)) {
return true;
}
ALOGE("bpf map name %s mismatch: desired/found: "
"type:%d/%d key:%u/%d value:%u/%d entries:%u/%d flags:%u/%d",
mapName.c_str(), type, fd_type, mapDef.key_size, fd_key_size, mapDef.value_size,
fd_value_size, mapDef.max_entries, fd_max_entries, desired_map_flags, fd_map_flags);
return false;
}
static int createMaps(const char* elfPath, ifstream& elfFile, vector<unique_fd>& mapFds,
const char* prefix) {
int ret;
vector<char> mdData;
vector<struct bpf_map_def> md;
vector<string> mapNames;
string objName = pathToObjName(string(elfPath));
ret = readSectionByName("maps", elfFile, mdData);
if (ret == -2) return 0; // no maps to read
if (ret) return ret;
if (mdData.size() % sizeof(struct bpf_map_def)) {
ALOGE("createMaps failed due to improper sized maps section, %zu %% %zu != 0",
mdData.size(), sizeof(struct bpf_map_def));
return -1;
}
md.resize(mdData.size() / sizeof(struct bpf_map_def));
memcpy(md.data(), mdData.data(), mdData.size());
ret = getSectionSymNames(elfFile, "maps", mapNames);
if (ret) return ret;
unsigned kvers = kernelVersion();
for (int i = 0; i < (int)mapNames.size(); i++) {
if (md[i].zero != 0) abort();
if (kvers < md[i].min_kver) {
ALOGD("skipping map %s which requires kernel version 0x%x >= 0x%x",
mapNames[i].c_str(), kvers, md[i].min_kver);
mapFds.push_back(unique_fd());
continue;
}
if (kvers >= md[i].max_kver) {
ALOGD("skipping map %s which requires kernel version 0x%x < 0x%x",
mapNames[i].c_str(), kvers, md[i].max_kver);
mapFds.push_back(unique_fd());
continue;
}
enum bpf_map_type type = md[i].type;
if (type == BPF_MAP_TYPE_DEVMAP_HASH && !isAtLeastKernelVersion(5, 4, 0)) {
// On Linux Kernels older than 5.4 this map type doesn't exist, but it can kind
// of be approximated: HASH has the same userspace visible api.
// However it cannot be used by ebpf programs in the same way.
// Since bpf_redirect_map() only requires 4.14, a program using a DEVMAP_HASH map
// would fail to load (due to trying to redirect to a HASH instead of DEVMAP_HASH).
// One must thus tag any BPF_MAP_TYPE_DEVMAP_HASH + bpf_redirect_map() using
// programs as being 5.4+...
type = BPF_MAP_TYPE_HASH;
}
// The .h file enforces that this is a power of two, and page size will
// also always be a power of two, so this logic is actually enough to
// force it to be a multiple of the page size, as required by the kernel.
unsigned int max_entries = md[i].max_entries;
if (type == BPF_MAP_TYPE_RINGBUF) {
if (max_entries < page_size) max_entries = page_size;
}
// Format of pin location is /sys/fs/bpf/<prefix>map_<objName>_<mapName>
// except that maps shared across .o's have empty <objName>
// Note: <objName> refers to the extension-less basename of the .o file (without @ suffix).
string mapPinLoc = string(BPF_FS_PATH) + prefix + "map_" +
(md[i].shared ? "" : objName) + "_" + mapNames[i];
bool reuse = false;
unique_fd fd;
int saved_errno;
if (access(mapPinLoc.c_str(), F_OK) == 0) {
fd.reset(mapRetrieveRO(mapPinLoc.c_str()));
saved_errno = errno;
ALOGV("bpf_create_map reusing map %s, ret: %d", mapNames[i].c_str(), fd.get());
reuse = true;
} else {
union bpf_attr req = {
.map_type = type,
.key_size = md[i].key_size,
.value_size = md[i].value_size,
.max_entries = max_entries,
.map_flags = md[i].map_flags,
};
strlcpy(req.map_name, mapNames[i].c_str(), sizeof(req.map_name));
fd.reset(bpf(BPF_MAP_CREATE, req));
saved_errno = errno;
ALOGV("bpf_create_map name %s, ret: %d", mapNames[i].c_str(), fd.get());
}
if (!fd.ok()) return -saved_errno;
// When reusing a pinned map, we need to check the map type/sizes/etc match, but for
// safety (since reuse code path is rare) run these checks even if we just created it.
