blob: c1b6495b7273a0f4b2f65a84770ed2be8a29f163 [file] [log] [blame]
/*
* Copyright (C) 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
use anyhow::{anyhow, bail, Context, Result};
use apkverify::{pick_v4_apk_digest, SignatureAlgorithmID};
use byteorder::{LittleEndian, ReadBytesExt, WriteBytesExt};
use num_derive::{FromPrimitive, ToPrimitive};
use num_traits::{FromPrimitive, ToPrimitive};
use std::io::{copy, Cursor, Read, Seek, SeekFrom, Write};
use crate::hashtree::*;
// `apksigv4` module provides routines to decode and encode the idsig file as defined in [APK
// signature scheme v4] (https://source.android.com/security/apksigning/v4).
/// `V4Signature` provides access to the various fields in an idsig file.
#[derive(Default)]
pub struct V4Signature<R: Read + Seek> {
/// Version of the header. Should be 2.
pub version: Version,
/// Provides access to the information about how the APK is hashed.
pub hashing_info: HashingInfo,
/// Provides access to the information that can be used to verify this file
pub signing_info: SigningInfo,
/// Total size of the merkle tree
pub merkle_tree_size: u32,
/// Offset of the merkle tree in the idsig file
pub merkle_tree_offset: u64,
// Provides access to the underlying data
data: R,
}
/// `HashingInfo` provides information about how the APK is hashed.
#[derive(Default)]
pub struct HashingInfo {
/// Hash algorithm used when creating the merkle tree for the APK.
pub hash_algorithm: HashAlgorithm,
/// The log size of a block used when creating the merkle tree. 12 if 4k block was used.
pub log2_blocksize: u8,
/// The salt used when creating the merkle tree. 32 bytes max.
pub salt: Box<[u8]>,
/// The root hash of the merkle tree created.
pub raw_root_hash: Box<[u8]>,
}
/// `SigningInfo` provides information that can be used to verify the idsig file.
#[derive(Default)]
pub struct SigningInfo {
/// Digest of the APK that this idsig file is for.
pub apk_digest: Box<[u8]>,
/// Certificate of the signer that signed this idsig file. ASN.1 DER form.
pub x509_certificate: Box<[u8]>,
/// A free-form binary data
pub additional_data: Box<[u8]>,
/// Public key of the signer in ASN.1 DER form. This must match the `x509_certificate` field.
pub public_key: Box<[u8]>,
/// Signature algorithm used to sign this file.
pub signature_algorithm_id: SignatureAlgorithmID,
/// The signature of this file.
pub signature: Box<[u8]>,
}
/// Version of the idsig file format
#[derive(Debug, PartialEq, Eq, FromPrimitive, ToPrimitive)]
#[repr(u32)]
pub enum Version {
/// Version 2, the only supported version.
V2 = 2,
}
impl Version {
fn from(val: u32) -> Result<Version> {
Self::from_u32(val).ok_or_else(|| anyhow!("{} is an unsupported version", val))
}
}
impl Default for Version {
fn default() -> Self {
Version::V2
}
}
/// Hash algorithm that can be used for idsig file.
#[derive(Debug, PartialEq, Eq, FromPrimitive, ToPrimitive)]
#[repr(u32)]
pub enum HashAlgorithm {
/// SHA2-256
SHA256 = 1,
}
impl HashAlgorithm {
fn from(val: u32) -> Result<HashAlgorithm> {
Self::from_u32(val).ok_or_else(|| anyhow!("{} is an unsupported hash algorithm", val))
}
}
impl Default for HashAlgorithm {
fn default() -> Self {
HashAlgorithm::SHA256
}
}
impl<R: Read + Seek> V4Signature<R> {
/// Consumes a stream for an idsig file into a `V4Signature` struct.
pub fn from(mut r: R) -> Result<V4Signature<R>> {
Ok(V4Signature {
version: Version::from(r.read_u32::<LittleEndian>()?)?,
hashing_info: HashingInfo::from(&mut r)?,
signing_info: SigningInfo::from(&mut r)?,
merkle_tree_size: r.read_u32::<LittleEndian>()?,
merkle_tree_offset: r.stream_position()?,
data: r,
})
}
/// Read a stream for an APK file and creates a corresponding `V4Signature` struct that digests
/// the APK file. Note that the signing is not done.
