blob: 543e9aceeb1ef267f52ce26c2ca73d7842ab8cb1 [file] [log] [blame]
/*
* Copyright (C) 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//! A module for writing to a file from a trusted world to an untrusted storage.
//!
//! Architectural Model:
//! * Trusted world: the writer, a signing secret, has some memory, but NO persistent storage.
//! * Untrusted world: persistent storage, assuming untrusted.
//! * IPC mechanism between trusted and untrusted world
//!
//! Use cases:
//! * In the trusted world, we want to generate a large file, sign it, and share the signature for
//! a third party to verify the file.
//! * In the trusted world, we want to read a previously signed file back with signature check
//! without having to touch the whole file.
//!
//! Requirements:
//! * Communication between trusted and untrusted world is not cheap, and files can be large.
//! * A file write pattern may not be sequential, neither does read.
//!
//! Considering the above, a technique similar to fs-verity is used. fs-verity uses an alternative
//! hash function, a Merkle tree, to calculate the hash of file content. A file update at any
//! location will propagate the hash update from the leaf to the root node. Unlike fs-verity, which
//! assumes static files, to support write operation, we need to allow the file (thus tree) to
//! update.
//!
//! For the trusted world to generate a large file with random write and hash it, the writer needs
//! to hold some private information and update the Merkle tree during a file write (or even when
//! the Merkle tree needs to be stashed to the untrusted storage).
//!
//! A write to a file must update the root hash. In order for the root hash to update, a tree
//! walk to update from the write location to the root node is necessary. Importantly, in case when
//! (part of) the Merkle tree needs to be read from the untrusted storage (e.g. not yet verified in
//! cache), the original path must be verified by the trusted signature before the update to happen.
//!
//! Denial-of-service is a known weakness if the untrusted storage decides to simply remove the
//! file. But there is nothing we can do in this architecture.
//!
//! Rollback attack is another possible attack, but can be addressed with a rollback counter when
//! possible.
use std::io;
use std::sync::{Arc, RwLock};
use super::builder::MerkleLeaves;
use crate::common::{ChunkedSizeIter, CHUNK_SIZE};
use crate::crypto::{CryptoError, Sha256Hash, Sha256Hasher};
use crate::file::{RandomWrite, ReadOnlyDataByChunk};
// Implement the conversion from `CryptoError` to `io::Error` just to avoid manual error type
// mapping below.
impl From<CryptoError> for io::Error {
fn from(error: CryptoError) -> Self {
io::Error::new(io::ErrorKind::Other, error)
}
}
/// VerifiedFileEditor provides an integrity layer to an underlying read-writable file, which may
/// not be stored in a trusted environment. Only new, empty files are currently supported.
pub struct VerifiedFileEditor<F: ReadOnlyDataByChunk + RandomWrite> {
file: F,
merkle_tree: Arc<RwLock<MerkleLeaves>>,
}
impl<F: ReadOnlyDataByChunk + RandomWrite> VerifiedFileEditor<F> {
/// Wraps a supposedly new file for integrity protection.
pub fn new(file: F) -> Self {
Self { file, merkle_tree: Arc::new(RwLock::new(MerkleLeaves::new())) }
}
/// Calculates the fs-verity digest of the current file.
#[allow(dead_code)]
pub fn calculate_fsverity_digest(&self) -> io::Result<Sha256Hash> {
let merkle_tree = self.merkle_tree.read().unwrap();
merkle_tree.calculate_fsverity_digest().map_err(|e| io::Error::new(io::ErrorKind::Other, e))
}
fn new_hash_for_incomplete_write(
&self,
source: &[u8],
offset_from_alignment: usize,
output_chunk_index: usize,
merkle_tree: &mut MerkleLeaves,
) -> io::Result<Sha256Hash> {
// The buffer is initialized to 0 purposely. To calculate the block hash, the data is
// 0-padded to the block size. When a chunk read is less than a chunk, the initial value
// conveniently serves the padding purpose.
let mut orig_data = [0u8; CHUNK_SIZE as usize];
// If previous data exists, read back and verify against the known hash (since the
// storage / remote server is not trusted).
if merkle_tree.is_index_valid(output_chunk_index) {
self.read_chunk(output_chunk_index as u64, &mut orig_data)?;
// Verify original content
let hash = Sha256Hasher::new()?.update(&orig_data)?.finalize()?;
if !merkle_tree.is_consistent(output_chunk_index, &hash) {
return Err(io::Error::new(io::ErrorKind::InvalidData, "Inconsistent hash"));
}
}
Ok(Sha256Hasher::new()?
.update(&orig_data[..offset_from_alignment])?
.update(source)?
.update(&orig_data[offset_from_alignment + source.len()..])?
.finalize()?)
