| // Copyright 2023, The Android Open Source Project |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| //! Contains struct and functions that wraps the API related to EC_KEY in |
| //! BoringSSL. |
| |
| use crate::cbb::CbbFixed; |
| use crate::cbs::Cbs; |
| use crate::util::{check_int_result, to_call_failed_error}; |
| use alloc::vec; |
| use alloc::vec::Vec; |
| use bssl_avf_error::{ApiName, Error, Result}; |
| use bssl_sys::{ |
| i2d_ECDSA_SIG, BN_bin2bn, BN_bn2bin_padded, BN_clear_free, BN_new, CBB_flush, CBB_len, |
| ECDSA_SIG_free, ECDSA_SIG_from_bytes, ECDSA_SIG_get0_r, ECDSA_SIG_get0_s, ECDSA_SIG_new, |
| ECDSA_SIG_set0, ECDSA_sign, ECDSA_size, ECDSA_verify, EC_GROUP_get_curve_name, |
| EC_GROUP_new_by_curve_name, EC_KEY_check_key, EC_KEY_free, EC_KEY_generate_key, |
| EC_KEY_get0_group, EC_KEY_get0_public_key, EC_KEY_marshal_private_key, |
| EC_KEY_new_by_curve_name, EC_KEY_parse_private_key, EC_KEY_set_public_key_affine_coordinates, |
| EC_POINT_get_affine_coordinates, NID_X9_62_prime256v1, NID_secp384r1, BIGNUM, ECDSA_SIG, |
| EC_GROUP, EC_KEY, EC_POINT, |
| }; |
| use cbor_util::{get_label_value, get_label_value_as_bytes}; |
| use ciborium::Value; |
| use core::mem; |
| use core::ptr::{self, NonNull}; |
| use coset::{ |
| iana::{self, EnumI64}, |
| CborSerializable, CoseKey, CoseKeyBuilder, KeyType, Label, |
| }; |
| use log::error; |
| use zeroize::{Zeroize, ZeroizeOnDrop, Zeroizing}; |
| |
| const ES256_ALGO: iana::Algorithm = iana::Algorithm::ES256; |
| const P256_CURVE: iana::EllipticCurve = iana::EllipticCurve::P_256; |
| const P384_CURVE: iana::EllipticCurve = iana::EllipticCurve::P_384; |
| const P256_AFFINE_COORDINATE_SIZE: usize = 32; |
| const P384_AFFINE_COORDINATE_SIZE: usize = 48; |
| |
| /// Wrapper of an `EC_KEY` object, representing a public or private EC key. |
| pub struct EcKey(pub(crate) NonNull<EC_KEY>); |
| |
| impl Drop for EcKey { |
| fn drop(&mut self) { |
| // SAFETY: It is safe because the key has been allocated by BoringSSL and isn't |
| // used after this. |
| unsafe { EC_KEY_free(self.0.as_ptr()) } |
| } |
| } |
| |
| impl EcKey { |
| /// Creates a new EC P-256 key pair. |
| pub fn new_p256() -> Result<Self> { |
| // SAFETY: The returned pointer is checked below. |
| let ec_key = unsafe { |
| EC_KEY_new_by_curve_name(NID_X9_62_prime256v1) // EC P-256 CURVE Nid |
| }; |
| NonNull::new(ec_key) |
| .map(Self) |
| .ok_or_else(|| to_call_failed_error(ApiName::EC_KEY_new_by_curve_name)) |
| } |
| |
| /// Creates a new EC P-384 key pair. |
| pub fn new_p384() -> Result<Self> { |
| // SAFETY: The returned pointer is checked below. |
| let ec_key = unsafe { |
| EC_KEY_new_by_curve_name(NID_secp384r1) // EC P-384 CURVE Nid |
| }; |
| NonNull::new(ec_key) |
| .map(Self) |
| .ok_or_else(|| to_call_failed_error(ApiName::EC_KEY_new_by_curve_name)) |
| } |
| |
| /// Constructs an `EcKey` instance from the provided COSE_Key encoded public key slice. |
| pub fn from_cose_public_key_slice(cose_key: &[u8]) -> Result<Self> { |
| let cose_key = CoseKey::from_slice(cose_key).map_err(|e| { |
| error!("Failed to deserialize COSE_Key: {e:?}"); |