pub fn create(
mut apk: &mut R,
block_size: usize,
salt: &[u8],
algorithm: HashAlgorithm,
) -> Result<V4Signature<Cursor<Vec<u8>>>> {
// Determine the size of the apk
let start = apk.stream_position()?;
let size = apk.seek(SeekFrom::End(0))? as usize;
apk.seek(SeekFrom::Start(start))?;
// Create hash tree (and root hash)
let algorithm = match algorithm {
HashAlgorithm::SHA256 => openssl::hash::MessageDigest::sha256(),
};
let hash_tree = HashTree::from(&mut apk, size, salt, block_size, algorithm)?;
let mut ret = V4Signature {
version: Version::default(),
hashing_info: HashingInfo::default(),
signing_info: SigningInfo::default(),
merkle_tree_size: hash_tree.tree.len() as u32,
merkle_tree_offset: 0, // merkle tree starts from the beginning of `data`
data: Cursor::new(hash_tree.tree),
};
ret.hashing_info.raw_root_hash = hash_tree.root_hash.into_boxed_slice();
ret.hashing_info.log2_blocksize = log2(block_size);
apk.seek(SeekFrom::Start(start))?;
let (signature_algorithm_id, apk_digest) = pick_v4_apk_digest(apk)?;
ret.signing_info.signature_algorithm_id = signature_algorithm_id;
ret.signing_info.apk_digest = apk_digest;
// TODO(jiyong): add a signature to the signing_info struct
Ok(ret)
}
/// Writes the data into a writer
pub fn write_into<W: Write + Seek>(&mut self, mut w: &mut W) -> Result<()> {
// Writes the header part
w.write_u32::<LittleEndian>(self.version.to_u32().unwrap())?;
self.hashing_info.write_into(&mut w)?;
self.signing_info.write_into(&mut w)?;
w.write_u32::<LittleEndian>(self.merkle_tree_size)?;
// Writes the merkle tree
self.data.seek(SeekFrom::Start(self.merkle_tree_offset))?;
let copied_size = copy(&mut self.data, &mut w)?;
if copied_size != self.merkle_tree_size as u64 {
bail!(
"merkle tree is {} bytes, but only {} bytes are written.",
self.merkle_tree_size,
copied_size
);
}
Ok(())
}
/// Returns the bytes that represents the merkle tree
pub fn merkle_tree(&mut self) -> Result<Vec<u8>> {
self.data.seek(SeekFrom::Start(self.merkle_tree_offset))?;
let mut out = Vec::new();
self.data.read_to_end(&mut out)?;
Ok(out)
}
}
impl HashingInfo {
fn from(mut r: &mut dyn Read) -> Result<HashingInfo> {
// Size of the entire hashing_info struct. We don't need this because each variable-sized
// fields in the struct are also length encoded.
r.read_u32::<LittleEndian>()?;
Ok(HashingInfo {
hash_algorithm: HashAlgorithm::from(r.read_u32::<LittleEndian>()?)?,
log2_blocksize: r.read_u8()?,
salt: read_sized_array(&mut r)?,
raw_root_hash: read_sized_array(&mut r)?,
})
}
fn write_into<W: Write + Seek>(&self, mut w: &mut W) -> Result<()> {
let start = w.stream_position()?;
// Size of the entire hashing_info struct. Since we don't know the size yet, fill the place
// with 0. The exact size will then be written below.
w.write_u32::<LittleEndian>(0)?;
w.write_u32::<LittleEndian>(self.hash_algorithm.to_u32().unwrap())?;
w.write_u8(self.log2_blocksize)?;
write_sized_array(&mut w, &self.salt)?;
write_sized_array(&mut w, &self.raw_root_hash)?;
// Determine the size of hashing_info, and write it in front of the struct where the value
// was initialized to zero.
let end = w.stream_position()?;
let size = end - start - std::mem::size_of::<u32>() as u64;
w.seek(SeekFrom::Start(start))?;
w.write_u32::<LittleEndian>(size as u32)?;
w.seek(SeekFrom::Start(end))?;
Ok(())
}
}
impl SigningInfo {
fn from(mut r: &mut dyn Read) -> Result<SigningInfo> {
// Size of the entire signing_info struct. We don't need this because each variable-sized
// fields in the struct are also length encoded.
r.read_u32::<LittleEndian>()?;
Ok(SigningInfo {
apk_digest: read_sized_array(&mut r)?,
x509_certificate: read_sized_array(&mut r)?,
additional_data: read_sized_array(&mut r)?,
public_key: read_sized_array(&mut r)?,
signature_algorithm_id: SignatureAlgorithmID::from_u32(r.read_u32::<LittleEndian>()?)