}
fn new_chunk_hash(
&self,
source: &[u8],
offset_from_alignment: usize,
current_size: usize,
output_chunk_index: usize,
merkle_tree: &mut MerkleLeaves,
) -> io::Result<Sha256Hash> {
if current_size as u64 == CHUNK_SIZE {
// Case 1: If the chunk is a complete one, just calculate the hash, regardless of
// write location.
Ok(Sha256Hasher::new()?.update(source)?.finalize()?)
} else {
// Case 2: For an incomplete write, calculate the hash based on previous data (if
// any).
self.new_hash_for_incomplete_write(
source,
offset_from_alignment,
output_chunk_index,
merkle_tree,
)
}
}
pub fn size(&self) -> u64 {
self.merkle_tree.read().unwrap().file_size()
}
}
impl<F: ReadOnlyDataByChunk + RandomWrite> RandomWrite for VerifiedFileEditor<F> {
fn write_at(&self, buf: &[u8], offset: u64) -> io::Result<usize> {
// Since we don't need to support 32-bit CPU, make an assert to make conversion between
// u64 and usize easy below. Otherwise, we need to check `divide_roundup(offset + buf.len()
// <= usize::MAX` or handle `TryInto` errors.
debug_assert!(usize::MAX as u64 == u64::MAX, "Only 64-bit arch is supported");
// The write range may not be well-aligned with the chunk boundary. There are various cases
// to deal with:
// 1. A write of a full 4K chunk.
// 2. A write of an incomplete chunk, possibly beyond the original EOF.
//
// Note that a write beyond EOF can create a hole. But we don't need to handle it here
// because holes are zeros, and leaves in MerkleLeaves are hashes of 4096-zeros by
// default.
// Now iterate on the input data, considering the alignment at the destination.
for (output_offset, current_size) in
ChunkedSizeIter::new(buf.len(), offset, CHUNK_SIZE as usize)
{
// Lock the tree for the whole write for now. There may be room to improve to increase
// throughput.
let mut merkle_tree = self.merkle_tree.write().unwrap();
let offset_in_buf = (output_offset - offset) as usize;
let source = &buf[offset_in_buf as usize..offset_in_buf as usize + current_size];
let output_chunk_index = (output_offset / CHUNK_SIZE) as usize;
let offset_from_alignment = (output_offset % CHUNK_SIZE) as usize;
let new_hash = match self.new_chunk_hash(
source,
offset_from_alignment,
current_size,
output_chunk_index,
&mut merkle_tree,
) {
Ok(hash) => hash,
Err(e) => {
// Return early when any error happens before the right. Even if the hash is not
// consistent for the current chunk, we can still consider the earlier writes
// successful. Note that nothing persistent has been done in this iteration.
let written = output_offset - offset;
if written > 0 {
return Ok(written as usize);
}
return Err(e);
}
};
// A failed, partial write here will make the backing file inconsistent to the (old)
// hash. Nothing can be done within this writer, but at least it still maintains the
// (original) integrity for the file. To matches what write(2) describes for an error
// case (though it's about direct I/O), "Partial data may be written ... should be
// considered inconsistent", an error below is propagated.
self.file.write_all_at(&source, output_offset)?;
// Update the hash only after the write succeeds. Note that this only attempts to keep
// the tree consistent to what has been written regardless the actual state beyond the
// writer.
let size_at_least = offset.saturating_add(buf.len() as u64);
merkle_tree.update_hash(output_chunk_index, &new_hash, size_at_least);
}
Ok(buf.len())
}
}
impl<F: ReadOnlyDataByChunk + RandomWrite> ReadOnlyDataByChunk for VerifiedFileEditor<F> {
fn read_chunk(&self, chunk_index: u64, buf: &mut [u8]) -> io::Result<usize> {
self.file.read_chunk(chunk_index, buf)
}
}
#[cfg(test)]
mod tests {
// Test data below can be generated by:
// $ perl -e 'print "\x{00}" x 6000' > foo
// $ perl -e 'print "\x{01}" x 5000' >> foo
// $ fsverity digest foo
use super::*;
use anyhow::Result;
use std::cell::RefCell;
use std::convert::TryInto;