| Error::CoseKeyDecodingFailed |
| })?; |
| Self::from_cose_public_key(&cose_key) |
| } |
| |
| /// Constructs an `EcKey` instance from the provided `COSE_Key`. |
| /// |
| /// The lifetime of the returned `EcKey` is not tied to the lifetime of the `cose_key`, |
| /// because the affine coordinates stored in the `cose_key` are copied into the `EcKey`. |
| /// |
| /// Currently, only the EC P-256 and P-384 curves are supported. |
| pub fn from_cose_public_key(cose_key: &CoseKey) -> Result<Self> { |
| if cose_key.kty != KeyType::Assigned(iana::KeyType::EC2) { |
| error!("Only EC2 keys are supported. Key type in the COSE Key: {:?}", cose_key.kty); |
| return Err(Error::Unimplemented); |
| } |
| let ec_key = |
| match get_label_value(cose_key, Label::Int(iana::Ec2KeyParameter::Crv.to_i64()))? { |
| crv if crv == &Value::from(P256_CURVE.to_i64()) => EcKey::new_p256()?, |
| crv if crv == &Value::from(P384_CURVE.to_i64()) => EcKey::new_p384()?, |
| crv => { |
| error!( |
| "Only EC P-256 and P-384 curves are supported. \ |
| Curve type in the COSE Key: {crv:?}" |
| ); |
| return Err(Error::Unimplemented); |
| } |
| }; |
| let x = get_label_value_as_bytes(cose_key, Label::Int(iana::Ec2KeyParameter::X.to_i64()))?; |
| let y = get_label_value_as_bytes(cose_key, Label::Int(iana::Ec2KeyParameter::Y.to_i64()))?; |
| |
| let group = ec_key.ec_group()?; |
| group.check_affine_coordinate_size(x)?; |
| group.check_affine_coordinate_size(y)?; |
| |
| let x = BigNum::from_slice(x)?; |
| let y = BigNum::from_slice(y)?; |
| |
| // SAFETY: All the parameters are checked non-null and initialized. |
| // The function only reads the coordinates x and y within their bounds. |
| let ret = unsafe { |
| EC_KEY_set_public_key_affine_coordinates(ec_key.0.as_ptr(), x.as_ref(), y.as_ref()) |
| }; |
| check_int_result(ret, ApiName::EC_KEY_set_public_key_affine_coordinates)?; |
| ec_key.check_key()?; |
| Ok(ec_key) |
| } |
| |
| /// Performs several checks on the key. See BoringSSL doc for more details: |
| /// |
| /// https://commondatastorage.googleapis.com/chromium-boringssl-docs/ec_key.h.html#EC_KEY_check_key |
| pub fn check_key(&self) -> Result<()> { |
| // SAFETY: This function only reads the `EC_KEY` pointer, the non-null check is performed |
| // within the function. |
| let ret = unsafe { EC_KEY_check_key(self.0.as_ptr()) }; |
| check_int_result(ret, ApiName::EC_KEY_check_key) |
| } |
| |
| /// Verifies the DER-encoded ECDSA `signature` of the `digest` with the current `EcKey`. |
| /// |
| /// Returns Ok(()) if the verification succeeds, otherwise an error will be returned. |
| pub fn ecdsa_verify_der(&self, signature: &[u8], digest: &[u8]) -> Result<()> { |
| // The `type` argument should be 0 as required in the BoringSSL spec. |
| const TYPE: i32 = 0; |
| |
| // SAFETY: This function only reads the given data within its bounds. |
| // The `EC_KEY` passed to this function has been initialized and checked non-null. |
| let ret = unsafe { |
| ECDSA_verify( |
| TYPE, |
| digest.as_ptr(), |
| digest.len(), |
| signature.as_ptr(), |
| signature.len(), |
| self.0.as_ptr(), |
