| // Copyright 2021, The Android Open Source Project |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| //! Functions for creating a composite disk image. |
| |
| use crate::gpt::{ |
| write_gpt_header, write_protective_mbr, GptPartitionEntry, GPT_BEGINNING_SIZE, GPT_END_SIZE, |
| GPT_HEADER_SIZE, GPT_NUM_PARTITIONS, GPT_PARTITION_ENTRY_SIZE, SECTOR_SIZE, |
| }; |
| use android_system_virtualizationservice::aidl::android::system::virtualizationservice::Partition::Partition; |
| use anyhow::{anyhow, bail, Context, Error}; |
| use crc32fast::Hasher; |
| use disk::create_disk_file; |
| use log::{trace, warn}; |
| use protobuf::Message; |
| use protos::cdisk_spec::{ComponentDisk, CompositeDisk, ReadWriteCapability}; |
| use std::convert::TryInto; |
| use std::fs::{File, OpenOptions}; |
| use std::io::Write; |
| use std::os::unix::io::AsRawFd; |
| use std::path::{Path, PathBuf}; |
| use uuid::Uuid; |
| |
| /// A magic string placed at the beginning of a composite disk file to identify it. |
| const CDISK_MAGIC: &str = "composite_disk\x1d"; |
| /// The version of the composite disk format supported by this implementation. |
| const COMPOSITE_DISK_VERSION: u64 = 1; |
| /// The amount of padding needed between the last partition entry and the first partition, to align |
| /// the partition appropriately. The two sectors are for the MBR and the GPT header. |
| const PARTITION_ALIGNMENT_SIZE: usize = GPT_BEGINNING_SIZE as usize |
| - 2 * SECTOR_SIZE as usize |
| - GPT_NUM_PARTITIONS as usize * GPT_PARTITION_ENTRY_SIZE as usize; |
| const HEADER_PADDING_LENGTH: usize = SECTOR_SIZE as usize - GPT_HEADER_SIZE as usize; |
| // Keep all partitions 4k aligned for performance. |
| const PARTITION_SIZE_SHIFT: u8 = 12; |
| // Keep the disk size a multiple of 64k for crosvm's virtio_blk driver. |
| const DISK_SIZE_SHIFT: u8 = 16; |
| |
| const LINUX_FILESYSTEM_GUID: Uuid = Uuid::from_u128(0x0FC63DAF_8483_4772_8E79_3D69D8477DE4); |
| const EFI_SYSTEM_PARTITION_GUID: Uuid = Uuid::from_u128(0xC12A7328_F81F_11D2_BA4B_00A0C93EC93B); |
| |
| /// Information about a single image file to be included in a partition. |
| #[derive(Clone, Debug, Eq, PartialEq)] |
| pub struct PartitionFileInfo { |
| path: PathBuf, |
| size: u64, |
| } |
| |
| /// Information about a partition to create, including the set of image files which make it up. |
| #[derive(Clone, Debug, Eq, PartialEq)] |
| pub struct PartitionInfo { |
| label: String, |
| files: Vec<PartitionFileInfo>, |
| partition_type: ImagePartitionType, |
| writable: bool, |
| } |
| |
| /// Round `val` up to the next multiple of 2**`align_log`. |
| fn align_to_power_of_2(val: u64, align_log: u8) -> u64 { |
| let align = 1 << align_log; |
| ((val + (align - 1)) / align) * align |
| } |
| |
| /// Round `val` to partition size(4K) |
| pub fn align_to_partition_size(val: u64) -> u64 { |
| align_to_power_of_2(val, PARTITION_SIZE_SHIFT) |
| } |
| |
| impl PartitionInfo { |
| fn aligned_size(&self) -> u64 { |
| align_to_power_of_2(self.files.iter().map(|file| file.size).sum(), PARTITION_SIZE_SHIFT) |
| } |
| } |
| |
| /// The type of partition. |
| #[allow(dead_code)] |
| #[derive(Copy, Clone, Debug, Eq, PartialEq)] |
| pub enum ImagePartitionType { |
| LinuxFilesystem, |
| EfiSystemPartition, |
| } |
| |
| impl ImagePartitionType { |
| fn guid(self) -> Uuid { |
| match self { |
| Self::LinuxFilesystem => LINUX_FILESYSTEM_GUID, |
| Self::EfiSystemPartition => EFI_SYSTEM_PARTITION_GUID, |
| } |
| } |
| } |
| |
| /// Write protective MBR and primary GPT table. |
| fn write_beginning( |
| file: &mut impl Write, |
| disk_guid: Uuid, |
| partitions: &[u8], |
| partition_entries_crc32: u32, |
| secondary_table_offset: u64, |
| disk_size: u64, |