struct InMemoryEditor {
data: RefCell<Vec<u8>>,
fail_read: bool,
}
impl InMemoryEditor {
pub fn new() -> InMemoryEditor {
InMemoryEditor { data: RefCell::new(Vec::new()), fail_read: false }
}
}
impl RandomWrite for InMemoryEditor {
fn write_at(&self, buf: &[u8], offset: u64) -> io::Result<usize> {
let begin: usize =
offset.try_into().map_err(|e| io::Error::new(io::ErrorKind::Other, e))?;
let end = begin + buf.len();
if end > self.data.borrow().len() {
self.data.borrow_mut().resize(end, 0);
}
self.data.borrow_mut().as_mut_slice()[begin..end].copy_from_slice(&buf);
Ok(buf.len())
}
}
impl ReadOnlyDataByChunk for InMemoryEditor {
fn read_chunk(&self, chunk_index: u64, buf: &mut [u8]) -> io::Result<usize> {
debug_assert!(buf.len() as u64 >= CHUNK_SIZE);
if self.fail_read {
return Err(io::Error::new(io::ErrorKind::Other, "test!"));
}
let borrowed = self.data.borrow();
let chunk = &borrowed
.chunks(CHUNK_SIZE as usize)
.nth(chunk_index as usize)
.ok_or_else(|| {
io::Error::new(
io::ErrorKind::InvalidInput,
format!("read_chunk out of bound: index {}", chunk_index),
)
})?;
buf[..chunk.len()].copy_from_slice(&chunk);
Ok(chunk.len())
}
}
#[test]
fn test_writer() -> Result<()> {
let writer = InMemoryEditor::new();
let buf = [1; 4096];
assert_eq!(writer.data.borrow().len(), 0);
assert_eq!(writer.write_at(&buf, 16384)?, 4096);
assert_eq!(writer.data.borrow()[16384..16384 + 4096], buf);
assert_eq!(writer.write_at(&buf, 2048)?, 4096);
assert_eq!(writer.data.borrow()[2048..2048 + 4096], buf);
assert_eq!(writer.data.borrow().len(), 16384 + 4096);
Ok(())
}
#[test]
fn test_verified_writer_no_write() -> Result<()> {
// Verify fs-verity hash without any write.
let file = VerifiedFileEditor::new(InMemoryEditor::new());
assert_eq!(
file.calculate_fsverity_digest()?,
to_u8_vec("3d248ca542a24fc62d1c43b916eae5016878e2533c88238480b26128a1f1af95")
.as_slice()
);
Ok(())
}
#[test]
fn test_verified_writer_from_zero() -> Result<()> {
// Verify a write of a full chunk.
let file = VerifiedFileEditor::new(InMemoryEditor::new());
assert_eq!(file.write_at(&[1; 4096], 0)?, 4096);
assert_eq!(
file.calculate_fsverity_digest()?,
to_u8_vec("cd0875ca59c7d37e962c5e8f5acd3770750ac80225e2df652ce5672fd34500af")
.as_slice()
);
// Verify a write of across multiple chunks.
let file = VerifiedFileEditor::new(InMemoryEditor::new());
assert_eq!(file.write_at(&[1; 4097], 0)?, 4097);
assert_eq!(
file.calculate_fsverity_digest()?,
to_u8_vec("2901b849fda2d91e3929524561c4a47e77bb64734319759507b2029f18b9cc52")
.as_slice()
);
// Verify another write of across multiple chunks.
let file = VerifiedFileEditor::new(InMemoryEditor::new());
assert_eq!(file.write_at(&[1; 10000], 0)?, 10000);
assert_eq!(
file.calculate_fsverity_digest()?,
to_u8_vec("7545409b556071554d18973a29b96409588c7cda4edd00d5586b27a11e1a523b")
.as_slice()
);
Ok(())
}
#[test]
fn test_verified_writer_unaligned() -> Result<()> {
// Verify small, unaligned write beyond EOF.
let file = VerifiedFileEditor::new(InMemoryEditor::new());
assert_eq!(file.write_at(&[1; 5], 3)?, 5);
assert_eq!(
file.calculate_fsverity_digest()?,
to_u8_vec("a23fc5130d3d7b3323fc4b4a5e79d5d3e9ddf3a3f5872639e867713512c6702f")
.as_slice()
);
// Verify bigger, unaligned write beyond EOF.
let file = VerifiedFileEditor::new(InMemoryEditor::new());
assert_eq!(file.write_at(&[1; 6000], 4000)?, 6000);
assert_eq!(
file.calculate_fsverity_digest()?,
to_u8_vec("d16d4c1c186d757e646f76208b21254f50d7f07ea07b1505ff48b2a6f603f989")
.as_slice()
);
Ok(())
}
#[test]
fn test_verified_writer_with_hole() -> Result<()> {
// Verify an aligned write beyond EOF with holes.
let file = VerifiedFileEditor::new(InMemoryEditor::new());
assert_eq!(file.write_at(&[1; 4096], 4096)?, 4096);
assert_eq!(
file.calculate_fsverity_digest()?,
to_u8_vec("4df2aefd8c2a9101d1d8770dca3ede418232eabce766bb8e020395eae2e97103")
.as_slice()
);
// Verify an unaligned write beyond EOF with holes.