| ) |
| }; |
| check_int_result(ret, ApiName::ECDSA_verify) |
| } |
| |
| /// Verifies the COSE-encoded (R | S, see RFC8152) ECDSA `signature` of the `digest` with the |
| /// current `EcKey`. |
| /// |
| /// Returns Ok(()) if the verification succeeds, otherwise an error will be returned. |
| pub fn ecdsa_verify_cose(&self, signature: &[u8], digest: &[u8]) -> Result<()> { |
| let signature = ec_cose_signature_to_der(signature)?; |
| self.ecdsa_verify_der(&signature, digest) |
| } |
| |
| /// Signs the `digest` with the current `EcKey` using ECDSA. |
| /// |
| /// Returns the DER-encoded ECDSA signature. |
| pub fn ecdsa_sign_der(&self, digest: &[u8]) -> Result<Vec<u8>> { |
| // The `type` argument should be 0 as required in the BoringSSL spec. |
| const TYPE: i32 = 0; |
| |
| let mut signature = vec![0u8; self.ecdsa_size()?]; |
| let mut signature_len = 0; |
| // SAFETY: This function only reads the given data within its bounds. |
| // The `EC_KEY` passed to this function has been initialized and checked non-null. |
| let ret = unsafe { |
| ECDSA_sign( |
| TYPE, |
| digest.as_ptr(), |
| digest.len(), |
| signature.as_mut_ptr(), |
| &mut signature_len, |
| self.0.as_ptr(), |
| ) |
| }; |
| check_int_result(ret, ApiName::ECDSA_sign)?; |
| if signature.len() < (signature_len as usize) { |
| Err(to_call_failed_error(ApiName::ECDSA_sign)) |
| } else { |
| signature.truncate(signature_len as usize); |
| Ok(signature) |
| } |
| } |
| |
| /// Signs the `digest` with the current `EcKey` using ECDSA. |
| /// |
| /// Returns the COSE-encoded (R | S, see RFC8152) ECDSA signature. |
| pub fn ecdsa_sign_cose(&self, digest: &[u8]) -> Result<Vec<u8>> { |
| let signature = self.ecdsa_sign_der(digest)?; |
| let coord_bytes = self.ec_group()?.affine_coordinate_size()?; |
| ec_der_signature_to_cose(&signature, coord_bytes) |
| } |
| |
| /// Returns the maximum size of an ECDSA signature using the current `EcKey`. |
| fn ecdsa_size(&self) -> Result<usize> { |
| // SAFETY: This function only reads the `EC_KEY` that has been initialized |
| // and checked non-null when this instance is created. |
| let size = unsafe { ECDSA_size(self.0.as_ptr()) }; |
| if size == 0 { |
| Err(to_call_failed_error(ApiName::ECDSA_size)) |
| } else { |
| Ok(size) |
| } |
| } |
| |
| /// Generates a random, private key, calculates the corresponding public key and stores both |
| /// in the `EC_KEY`. |
| pub fn generate_key(&mut self) -> Result<()> { |
| // SAFETY: The non-null pointer is created with `EC_KEY_new_by_curve_name` and should |
| // point to a valid `EC_KEY`. |
| // The randomness is provided by `getentropy()` in `vmbase`. |
| let ret = unsafe { EC_KEY_generate_key(self.0.as_ptr()) }; |
| check_int_result(ret, ApiName::EC_KEY_generate_key) |
| } |
| |
| /// Returns the `CoseKey` for the public key. |
| pub fn cose_public_key(&self) -> Result<CoseKey> { |
| let (x, y) = self.public_key_coordinates()?; |
| let curve = self.ec_group()?.coset_curve()?; |
| let key = CoseKeyBuilder::new_ec2_pub_key(curve, x, y).algorithm(ES256_ALGO).build(); |
| Ok(key) |
| } |
| |