| ) -> Result<(), Error> { |
| // Write the protective MBR to the first sector. |
| write_protective_mbr(file, disk_size)?; |
| |
| // Write the GPT header, and pad out to the end of the sector. |
| write_gpt_header(file, disk_guid, partition_entries_crc32, secondary_table_offset, false)?; |
| file.write_all(&[0; HEADER_PADDING_LENGTH])?; |
| |
| // Write partition entries, including unused ones. |
| file.write_all(partitions)?; |
| |
| // Write zeroes to align the first partition appropriately. |
| file.write_all(&[0; PARTITION_ALIGNMENT_SIZE])?; |
| |
| Ok(()) |
| } |
| |
| /// Write secondary GPT table. |
| fn write_end( |
| file: &mut impl Write, |
| disk_guid: Uuid, |
| partitions: &[u8], |
| partition_entries_crc32: u32, |
| secondary_table_offset: u64, |
| disk_size: u64, |
| ) -> Result<(), Error> { |
| // Write partition entries, including unused ones. |
| file.write_all(partitions)?; |
| |
| // Write the GPT header, and pad out to the end of the sector. |
| write_gpt_header(file, disk_guid, partition_entries_crc32, secondary_table_offset, true)?; |
| file.write_all(&[0; HEADER_PADDING_LENGTH])?; |
| |
| // Pad out to the aligned disk size. |
| let used_disk_size = secondary_table_offset + GPT_END_SIZE; |
| let padding = disk_size - used_disk_size; |
| file.write_all(&vec![0; padding as usize])?; |
| |
| Ok(()) |
| } |
| |
| /// Create the `GptPartitionEntry` for the given partition. |
| fn create_gpt_entry(partition: &PartitionInfo, offset: u64) -> GptPartitionEntry { |
| let mut partition_name: Vec<u16> = partition.label.encode_utf16().collect(); |
| partition_name.resize(36, 0); |
| |
| GptPartitionEntry { |
| partition_type_guid: partition.partition_type.guid(), |
| unique_partition_guid: Uuid::new_v4(), |
| first_lba: offset / SECTOR_SIZE, |
| last_lba: (offset + partition.aligned_size()) / SECTOR_SIZE - 1, |
| attributes: 0, |
| partition_name: partition_name.try_into().unwrap(), |
| } |
| } |
| |
| /// Create one or more `ComponentDisk` proto messages for the given partition. |
| fn create_component_disks( |
| partition: &PartitionInfo, |
| offset: u64, |
| header_path: &str, |
| ) -> Result<Vec<ComponentDisk>, Error> { |
| let aligned_size = partition.aligned_size(); |
| |
| if partition.files.is_empty() { |
| bail!("No image files for partition {:?}", partition); |
| } |
| let mut file_size_sum = 0; |
| let mut component_disks = vec![]; |
| for file in &partition.files { |
| component_disks.push(ComponentDisk { |
| offset: offset + file_size_sum, |
| file_path: file.path.to_str().context("Invalid partition path")?.to_string(), |
| read_write_capability: if partition.writable { |
| ReadWriteCapability::READ_WRITE |
| } else { |
| ReadWriteCapability::READ_ONLY |
| }, |
| ..ComponentDisk::new() |
| }); |
| file_size_sum += file.size; |
| } |
| |
| if file_size_sum != aligned_size { |
| if partition.writable { |
| bail!( |
| "Read-write partition {:?} size is not a multiple of {}.", |
| partition, |
| 1 << PARTITION_SIZE_SHIFT |
| ); |
| } else { |
| // Fill in the gap by reusing the header file, because we know it is always bigger |
| // than the alignment size (i.e. GPT_BEGINNING_SIZE > 1 << PARTITION_SIZE_SHIFT). |
| warn!( |
| "Read-only partition {:?} size is not a multiple of {}, filling gap.", |
| partition, |
| 1 << PARTITION_SIZE_SHIFT |
| ); |
| component_disks.push(ComponentDisk { |
| offset: offset + file_size_sum, |
| file_path: header_path.to_owned(), |
| read_write_capability: ReadWriteCapability::READ_ONLY, |
| ..ComponentDisk::new() |
| }); |
| } |
| } |
| |
| Ok(component_disks) |
| } |
| |
| /// Create a new composite disk containing the given partitions, and write it out to the given |
| /// files. |
| pub fn create_composite_disk( |