// We assume failure is due to pinned map mismatch, hence the 'NOT UNIQUE' return code.
if (!mapMatchesExpectations(fd, mapNames[i], md[i], type)) return -ENOTUNIQ;
if (!reuse) {
ret = bpfFdPin(fd, mapPinLoc.c_str());
if (ret) {
int err = errno;
ALOGE("pin %s -> %d [%d:%s]", mapPinLoc.c_str(), ret, err, strerror(err));
return -err;
}
ret = chmod(mapPinLoc.c_str(), md[i].mode);
if (ret) {
int err = errno;
ALOGE("chmod(%s, 0%o) = %d [%d:%s]", mapPinLoc.c_str(), md[i].mode, ret, err,
strerror(err));
return -err;
}
ret = chown(mapPinLoc.c_str(), (uid_t)md[i].uid, (gid_t)md[i].gid);
if (ret) {
int err = errno;
ALOGE("chown(%s, %u, %u) = %d [%d:%s]", mapPinLoc.c_str(), md[i].uid, md[i].gid,
ret, err, strerror(err));
return -err;
}
}
int mapId = bpfGetFdMapId(fd);
if (mapId == -1) {
ALOGE("bpfGetFdMapId failed, ret: %d [%d]", mapId, errno);
} else {
ALOGD("map %s id %d", mapPinLoc.c_str(), mapId);
}
mapFds.push_back(std::move(fd));
}
return ret;
}
static void applyRelo(void* insnsPtr, Elf64_Addr offset, int fd) {
int insnIndex;
struct bpf_insn *insn, *insns;
insns = (struct bpf_insn*)(insnsPtr);
insnIndex = offset / sizeof(struct bpf_insn);
insn = &insns[insnIndex];
// Occasionally might be useful for relocation debugging, but pretty spammy
if (0) {
ALOGV("applying relo to instruction at byte offset: %llu, "
"insn offset %d, insn %llx",
(unsigned long long)offset, insnIndex, *(unsigned long long*)insn);
}
if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) {
ALOGE("invalid relo for insn %d: code 0x%x", insnIndex, insn->code);
return;
}
insn->imm = fd;
insn->src_reg = BPF_PSEUDO_MAP_FD;
}
static void applyMapRelo(ifstream& elfFile, vector<unique_fd> &mapFds, vector<codeSection>& cs) {
vector<string> mapNames;
int ret = getSectionSymNames(elfFile, "maps", mapNames);
if (ret) return;
for (int k = 0; k != (int)cs.size(); k++) {
Elf64_Rel* rel = (Elf64_Rel*)(cs[k].rel_data.data());
int n_rel = cs[k].rel_data.size() / sizeof(*rel);
for (int i = 0; i < n_rel; i++) {
int symIndex = ELF64_R_SYM(rel[i].r_info);
string symName;
ret = getSymNameByIdx(elfFile, symIndex, symName);
if (ret) return;
/* Find the map fd and apply relo */
for (int j = 0; j < (int)mapNames.size(); j++) {
if (!mapNames[j].compare(symName)) {
applyRelo(cs[k].data.data(), rel[i].r_offset, mapFds[j]);
break;
}
}
}
}
}
static int loadCodeSections(const char* elfPath, vector<codeSection>& cs, const string& license,
const char* prefix) {
unsigned kvers = kernelVersion();
if (!kvers) {
ALOGE("unable to get kernel version");
return -EINVAL;
}
string objName = pathToObjName(string(elfPath));
for (int i = 0; i < (int)cs.size(); i++) {
unique_fd& fd = cs[i].prog_fd;
int ret;
string name = cs[i].name;
if (!cs[i].prog_def.has_value()) {
ALOGE("[%d] '%s' missing program definition! bad bpf.o build?", i, name.c_str());
return -EINVAL;
}
unsigned min_kver = cs[i].prog_def->min_kver;
unsigned max_kver = cs[i].prog_def->max_kver;
if (kvers < min_kver || kvers >= max_kver) {
ALOGD("skipping program cs[%d].name:%s min_kver:%x max_kver:%x (kvers:%x)",
i, name.c_str(), min_kver, max_kver, kvers);
continue;
}
// strip any potential $foo suffix
// this can be used to provide duplicate programs
// conditionally loaded based on running kernel version
name = name.substr(0, name.find_last_of('$'));
bool reuse = false;
// Format of pin location is
// /sys/fs/bpf/<prefix>prog_<objName>_<progName>
string progPinLoc = string(BPF_FS_PATH) + prefix + "prog_" +
objName + '_' + string(name);
if (access(progPinLoc.c_str(), F_OK) == 0) {
fd.reset(retrieveProgram(progPinLoc.c_str()));
ALOGV("New bpf prog load reusing prog %s, ret: %d (%s)", progPinLoc.c_str(), fd.get(),
(!fd.ok() ? std::strerror(errno) : "no error"));
