blob: 9a2648fd5317439aae01e1f25b0aab83374b4619 [file] [log] [blame]
// Copyright 2022, The Android Open Source Project
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Logic for handling the DICE values and boot operations.
use anyhow::{bail, Context, Error, Result};
use byteorder::{NativeEndian, ReadBytesExt};
use diced_open_dice::{
retry_bcc_main_flow, Cdi, Config, DiceMode, Hash, Hidden, InputValues, OwnedDiceArtifacts,
};
use keystore2_crypto::ZVec;
use libc::{c_void, mmap, munmap, MAP_FAILED, MAP_PRIVATE, PROT_READ};
use openssl::hkdf::hkdf;
use openssl::md::Md;
use std::fs;
use std::os::unix::io::AsRawFd;
use std::path::{Path, PathBuf};
use std::ptr::null_mut;
use std::slice;
/// Derives a sealing key from the DICE sealing CDI.
pub fn derive_sealing_key(
cdi_seal: &Cdi,
salt: &[u8],
info: &[u8],
keysize: usize,
) -> Result<ZVec> {
let mut key = ZVec::new(keysize)?;
hkdf(&mut key, Md::sha256(), cdi_seal, salt, info)?;
Ok(key)
}
/// Artifacts that are mapped into the process address space from the driver.
pub enum DiceDriver<'a> {
Real {
driver_path: PathBuf,
mmap_addr: *mut c_void,
mmap_size: usize,
cdi_attest: &'a Cdi,
cdi_seal: &'a Cdi,
bcc: &'a [u8],
},
Fake(OwnedDiceArtifacts),
}
impl DiceDriver<'_> {
pub fn new(driver_path: &Path) -> Result<Self> {
if driver_path.exists() {
log::info!("Using DICE values from driver");
} else if super::is_strict_boot() {
bail!("Strict boot requires DICE value from driver but none were found");
} else {
log::warn!("Using sample DICE values");
let dice_artifacts = diced_sample_inputs::make_sample_bcc_and_cdis()
.expect("Failed to create sample dice artifacts.");
return Ok(Self::Fake(dice_artifacts));
};
let mut file = fs::File::open(driver_path)
.map_err(|error| Error::new(error).context("Opening driver"))?;
let mmap_size =
file.read_u64::<NativeEndian>()
.map_err(|error| Error::new(error).context("Reading driver"))? as usize;
// It's safe to map the driver as the service will only create a single
// mapping per process.
let mmap_addr = unsafe {
let fd = file.as_raw_fd();
mmap(null_mut(), mmap_size, PROT_READ, MAP_PRIVATE, fd, 0)
};
if mmap_addr == MAP_FAILED {
bail!("Failed to mmap {:?}", driver_path);
}
// The slice is created for the region of memory that was just
// successfully mapped into the process address space so it will be
// accessible and not referenced from anywhere else.
let mmap_buf =
unsafe { slice::from_raw_parts((mmap_addr as *const u8).as_ref().unwrap(), mmap_size) };
// Very inflexible parsing / validation of the BccHandover data. Assumes deterministically
// encoded CBOR.
//
// BccHandover = {
// 1 : bstr .size 32, ; CDI_Attest
// 2 : bstr .size 32, ; CDI_Seal
// 3 : Bcc, ; Certificate chain
// }
if mmap_buf[0..4] != [0xa3, 0x01, 0x58, 0x20]
|| mmap_buf[36..39] != [0x02, 0x58, 0x20]
|| mmap_buf[71] != 0x03
{
bail!("BccHandover format mismatch");
}
Ok(Self::Real {
driver_path: driver_path.to_path_buf(),
mmap_addr,
mmap_size,
cdi_attest: mmap_buf[4..36].try_into().unwrap(),
cdi_seal: mmap_buf[39..71].try_into().unwrap(),
bcc: &mmap_buf[72..],
})
}
pub fn get_sealing_key(&self, identifier: &[u8]) -> Result<ZVec> {
// Deterministically derive a key to use for sealing data, rather than using the CDI
// directly, so we have the chance to rotate the key if needed. A salt isn't needed as the
// input key material is already cryptographically strong.
let cdi_seal = match self {
Self::Real { cdi_seal, .. } => cdi_seal,
Self::Fake(fake) => &fake.cdi_values.cdi_seal,
};
let salt = &[];
derive_sealing_key(cdi_seal, salt, identifier, 32)
}
pub fn derive(
self,
code_hash: Hash,
config_desc: &[u8],
authority_hash: Hash,
debug: bool,
hidden: Hidden,
) -> Result<OwnedDiceArtifacts> {
let input_values = InputValues::new(
code_hash,
Config::Descriptor(config_desc),
authority_hash,
if debug { DiceMode::kDiceModeDebug } else { DiceMode::kDiceModeNormal },
hidden,
);
let (cdi_attest, cdi_seal, bcc) = match &self {
Self::Real { cdi_attest, cdi_seal, bcc, .. } => (*cdi_attest, *cdi_seal, *bcc),
Self::Fake(fake) => {
(&fake.cdi_values.cdi_attest, &fake.cdi_values.cdi_seal, fake.bcc.as_slice())
}
};
let dice_artifacts = retry_bcc_main_flow(cdi_attest, cdi_seal, bcc, &input_values)
.context("DICE derive from driver")?;
if let Self::Real { driver_path, .. } = &self {
// Writing to the device wipes the artifacts. The string is ignored by the driver but
// included for documentation.
fs::write(driver_path, "wipe")
.map_err(|err| Error::new(err).context("Wiping driver"))?;
}
Ok(dice_artifacts)
}
}
impl Drop for DiceDriver<'_> {
fn drop(&mut self) {
if let &mut Self::Real { mmap_addr, mmap_size, .. } = self {
// All references to the mapped region have the same lifetime as self. Since self is
// being dropped, so are all the references to the mapped region meaning its safe to
// unmap.
let ret = unsafe { munmap(mmap_addr, mmap_size) };
if ret != 0 {
log::warn!("Failed to munmap ({})", ret);
}
}
}
}