| partitions: &[PartitionInfo], |
| header_path: &Path, |
| header_file: &mut File, |
| footer_path: &Path, |
| footer_file: &mut File, |
| output_composite: &mut File, |
| ) -> Result<(), Error> { |
| let header_path = header_path.to_str().context("Invalid header path")?.to_string(); |
| let footer_path = footer_path.to_str().context("Invalid footer path")?.to_string(); |
| |
| let mut composite_proto = CompositeDisk::new(); |
| composite_proto.version = COMPOSITE_DISK_VERSION; |
| composite_proto.component_disks.push(ComponentDisk { |
| file_path: header_path.clone(), |
| offset: 0, |
| read_write_capability: ReadWriteCapability::READ_ONLY, |
| ..ComponentDisk::new() |
| }); |
| |
| // Write partitions to a temporary buffer so that we can calculate the CRC, and construct the |
| // ComponentDisk proto messages at the same time. |
| let mut partitions_buffer = |
| [0u8; GPT_NUM_PARTITIONS as usize * GPT_PARTITION_ENTRY_SIZE as usize]; |
| let mut writer: &mut [u8] = &mut partitions_buffer; |
| let mut next_disk_offset = GPT_BEGINNING_SIZE; |
| for partition in partitions { |
| create_gpt_entry(partition, next_disk_offset).write_bytes(&mut writer)?; |
| |
| for component_disk in create_component_disks(partition, next_disk_offset, &header_path)? { |
| composite_proto.component_disks.push(component_disk); |
| } |
| |
| next_disk_offset += partition.aligned_size(); |
| } |
| let secondary_table_offset = next_disk_offset; |
| let disk_size = align_to_power_of_2(secondary_table_offset + GPT_END_SIZE, DISK_SIZE_SHIFT); |
| trace!("Partitions: {:#?}", partitions); |
| trace!("Secondary table offset: {} disk size: {}", secondary_table_offset, disk_size); |
| |
| composite_proto.component_disks.push(ComponentDisk { |
| file_path: footer_path, |
| offset: secondary_table_offset, |
| read_write_capability: ReadWriteCapability::READ_ONLY, |
| ..ComponentDisk::new() |
| }); |
| |
| // Calculate CRC32 of partition entries. |
| let mut hasher = Hasher::new(); |
| hasher.update(&partitions_buffer); |
| let partition_entries_crc32 = hasher.finalize(); |
| |
| let disk_guid = Uuid::new_v4(); |
| write_beginning( |
| header_file, |
| disk_guid, |
| &partitions_buffer, |
| partition_entries_crc32, |
| secondary_table_offset, |
| disk_size, |
| )?; |
| write_end( |
| footer_file, |
| disk_guid, |
| &partitions_buffer, |
| partition_entries_crc32, |
| secondary_table_offset, |
| disk_size, |
| )?; |
| |
| composite_proto.length = disk_size; |
| output_composite.write_all(CDISK_MAGIC.as_bytes())?; |
| composite_proto.write_to_writer(output_composite)?; |
| |
| Ok(()) |
| } |
| |
| /// Constructs a composite disk image for the given list of partitions, and opens it ready to use. |
| /// |
| /// Returns the composite disk image file, and a list of FD mappings which must be applied to any |
| /// process which wants to use it. This is necessary because the composite image contains paths of |
| /// the form `/proc/self/fd/N` for the partition images. |
| pub fn make_composite_image( |
| partitions: &[Partition], |
| output_path: &Path, |
| header_path: &Path, |
| footer_path: &Path, |
| ) -> Result<(File, Vec<File>), Error> { |
| let (partitions, files) = convert_partitions(partitions)?; |
| |
| let mut composite_image = OpenOptions::new() |
| .create_new(true) |
| .read(true) |
| .write(true) |
| .open(output_path) |
| .with_context(|| format!("Failed to create composite image {:?}", output_path))?; |
| let mut header_file = |
| OpenOptions::new().create_new(true).read(true).write(true).open(header_path).with_context( |
| || format!("Failed to create composite image header {:?}", header_path), |
| )?; |
| let mut footer_file = |
