| /* |
| * Copyright (C) 2020 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| use std::io; |
| use thiserror::Error; |
| |
| use crate::crypto::{CryptoError, Sha256Hasher}; |
| use crate::reader::ReadOnlyDataByChunk; |
| |
| const ZEROS: [u8; 4096] = [0u8; 4096]; |
| |
| #[derive(Error, Debug)] |
| pub enum FsverityError { |
| #[error("Cannot verify a block")] |
| CannotVerify, |
| #[error("I/O error")] |
| Io(#[from] io::Error), |
| #[error("Crypto")] |
| UnexpectedCryptoError(#[from] CryptoError), |
| } |
| |
| type HashBuffer = [u8; Sha256Hasher::HASH_SIZE]; |
| |
| fn divide_roundup(dividend: u64, divisor: u64) -> u64 { |
| (dividend + divisor - 1) / divisor |
| } |
| |
| fn hash_with_padding(chunk: &[u8], pad_to: usize) -> Result<HashBuffer, CryptoError> { |
| let padding_size = pad_to - chunk.len(); |
| Sha256Hasher::new()?.update(&chunk)?.update(&ZEROS[..padding_size])?.finalize() |
| } |
| |
| #[allow(dead_code)] |
| fn verity_check<T: ReadOnlyDataByChunk>( |
| chunk: &[u8], |
| chunk_index: u64, |
| file_size: u64, |
| merkle_tree: &T, |
| ) -> Result<HashBuffer, FsverityError> { |
| // The caller should not be able to produce a chunk at the first place if `file_size` is 0. The |
| // current implementation expects to crash when a `ReadOnlyDataByChunk` implementation reads |
| // beyone the file size, including empty file. |
| assert_ne!(file_size, 0); |
| |
| let chunk_hash = hash_with_padding(&chunk, T::CHUNK_SIZE as usize)?; |
| |
| fsverity_walk(chunk_index, file_size, merkle_tree)?.try_fold( |
| chunk_hash, |
| |actual_hash, result| { |
| let (merkle_chunk, hash_offset_in_chunk) = result?; |
| let expected_hash = |
| &merkle_chunk[hash_offset_in_chunk..hash_offset_in_chunk + Sha256Hasher::HASH_SIZE]; |
| if actual_hash != expected_hash { |
| return Err(FsverityError::CannotVerify); |
| } |
| Ok(hash_with_padding(&merkle_chunk, T::CHUNK_SIZE as usize)?) |
| }, |
| ) |
| } |
| |
| fn log128_ceil(num: u64) -> Option<u64> { |
| match num { |
| 0 => None, |
| n => Some(divide_roundup(64 - (n - 1).leading_zeros() as u64, 7)), |
| } |
| } |
| |
| /// Given a chunk index and the size of the file, returns an iterator that walks the Merkle tree |
| /// from the leaf to the root. The iterator carries the slice of the chunk/node as well as the |
| /// offset of the child node's hash. It is up to the iterator user to use the node and hash, |
| /// e.g. for the actual verification. |
| #[allow(clippy::needless_collect)] |
| fn fsverity_walk<'a, T: ReadOnlyDataByChunk>( |
| chunk_index: u64, |
| file_size: u64, |
| merkle_tree: &'a T, |
| ) -> Result<impl Iterator<Item = Result<([u8; 4096], usize), FsverityError>> + 'a, FsverityError> { |
| let hashes_per_node = T::CHUNK_SIZE / Sha256Hasher::HASH_SIZE as u64; |
| let hash_pages = divide_roundup(file_size, hashes_per_node * T::CHUNK_SIZE); |
| debug_assert_eq!(hashes_per_node, 128u64); |
| let max_level = log128_ceil(hash_pages).expect("file should not be empty") as u32; |
| let root_to_leaf_steps = (0..=max_level) |
| .rev() |
| .map(|x| { |
| let leaves_per_hash = hashes_per_node.pow(x); |
| let leaves_size_per_hash = T::CHUNK_SIZE * leaves_per_hash; |
| let leaves_size_per_node = leaves_size_per_hash * hashes_per_node; |
| let nodes_at_level = divide_roundup(file_size, leaves_size_per_node); |
| let level_size = nodes_at_level * T::CHUNK_SIZE; |