reuse = true;
} else {
vector<char> log_buf(BPF_LOAD_LOG_SZ, 0);
union bpf_attr req = {
.prog_type = cs[i].type,
.kern_version = kvers,
.license = ptr_to_u64(license.c_str()),
.insns = ptr_to_u64(cs[i].data.data()),
.insn_cnt = static_cast<__u32>(cs[i].data.size() / sizeof(struct bpf_insn)),
.log_level = 1,
.log_buf = ptr_to_u64(log_buf.data()),
.log_size = static_cast<__u32>(log_buf.size()),
};
strlcpy(req.prog_name, cs[i].name.c_str(), sizeof(req.prog_name));
fd.reset(bpf(BPF_PROG_LOAD, req));
if (!fd.ok()) {
ALOGW("BPF_PROG_LOAD call for %s (%s) returned fd: %d (%s)", elfPath,
cs[i].name.c_str(), fd.get(), std::strerror(errno));
vector<string> lines = android::base::Split(log_buf.data(), "\n");
ALOGW("BPF_PROG_LOAD - BEGIN log_buf contents:");
for (const auto& line : lines) ALOGW("%s", line.c_str());
ALOGW("BPF_PROG_LOAD - END log_buf contents.");
if (cs[i].prog_def->optional) {
ALOGW("failed program is marked optional - continuing...");
continue;
}
ALOGE("non-optional program failed to load.");
}
}
if (!fd.ok()) return fd.get();
if (!reuse) {
ret = bpfFdPin(fd, progPinLoc.c_str());
if (ret) {
int err = errno;
ALOGE("create %s -> %d [%d:%s]", progPinLoc.c_str(), ret, err, strerror(err));
return -err;
}
if (chmod(progPinLoc.c_str(), 0440)) {
int err = errno;
ALOGE("chmod %s 0440 -> [%d:%s]", progPinLoc.c_str(), err, strerror(err));
return -err;
}
if (chown(progPinLoc.c_str(), (uid_t)cs[i].prog_def->uid,
(gid_t)cs[i].prog_def->gid)) {
int err = errno;
ALOGE("chown %s %d %d -> [%d:%s]", progPinLoc.c_str(), cs[i].prog_def->uid,
cs[i].prog_def->gid, err, strerror(err));
return -err;
}
}
int progId = bpfGetFdProgId(fd);
if (progId == -1) {
ALOGE("bpfGetFdProgId failed, ret: %d [%d]", progId, errno);
} else {
ALOGD("prog %s id %d", progPinLoc.c_str(), progId);
}
}
return 0;
}
int loadProg(const char* elfPath, bool* isCritical, const Location& location) {
vector<char> license;
vector<char> critical;
vector<codeSection> cs;
vector<unique_fd> mapFds;
int ret;
if (!isCritical) return -1;
*isCritical = false;
ifstream elfFile(elfPath, ios::in | ios::binary);
if (!elfFile.is_open()) return -1;
ret = readSectionByName("critical", elfFile, critical);
*isCritical = !ret;
ret = readSectionByName("license", elfFile, license);
if (ret) {
ALOGE("Couldn't find license in %s", elfPath);
return ret;
}
ALOGI("Platform BpfLoader loading %s%s ELF object %s with license %s",
*isCritical ? "critical for " : "optional", *isCritical ? (char*)critical.data() : "",
elfPath, (char*)license.data());
ret = readCodeSections(elfFile, cs, location.allowedProgTypes, location.allowedProgTypesLength);
if (ret) {
ALOGE("Couldn't read all code sections in %s", elfPath);
return ret;
}
ret = createMaps(elfPath, elfFile, mapFds, location.prefix);
if (ret) {
ALOGE("Failed to create maps: (ret=%d) in %s", ret, elfPath);
return ret;
}
for (int i = 0; i < (int)mapFds.size(); i++)
ALOGV("map_fd found at %d is %d in %s", i, mapFds[i].get(), elfPath);
applyMapRelo(elfFile, mapFds, cs);
ret = loadCodeSections(elfPath, cs, string(license.data()), location.prefix);
if (ret) ALOGE("Failed to load programs, loadCodeSections ret=%d", ret);
return ret;
}
// Networking-related program types are limited to the Tethering Apex
// to prevent things from breaking due to conflicts on mainline updates
// (exception made for socket filters, ie. xt_bpf for potential use in iptables,
// or for attaching to sockets directly)
constexpr bpf_prog_type kPlatformAllowedProgTypes[] = {
BPF_PROG_TYPE_KPROBE,
BPF_PROG_TYPE_PERF_EVENT,
BPF_PROG_TYPE_SOCKET_FILTER,
BPF_PROG_TYPE_TRACEPOINT,
BPF_PROG_TYPE_UNSPEC, // Will be replaced with fuse bpf program type
};
constexpr bpf_prog_type kUprobestatsAllowedProgTypes[] = {