| /// Returns the x and y coordinates of the public key. |
| fn public_key_coordinates(&self) -> Result<(Vec<u8>, Vec<u8>)> { |
| let ec_group = self.ec_group()?; |
| let ec_point = self.public_key_ec_point()?; |
| let mut x = BigNum::new()?; |
| let mut y = BigNum::new()?; |
| let ctx = ptr::null_mut(); |
| // SAFETY: All the parameters are checked non-null and initialized when needed. |
| // The last parameter `ctx` is generated when needed inside the function. |
| let ret = unsafe { |
| EC_POINT_get_affine_coordinates( |
| ec_group.as_ref(), |
| ec_point, |
| x.as_mut_ptr(), |
| y.as_mut_ptr(), |
| ctx, |
| ) |
| }; |
| check_int_result(ret, ApiName::EC_POINT_get_affine_coordinates)?; |
| let len = ec_group.affine_coordinate_size()?; |
| Ok((x.to_padded_vec(len)?, y.to_padded_vec(len)?)) |
| } |
| |
| /// Returns a pointer to the public key point inside `EC_KEY`. The memory region pointed |
| /// by the pointer is owned by the `EC_KEY`. |
| fn public_key_ec_point(&self) -> Result<*const EC_POINT> { |
| let ec_point = |
| // SAFETY: It is safe since the key pair has been generated and stored in the |
| // `EC_KEY` pointer. |
| unsafe { EC_KEY_get0_public_key(self.0.as_ptr()) }; |
| if ec_point.is_null() { |
| Err(to_call_failed_error(ApiName::EC_KEY_get0_public_key)) |
| } else { |
| Ok(ec_point) |
| } |
| } |
| |
| /// Returns a pointer to the `EC_GROUP` object inside `EC_KEY`. The memory region pointed |
| /// by the pointer is owned by the `EC_KEY`. |
| fn ec_group(&self) -> Result<EcGroup<'_>> { |
| let group = |
| // SAFETY: It is safe since the key pair has been generated and stored in the |
| // `EC_KEY` pointer. |
| unsafe { EC_KEY_get0_group(self.0.as_ptr()) }; |
| if group.is_null() { |
| Err(to_call_failed_error(ApiName::EC_KEY_get0_group)) |
| } else { |
| // SAFETY: The pointer should be valid and points to an initialized `EC_GROUP` |
| // since it is read from a valid `EC_KEY`. |
| Ok(EcGroup(unsafe { &*group })) |
| } |
| } |
| |
| /// Constructs an `EcKey` instance from the provided DER-encoded ECPrivateKey slice. |
| /// |
| /// Currently, only the EC P-256 curve is supported. |
| pub fn from_ec_private_key(der_encoded_ec_private_key: &[u8]) -> Result<Self> { |
| // SAFETY: This function only returns a pointer to a static object, and the |
| // return is checked below. |
| let ec_group = unsafe { |
| EC_GROUP_new_by_curve_name(NID_X9_62_prime256v1) // EC P-256 CURVE Nid |
| }; |
| if ec_group.is_null() { |
| return Err(to_call_failed_error(ApiName::EC_GROUP_new_by_curve_name)); |
| } |
| let mut cbs = Cbs::new(der_encoded_ec_private_key); |
| // SAFETY: The function only reads bytes from the buffer managed by the valid `CBS` |
| // object, and the returned EC_KEY is checked. |
| let ec_key = unsafe { EC_KEY_parse_private_key(cbs.as_mut(), ec_group) }; |
| |
| let ec_key = NonNull::new(ec_key) |
| .map(Self) |
| .ok_or_else(|| to_call_failed_error(ApiName::EC_KEY_parse_private_key))?; |
| ec_key.check_key()?; |
| Ok(ec_key) |
| } |
| |
| /// Returns the DER-encoded ECPrivateKey structure described in RFC 5915 Section 3: |
| /// |