.context("Unsupported signature algorithm")?,
signature: read_sized_array(&mut r)?,
})
}
fn write_into<W: Write + Seek>(&self, mut w: &mut W) -> Result<()> {
let start = w.stream_position()?;
// Size of the entire signing_info struct. Since we don't know the size yet, fill the place
// with 0. The exact size will then be written below.
w.write_u32::<LittleEndian>(0)?;
write_sized_array(&mut w, &self.apk_digest)?;
write_sized_array(&mut w, &self.x509_certificate)?;
write_sized_array(&mut w, &self.additional_data)?;
write_sized_array(&mut w, &self.public_key)?;
w.write_u32::<LittleEndian>(self.signature_algorithm_id.to_u32())?;
write_sized_array(&mut w, &self.signature)?;
// Determine the size of signing_info, and write it in front of the struct where the value
// was initialized to zero.
let end = w.stream_position()?;
let size = end - start - std::mem::size_of::<u32>() as u64;
w.seek(SeekFrom::Start(start))?;
w.write_u32::<LittleEndian>(size as u32)?;
w.seek(SeekFrom::Start(end))?;
Ok(())
}
}
fn read_sized_array(r: &mut dyn Read) -> Result<Box<[u8]>> {
let size = r.read_u32::<LittleEndian>()?;
let mut data = vec![0; size as usize];
r.read_exact(&mut data)?;
Ok(data.into_boxed_slice())
}
fn write_sized_array(w: &mut dyn Write, data: &[u8]) -> Result<()> {
w.write_u32::<LittleEndian>(data.len() as u32)?;
Ok(w.write_all(data)?)
}
fn log2(n: usize) -> u8 {
let num_bits = std::mem::size_of::<usize>() * 8;
(num_bits as u32 - n.leading_zeros() - 1) as u8
}
#[cfg(test)]
mod tests {
use super::*;
use std::io::Cursor;
fn hexstring_from(s: &[u8]) -> String {
s.iter().map(|byte| format!("{:02x}", byte)).reduce(|i, j| i + &j).unwrap_or_default()
}
#[test]
fn parse_idsig_file() {
let idsig = Cursor::new(include_bytes!("../testdata/test.apk.idsig"));
let parsed = V4Signature::from(idsig).unwrap();
assert_eq!(Version::V2, parsed.version);
let hi = parsed.hashing_info;
assert_eq!(HashAlgorithm::SHA256, hi.hash_algorithm);
assert_eq!(12, hi.log2_blocksize);
assert_eq!("", hexstring_from(hi.salt.as_ref()));
assert_eq!(
"ce1194fdb3cb2537daf0ac8cdf4926754adcbce5abeece7945fe25d204a0df6a",
hexstring_from(hi.raw_root_hash.as_ref())
);
let si = parsed.signing_info;
assert_eq!(
"b5225523a813fb84ed599dd649698c080bcfed4fb19ddb00283a662a2683bc15",
hexstring_from(si.apk_digest.as_ref())
);
assert_eq!("", hexstring_from(si.additional_data.as_ref()));
assert_eq!(
"303d021c77304d0f4732a90372bbfce095223e4ba82427ceb381f69bc6762d78021d008b99924\
a8585c38d7f654835eb219ae9e176b44e86dcb23153e3d9d6",
hexstring_from(si.signature.as_ref())
);
assert_eq!(SignatureAlgorithmID::DsaWithSha256, si.signature_algorithm_id);
assert_eq!(36864, parsed.merkle_tree_size);
assert_eq!(2251, parsed.merkle_tree_offset);
}
/// Parse an idsig file into V4Signature and write it. The written date must be the same as
/// the input file.
#[test]
fn parse_and_compose() {
let input = Cursor::new(include_bytes!("../testdata/test.apk.idsig"));
let mut parsed = V4Signature::from(input.clone()).unwrap();
let mut output = Cursor::new(Vec::new());
parsed.write_into(&mut output).unwrap();
assert_eq!(input.get_ref().as_ref(), output.get_ref().as_slice());
}
/// Create V4Signature by hashing an APK. Merkle tree and the root hash should be the same
/// as those in the idsig file created by the signapk tool.
#[test]
fn digest_from_apk() {
let mut input = Cursor::new(include_bytes!("../testdata/test.apk"));
let mut created =
V4Signature::create(&mut input, 4096, &[], HashAlgorithm::SHA256).unwrap();
let golden = Cursor::new(include_bytes!("../testdata/test.apk.idsig"));
let mut golden = V4Signature::from(golden).unwrap();
// Compare the root hash
assert_eq!(
created.hashing_info.raw_root_hash.as_ref(),
golden.hashing_info.raw_root_hash.as_ref()
);
// Compare the merkle tree
assert_eq!(
created.merkle_tree().unwrap().as_slice(),
golden.merkle_tree().unwrap().as_slice()
);
}
}