let file = VerifiedFileEditor::new(InMemoryEditor::new());
assert_eq!(file.write_at(&[1; 5000], 6000)?, 5000);
assert_eq!(
file.calculate_fsverity_digest()?,
to_u8_vec("47d5da26f6934484e260630a69eb2eebb21b48f69bc8fbf8486d1694b7dba94f")
.as_slice()
);
// Just another example with a small write.
let file = VerifiedFileEditor::new(InMemoryEditor::new());
assert_eq!(file.write_at(&[1; 5], 16381)?, 5);
assert_eq!(
file.calculate_fsverity_digest()?,
to_u8_vec("8bd118821fb4aff26bb4b51d485cc481a093c68131b7f4f112e9546198449752")
.as_slice()
);
Ok(())
}
#[test]
fn test_verified_writer_various_writes() -> Result<()> {
let file = VerifiedFileEditor::new(InMemoryEditor::new());
assert_eq!(file.write_at(&[1; 2048], 0)?, 2048);
assert_eq!(file.write_at(&[1; 2048], 4096 + 2048)?, 2048);
assert_eq!(
file.calculate_fsverity_digest()?,
to_u8_vec("4c433d8640c888b629dc673d318cbb8d93b1eebcc784d9353e07f09f0dcfe707")
.as_slice()
);
assert_eq!(file.write_at(&[1; 2048], 2048)?, 2048);
assert_eq!(file.write_at(&[1; 2048], 4096)?, 2048);
assert_eq!(
file.calculate_fsverity_digest()?,
to_u8_vec("2a476d58eb80394052a3a783111e1458ac3ecf68a7878183fed86ca0ff47ec0d")
.as_slice()
);
assert_eq!(file.write_at(&[0; 2048], 2048)?, 2048);
assert_eq!(file.write_at(&[0; 2048], 4096)?, 2048);
assert_eq!(
file.calculate_fsverity_digest()?,
to_u8_vec("4c433d8640c888b629dc673d318cbb8d93b1eebcc784d9353e07f09f0dcfe707")
.as_slice()
);
assert_eq!(file.write_at(&[1; 4096], 2048)?, 4096);
assert_eq!(
file.calculate_fsverity_digest()?,
to_u8_vec("2a476d58eb80394052a3a783111e1458ac3ecf68a7878183fed86ca0ff47ec0d")
.as_slice()
);
assert_eq!(file.write_at(&[1; 2048], 8192)?, 2048);
assert_eq!(file.write_at(&[1; 2048], 8192 + 2048)?, 2048);
assert_eq!(
file.calculate_fsverity_digest()?,
to_u8_vec("23cbac08371e6ee838ebcc7ae6512b939d2226e802337be7b383c3e046047d24")
.as_slice()
);
Ok(())
}
#[test]
fn test_verified_writer_inconsistent_read() -> Result<()> {
let file = VerifiedFileEditor::new(InMemoryEditor::new());
assert_eq!(file.write_at(&[1; 8192], 0)?, 8192);
// Replace the expected hash of the first/0-th chunk. An incomplete write will fail when it
// detects the inconsistent read.
{
let mut merkle_tree = file.merkle_tree.write().unwrap();
let overriding_hash = [42; Sha256Hasher::HASH_SIZE];
merkle_tree.update_hash(0, &overriding_hash, 8192);
}
assert!(file.write_at(&[1; 1], 2048).is_err());
// A write of full chunk can still succeed. Also fixed the inconsistency.
assert_eq!(file.write_at(&[1; 4096], 4096)?, 4096);
// Replace the expected hash of the second/1-th chunk. A write range from previous chunk can
// still succeed, but returns early due to an inconsistent read but still successfully. A
// resumed write will fail since no bytes can be written due to the same inconsistency.
{
let mut merkle_tree = file.merkle_tree.write().unwrap();
let overriding_hash = [42; Sha256Hasher::HASH_SIZE];
merkle_tree.update_hash(1, &overriding_hash, 8192);
}
assert_eq!(file.write_at(&[10; 8000], 0)?, 4096);
assert!(file.write_at(&[10; 8000 - 4096], 4096).is_err());
Ok(())
}
#[test]
fn test_verified_writer_failed_read_back() -> Result<()> {
let mut writer = InMemoryEditor::new();
writer.fail_read = true;
let file = VerifiedFileEditor::new(writer);
assert_eq!(file.write_at(&[1; 8192], 0)?, 8192);
// When a read back is needed, a read failure will fail to write.
assert!(file.write_at(&[1; 1], 2048).is_err());
Ok(())
}
fn to_u8_vec(hex_str: &str) -> Vec<u8> {
assert!(hex_str.len() % 2 == 0);
(0..hex_str.len())
.step_by(2)
.map(|i| u8::from_str_radix(&hex_str[i..i + 2], 16).unwrap())
.collect()
}
}