| let offset_in_level = (chunk_index / leaves_per_hash) * Sha256Hasher::HASH_SIZE as u64; |
| (level_size, offset_in_level) |
| }) |
| .scan(0, |level_offset, (level_size, offset_in_level)| { |
| let this_level_offset = *level_offset; |
| *level_offset += level_size; |
| let global_hash_offset = this_level_offset + offset_in_level; |
| Some(global_hash_offset) |
| }) |
| .map(|global_hash_offset| { |
| let chunk_index = global_hash_offset / T::CHUNK_SIZE; |
| let hash_offset_in_chunk = (global_hash_offset % T::CHUNK_SIZE) as usize; |
| (chunk_index, hash_offset_in_chunk) |
| }) |
| .collect::<Vec<_>>(); |
| |
| Ok(root_to_leaf_steps.into_iter().rev().map(move |(chunk_index, hash_offset_in_chunk)| { |
| let mut merkle_chunk = [0u8; 4096]; |
| let _ = merkle_tree.read_chunk(chunk_index, &mut merkle_chunk)?; |
| Ok((merkle_chunk, hash_offset_in_chunk)) |
| })) |
| } |
| |
| #[cfg(test)] |
| mod tests { |
| use super::*; |
| use crate::reader::ReadOnlyDataByChunk; |
| use anyhow::Result; |
| |
| fn total_chunk_number(file_size: u64) -> u64 { |
| (file_size + 4095) / 4096 |
| } |
| |
| #[test] |
| fn fsverity_verify_full_read_4k() -> Result<()> { |
| let file = &include_bytes!("../testdata/input.4k")[..]; |
| let merkle_tree = &include_bytes!("../testdata/input.4k.merkle_dump")[..]; |
| |
| let mut buf = [0u8; 4096]; |
| |
| for i in 0..total_chunk_number(file.len() as u64) { |
| let size = file.read_chunk(i, &mut buf[..])?; |
| assert!(verity_check(&buf[..size], i, file.len() as u64, &merkle_tree).is_ok()); |
| } |
| Ok(()) |
| } |
| |
| #[test] |
| fn fsverity_verify_full_read_4k1() -> Result<()> { |
| let file = &include_bytes!("../testdata/input.4k1")[..]; |
| let merkle_tree = &include_bytes!("../testdata/input.4k1.merkle_dump")[..]; |
| |
| let mut buf = [0u8; 4096]; |
| for i in 0..total_chunk_number(file.len() as u64) { |
| let size = file.read_chunk(i, &mut buf[..])?; |
| assert!(verity_check(&buf[..size], i, file.len() as u64, &merkle_tree).is_ok()); |
| } |
| Ok(()) |
| } |
| |
| #[test] |
| fn fsverity_verify_full_read_4m() -> Result<()> { |
| let file = &include_bytes!("../testdata/input.4m")[..]; |
| let merkle_tree = &include_bytes!("../testdata/input.4m.merkle_dump")[..]; |
| |
| let mut buf = [0u8; 4096]; |
| for i in 0..total_chunk_number(file.len() as u64) { |
| let size = file.read_chunk(i, &mut buf[..])?; |
| assert!(verity_check(&buf[..size], i, file.len() as u64, &merkle_tree).is_ok()); |
| } |
| Ok(()) |
| } |
| |
| #[test] |
| fn fsverity_verify_bad_merkle_tree() -> Result<()> { |
| let file = &include_bytes!("../testdata/input.4m")[..]; |
| // First leaf node is corrupted. |
| let merkle_tree = &include_bytes!("../testdata/input.4m.merkle_dump.bad")[..]; |
| |
| // A lowest broken node (a 4K chunk that contains 128 sha256 hashes) will fail the read |
| // failure of the underlying chunks, but not before or after. |
| let mut buf = [0u8; 4096]; |
| let num_hashes = 4096 / 32; |
| let last_index = num_hashes; |
| for i in 0..last_index { |
| let size = file.read_chunk(i, &mut buf[..])?; |
| assert!(verity_check(&buf[..size], i, file.len() as u64, &merkle_tree).is_err()); |
| } |
| let size = file.read_chunk(last_index, &mut buf[..])?; |
| assert!(verity_check(&buf[..size], last_index, file.len() as u64, &merkle_tree).is_ok()); |
| Ok(()) |
| } |
| } |