| /// https://datatracker.ietf.org/doc/html/rfc5915#section-3 |
| pub fn ec_private_key(&self) -> Result<ZVec> { |
| const CAPACITY: usize = 256; |
| let mut buf = Zeroizing::new([0u8; CAPACITY]); |
| let mut cbb = CbbFixed::new(buf.as_mut()); |
| let enc_flags = 0; |
| let ret = |
| // SAFETY: The function only write bytes to the buffer managed by the valid `CBB` |
| // object, and the key has been allocated by BoringSSL. |
| unsafe { EC_KEY_marshal_private_key(cbb.as_mut(), self.0.as_ptr(), enc_flags) }; |
| |
| check_int_result(ret, ApiName::EC_KEY_marshal_private_key)?; |
| // SAFETY: This is safe because the CBB pointer is a valid pointer initialized with |
| // `CBB_init_fixed()`. |
| check_int_result(unsafe { CBB_flush(cbb.as_mut()) }, ApiName::CBB_flush)?; |
| // SAFETY: This is safe because the CBB pointer is initialized with `CBB_init_fixed()`, |
| // and it has been flushed, thus it has no active children. |
| let len = unsafe { CBB_len(cbb.as_ref()) }; |
| Ok(buf.get(0..len).ok_or_else(|| to_call_failed_error(ApiName::CBB_len))?.to_vec().into()) |
| } |
| } |
| |
| /// Convert a COSE format (R | S) ECDSA signature to a DER-encoded form. |
| fn ec_cose_signature_to_der(signature: &[u8]) -> Result<Vec<u8>> { |
| let mut ec_sig = EcSignature::new()?; |
| ec_sig.load_from_cose(signature)?; |
| ec_sig.to_der() |
| } |
| |
| /// Convert a DER-encoded signature to COSE format (R | S). |
| fn ec_der_signature_to_cose(signature: &[u8], coord_bytes: usize) -> Result<Vec<u8>> { |
| let ec_sig = EcSignature::new_from_der(signature)?; |
| ec_sig.to_cose(coord_bytes) |
| } |
| |
| /// Wrapper for an `ECDSA_SIG` object representing an EC signature. |
| struct EcSignature(NonNull<ECDSA_SIG>); |
| |
| impl EcSignature { |
| /// Allocate a signature object. |
| fn new() -> Result<Self> { |
| // SAFETY: We take ownership of the returned pointer if it is non-null. |
| let signature = unsafe { ECDSA_SIG_new() }; |
| |
| let signature = |
| NonNull::new(signature).ok_or_else(|| to_call_failed_error(ApiName::ECDSA_SIG_new))?; |
| Ok(Self(signature)) |
| } |
| |
| /// Populate the signature parameters from a COSE encoding (R | S). |
| fn load_from_cose(&mut self, signature: &[u8]) -> Result<()> { |
| let coord_bytes = signature.len() / 2; |
| if signature.len() != 2 * coord_bytes { |
| return Err(Error::InternalError); |
| } |
| let mut r = BigNum::from_slice(&signature[..coord_bytes])?; |
| let mut s = BigNum::from_slice(&signature[coord_bytes..])?; |
| |
| check_int_result( |
| // SAFETY: The ECDSA_SIG was properly allocated and not yet freed. We have ownership |
| // of the two BigNums and they are not null. |
| unsafe { ECDSA_SIG_set0(self.0.as_mut(), r.as_mut_ptr(), s.as_mut_ptr()) }, |
| ApiName::ECDSA_SIG_set0, |
| )?; |
| |
| // On success, the ECDSA_SIG has taken ownership of the BigNums. |
| mem::forget(r); |
| mem::forget(s); |
| |
| Ok(()) |
| } |
| |
| fn to_cose(&self, coord_bytes: usize) -> Result<Vec<u8>> { |
| let mut result = vec![0u8; coord_bytes.checked_mul(2).unwrap()]; |
| let (r_bytes, s_bytes) = result.split_at_mut(coord_bytes); |
| |