| OpenOptions::new().create_new(true).read(true).write(true).open(footer_path).with_context( |
| || format!("Failed to create composite image header {:?}", footer_path), |
| )?; |
| |
| create_composite_disk( |
| &partitions, |
| header_path, |
| &mut header_file, |
| footer_path, |
| &mut footer_file, |
| &mut composite_image, |
| )?; |
| |
| // Re-open the composite image as read-only. |
| let composite_image = File::open(&output_path) |
| .with_context(|| format!("Failed to open composite image {:?}", output_path))?; |
| |
| Ok((composite_image, files)) |
| } |
| |
| /// Given the AIDL config containing a list of partitions, with [`ParcelFileDescriptor`]s for each |
| /// partition, return the list of file descriptors which must be passed to the composite disk image |
| /// partition configuration for it. |
| fn convert_partitions(partitions: &[Partition]) -> Result<(Vec<PartitionInfo>, Vec<File>), Error> { |
| // File descriptors to pass to child process. |
| let mut files = vec![]; |
| |
| let partitions = partitions |
| .iter() |
| .map(|partition| { |
| let image_files = partition |
| .images |
| .iter() |
| .map(|image| { |
| let file = image |
| .as_ref() |
| .try_clone() |
| .context("Failed to clone partition image file descriptor")?; |
| |
| let size = get_partition_size(&file)?; |
| let fd = file.as_raw_fd(); |
| let partition_info_file = |
| PartitionFileInfo { path: format!("/proc/self/fd/{}", fd).into(), size }; |
| files.push(file); |
| Ok(partition_info_file) |
| }) |
| .collect::<Result<Vec<_>, Error>>()?; |
| |
| Ok(PartitionInfo { |
| label: partition.label.to_owned(), |
| files: image_files, |
| partition_type: ImagePartitionType::LinuxFilesystem, |
| writable: partition.writable, |
| }) |
| }) |
| .collect::<Result<_, Error>>()?; |
| |
| Ok((partitions, files)) |
| } |
| |
| /// Find the size of the partition image in the given file by parsing the header. |
| /// |
| /// This will work for raw, QCOW2, composite and Android sparse images. |
| fn get_partition_size(partition: &File) -> Result<u64, Error> { |
| // TODO: Use `context` once disk::Error implements std::error::Error. |
| Ok(create_disk_file(partition.try_clone()?) |
| .map_err(|e| anyhow!("Failed to open partition image: {}", e))? |
| .get_len()?) |
| } |
| |
| #[cfg(test)] |
| mod tests { |
| use super::*; |
| |
| #[test] |
| fn beginning_size() { |
| let mut buffer = vec![]; |
| let partitions = [0u8; GPT_NUM_PARTITIONS as usize * GPT_PARTITION_ENTRY_SIZE as usize]; |
| let disk_size = 1000 * SECTOR_SIZE; |
| write_beginning( |
| &mut buffer, |
| Uuid::from_u128(0x12345678_1234_5678_abcd_12345678abcd), |
| &partitions, |
| 42, |
| disk_size - GPT_END_SIZE, |
| disk_size, |
| ) |
| .unwrap(); |
| |
| assert_eq!(buffer.len(), GPT_BEGINNING_SIZE as usize); |
| } |
| |
| #[test] |
| fn end_size() { |
| let mut buffer = vec![]; |
| let partitions = [0u8; GPT_NUM_PARTITIONS as usize * GPT_PARTITION_ENTRY_SIZE as usize]; |
| let disk_size = 1000 * SECTOR_SIZE; |
| write_end( |
| &mut buffer, |
| Uuid::from_u128(0x12345678_1234_5678_abcd_12345678abcd), |
| &partitions, |
| 42, |
| disk_size - GPT_END_SIZE, |
| disk_size, |
| ) |
| .unwrap(); |
| |
| assert_eq!(buffer.len(), GPT_END_SIZE as usize); |
| } |
| |
| #[test] |
| fn end_size_with_padding() { |
| let mut buffer = vec![]; |
| let partitions = [0u8; GPT_NUM_PARTITIONS as usize * GPT_PARTITION_ENTRY_SIZE as usize]; |
| let disk_size = 1000 * SECTOR_SIZE; |
| let padding = 3 * SECTOR_SIZE; |
| write_end( |
| &mut buffer, |
| Uuid::from_u128(0x12345678_1234_5678_abcd_12345678abcd), |
| &partitions, |
| 42, |
| disk_size - GPT_END_SIZE - padding, |
| disk_size, |
| ) |
| .unwrap(); |
| |
| assert_eq!(buffer.len(), GPT_END_SIZE as usize + padding as usize); |
| } |
| } |