BPF_PROG_TYPE_KPROBE,
};
// see b/162057235. For arbitrary program types, the concern is that due to the lack of
// SELinux access controls over BPF program attachpoints, we have no way to control the
// attachment of programs to shared resources (or to detect when a shared resource
// has one BPF program replace another that is attached there)
constexpr bpf_prog_type kVendorAllowedProgTypes[] = {
BPF_PROG_TYPE_SOCKET_FILTER,
};
const Location locations[] = {
// Core operating system
{
.dir = "/system/etc/bpf/",
.prefix = "",
.allowedProgTypes = kPlatformAllowedProgTypes,
.allowedProgTypesLength = arraysize(kPlatformAllowedProgTypes),
},
// uprobestats
{
.dir = "/system/etc/bpf/uprobestats/",
.prefix = "uprobestats/",
.allowedProgTypes = kUprobestatsAllowedProgTypes,
.allowedProgTypesLength = arraysize(kUprobestatsAllowedProgTypes),
},
// Vendor operating system
{
.dir = "/vendor/etc/bpf/",
.prefix = "vendor/",
.allowedProgTypes = kVendorAllowedProgTypes,
.allowedProgTypesLength = arraysize(kVendorAllowedProgTypes),
},
};
int loadAllElfObjects(const Location& location) {
int retVal = 0;
DIR* dir;
struct dirent* ent;
if ((dir = opendir(location.dir)) != NULL) {
while ((ent = readdir(dir)) != NULL) {
string s = ent->d_name;
if (!EndsWith(s, ".o")) continue;
string progPath(location.dir);
progPath += s;
bool critical;
int ret = loadProg(progPath.c_str(), &critical, location);
if (ret) {
if (critical) retVal = ret;
ALOGE("Failed to load object: %s, ret: %s", progPath.c_str(), strerror(-ret));
} else {
ALOGV("Loaded object: %s", progPath.c_str());
}
}
closedir(dir);
}
return retVal;
}
int createSysFsBpfSubDir(const char* const prefix) {
if (*prefix) {
mode_t prevUmask = umask(0);
string s = "/sys/fs/bpf/";
s += prefix;
errno = 0;
int ret = mkdir(s.c_str(), S_ISVTX | S_IRWXU | S_IRWXG | S_IRWXO);
if (ret && errno != EEXIST) {
const int err = errno;
ALOGE("Failed to create directory: %s, ret: %s", s.c_str(), strerror(err));
return -err;
}
umask(prevUmask);
}
return 0;
}
} // namespace bpf
} // namespace android
// ----- extern C stuff for rust below here -----
void initLogging() {
// since we only ever get called from mainline NetBpfLoad
// (see packages/modules/Connectivity/netbpfload/NetBpfLoad.cpp around line 516)
// and there no arguments, so we can just pretend/assume this is the case.
const char* argv[] = {"/system/bin/bpfloader", NULL};
android::base::InitLogging(const_cast<char**>(argv), &android::base::KernelLogger);
}
void createBpfFsSubDirectories() {
for (const auto& location : android::bpf::locations) {
if (android::bpf::createSysFsBpfSubDir(location.prefix)) {
exit(120);
}
}
}
void legacyBpfLoader() {
// Load all ELF objects, create programs and maps, and pin them
for (const auto& location : android::bpf::locations) {
if (android::bpf::loadAllElfObjects(location)) {
ALOGE("=== CRITICAL FAILURE LOADING BPF PROGRAMS FROM %s ===", location.dir);
ALOGE("If this triggers reliably, you're probably missing kernel options or patches.");
ALOGE("If this triggers randomly, you might be hitting some memory allocation "
"problems or startup script race.");
ALOGE("--- DO NOT EXPECT SYSTEM TO BOOT SUCCESSFULLY ---");
sleep(20);
exit(121);
}
}
}
void execNetBpfLoadDone() {
const char* args[] = {"/apex/com.android.tethering/bin/netbpfload", "done", NULL};
execve(args[0], (char**)args, environ);
ALOGE("FATAL: execve(): %d[%s]", errno, strerror(errno));
exit(122);
}
void logVerbose(const char* msg) {
ALOGV("%s", msg);
}
void logDebug(const char* msg) {
ALOGD("%s", msg);
}
void logInfo(const char* msg) {
ALOGI("%s", msg);
}
void logWarn(const char* msg) {
ALOGW("%s", msg);
}
void logError(const char* msg) {
ALOGE("%s", msg);
}