| // SAFETY: The ECDSA_SIG was properly allocated and not yet freed. Always returns a valid |
| // non-null, non-owning pointer. |
| let r = unsafe { ECDSA_SIG_get0_r(self.0.as_ptr()) }; |
| check_int_result( |
| // SAFETY: The r pointer is known to be valid. Only writes within the destination |
| // slice. |
| unsafe { BN_bn2bin_padded(r_bytes.as_mut_ptr(), r_bytes.len(), r) }, |
| ApiName::BN_bn2bin_padded, |
| )?; |
| |
| // SAFETY: The ECDSA_SIG was properly allocated and not yet freed. Always returns a valid |
| // non-null, non-owning pointer. |
| let s = unsafe { ECDSA_SIG_get0_s(self.0.as_ptr()) }; |
| check_int_result( |
| // SAFETY: The r pointer is known to be valid. Only writes within the destination |
| // slice. |
| unsafe { BN_bn2bin_padded(s_bytes.as_mut_ptr(), s_bytes.len(), s) }, |
| ApiName::BN_bn2bin_padded, |
| )?; |
| |
| Ok(result) |
| } |
| |
| /// Populate the signature parameters from a DER encoding |
| fn new_from_der(signature: &[u8]) -> Result<Self> { |
| // SAFETY: Only reads within the bounds of the slice. Returns a pointer to a new ECDSA_SIG |
| // which we take ownership of, or null on error which we check. |
| let signature = unsafe { ECDSA_SIG_from_bytes(signature.as_ptr(), signature.len()) }; |
| |
| let signature = NonNull::new(signature) |
| .ok_or_else(|| to_call_failed_error(ApiName::ECDSA_SIG_from_bytes))?; |
| Ok(Self(signature)) |
| } |
| |
| /// Return the signature encoded as DER. |
| fn to_der(&self) -> Result<Vec<u8>> { |
| // SAFETY: The ECDSA_SIG was properly allocated and not yet freed. Null is a valid |
| // value for `outp`; no output is written. |
| let len = unsafe { i2d_ECDSA_SIG(self.0.as_ptr(), ptr::null_mut()) }; |
| if len < 0 { |
| return Err(to_call_failed_error(ApiName::i2d_ECDSA_SIG)); |
| } |
| |
| let mut buf = vec![0; len.try_into().map_err(|_| Error::InternalError)?]; |
| let outp = &mut buf.as_mut_ptr(); |
| // SAFETY: The ECDSA_SIG was properly allocated and not yet freed. `outp` is a non-null |
| // pointer to a mutable buffer of the right size to which the result will be written. |
| let final_len = unsafe { i2d_ECDSA_SIG(self.0.as_ptr(), outp) }; |
| if final_len < 0 { |
| return Err(to_call_failed_error(ApiName::i2d_ECDSA_SIG)); |
| } |
| // The input hasn't changed, so the length of the output shouldn't have. If it has we |
| // already have potentially undefined behavior so panic. |
| assert_eq!( |
| len, final_len, |
| "i2d_ECDSA_SIG returned inconsistent lengths: {len}, {final_len}" |
| ); |
| |
| Ok(buf) |
| } |
| } |
| |
| impl Drop for EcSignature { |
| fn drop(&mut self) { |
| // SAFETY: The pointer was allocated by `ECDSA_SIG_new`. |
| unsafe { ECDSA_SIG_free(self.0.as_mut()) }; |
| } |
| } |
| |
| /// Wrapper of an `EC_GROUP` reference. |
| struct EcGroup<'a>(&'a EC_GROUP); |
| |
| impl EcGroup<'_> { |
| /// Returns the NID that identifies the EC group of the key. |
| fn curve_nid(&self) -> i32 { |
| // SAFETY: It is safe since the inner pointer is valid and points to an initialized |
| // instance of `EC_GROUP`. |
| unsafe { EC_GROUP_get_curve_name(self.as_ref()) } |
| } |
| |
| fn coset_curve(&self) -> Result<iana::EllipticCurve> { |
| #[allow(non_upper_case_globals)] |
| match self.curve_nid() { |
| NID_X9_62_prime256v1 => Ok(P256_CURVE), |
| NID_secp384r1 => Ok(P384_CURVE), |
| name => { |
| error!("Unsupported curve NID: {}", name); |
| Err(Error::Unimplemented) |
| } |
| } |
| } |
| |
| fn affine_coordinate_size(&self) -> Result<usize> { |
| #[allow(non_upper_case_globals)] |
| match self.curve_nid() { |
| NID_X9_62_prime256v1 => Ok(P256_AFFINE_COORDINATE_SIZE), |
| NID_secp384r1 => Ok(P384_AFFINE_COORDINATE_SIZE), |
| name => { |
| error!("Unsupported curve NID: {}", name); |
| Err(Error::Unimplemented) |
| } |
| } |
| } |
| |
| fn check_affine_coordinate_size(&self, coordinate: &[u8]) -> Result<()> { |
| let expected_len = self.affine_coordinate_size()?; |
| if expected_len == coordinate.len() { |
| Ok(()) |
| } else { |
| error!( |
| "The size of the affine coordinate '{}' does not match the expected size '{}'", |
| coordinate.len(), |
| expected_len |
| ); |
| Err(Error::CoseKeyDecodingFailed) |
| } |
| } |
| } |
| |
| impl AsRef<EC_GROUP> for EcGroup<'_> { |
| fn as_ref(&self) -> &EC_GROUP { |
| self.0 |
| } |
| } |
| |
| /// A u8 vector that is zeroed when dropped. |
| #[derive(Zeroize, ZeroizeOnDrop)] |
| pub struct ZVec(Vec<u8>); |
| |
| impl ZVec { |
| /// Extracts a slice containing the entire vector. |
| pub fn as_slice(&self) -> &[u8] { |
| &self.0[..] |
| } |
| } |
| |
| impl From<Vec<u8>> for ZVec { |
| fn from(v: Vec<u8>) -> Self { |
| Self(v) |
| } |
| } |
| |
| struct BigNum(NonNull<BIGNUM>); |
| |
| impl Drop for BigNum { |
| fn drop(&mut self) { |
| // SAFETY: The pointer has been created with `BN_new`. |
| unsafe { BN_clear_free(self.as_mut_ptr()) } |
| } |
| } |
| |
| impl BigNum { |
| fn from_slice(x: &[u8]) -> Result<Self> { |
| // SAFETY: The function reads `x` within its bounds, and the returned |
| // pointer is checked below. |
| let bn = unsafe { BN_bin2bn(x.as_ptr(), x.len(), ptr::null_mut()) }; |
| NonNull::new(bn).map(Self).ok_or_else(|| to_call_failed_error(ApiName::BN_bin2bn)) |
| } |
| |
| fn new() -> Result<Self> { |
| // SAFETY: The returned pointer is checked below. |
| let bn = unsafe { BN_new() }; |
| NonNull::new(bn).map(Self).ok_or_else(|| to_call_failed_error(ApiName::BN_new)) |
| } |
| |
| /// Converts the `BigNum` to a big-endian integer. The integer is padded with leading zeros up |
| /// to size `len`. The conversion fails if `len` is smaller than the size of the integer. |
| fn to_padded_vec(&self, len: usize) -> Result<Vec<u8>> { |
| let mut num = vec![0u8; len]; |
| // SAFETY: The `BIGNUM` pointer has been created with `BN_new`. |
| let ret = unsafe { BN_bn2bin_padded(num.as_mut_ptr(), num.len(), self.0.as_ptr()) }; |
| check_int_result(ret, ApiName::BN_bn2bin_padded)?; |
| Ok(num) |
| } |
| |
| fn as_mut_ptr(&mut self) -> *mut BIGNUM { |
| self.0.as_ptr() |
| } |
| } |
| |
| impl AsRef<BIGNUM> for BigNum { |
| fn as_ref(&self) -> &BIGNUM { |
| // SAFETY: The pointer is valid and points to an initialized instance of `BIGNUM` |
| // when the instance was created. |
| unsafe { self.0.as_ref() } |
| } |
| } |