blob: 572ad4bbaeca49436a6a8df6317f5f83f4109ae3 [file] [log] [blame]
// Copyright 2023, The Android Open Source Project
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Contains struct and functions that wraps the API related to EC_KEY in
//! BoringSSL.
use crate::cbb::CbbFixed;
use crate::cbs::Cbs;
use crate::util::{check_int_result, to_call_failed_error};
use alloc::vec::Vec;
use bssl_avf_error::{ApiName, Error, Result};
use bssl_ffi::{
BN_bin2bn, BN_bn2bin_padded, BN_clear_free, BN_new, CBB_flush, CBB_len,
EC_GROUP_new_by_curve_name, EC_KEY_check_key, EC_KEY_free, EC_KEY_generate_key,
EC_KEY_get0_group, EC_KEY_get0_public_key, EC_KEY_marshal_private_key,
EC_KEY_new_by_curve_name, EC_KEY_parse_private_key, EC_KEY_set_public_key_affine_coordinates,
EC_POINT_get_affine_coordinates, NID_X9_62_prime256v1, BIGNUM, EC_GROUP, EC_KEY, EC_POINT,
};
use ciborium::Value;
use core::ptr::{self, NonNull};
use core::result;
use coset::{
iana::{self, EnumI64},
CborSerializable, CoseKey, CoseKeyBuilder, Label,
};
use log::error;
use zeroize::{Zeroize, ZeroizeOnDrop, Zeroizing};
const ES256_ALGO: iana::Algorithm = iana::Algorithm::ES256;
const P256_CURVE: iana::EllipticCurve = iana::EllipticCurve::P_256;
const P256_AFFINE_COORDINATE_SIZE: usize = 32;
type Coordinate = [u8; P256_AFFINE_COORDINATE_SIZE];
/// Wrapper of an `EC_KEY` object, representing a public or private EC key.
pub struct EcKey(NonNull<EC_KEY>);
impl Drop for EcKey {
fn drop(&mut self) {
// SAFETY: It is safe because the key has been allocated by BoringSSL and isn't
// used after this.
unsafe { EC_KEY_free(self.0.as_ptr()) }
}
}
impl EcKey {
/// Creates a new EC P-256 key pair.
pub fn new_p256() -> Result<Self> {
// SAFETY: The returned pointer is checked below.
let ec_key = unsafe {
EC_KEY_new_by_curve_name(NID_X9_62_prime256v1) // EC P-256 CURVE Nid
};
NonNull::new(ec_key)
.map(Self)
.ok_or(to_call_failed_error(ApiName::EC_KEY_new_by_curve_name))
}
/// Constructs an `EcKey` instance from the provided COSE_Key encoded public key slice.
pub fn from_cose_public_key(cose_key: &[u8]) -> Result<Self> {
let cose_key = CoseKey::from_slice(cose_key).map_err(|e| {
error!("Failed to deserialize COSE_Key: {e:?}");
Error::CoseKeyDecodingFailed
})?;
if cose_key.alg != Some(coset::Algorithm::Assigned(ES256_ALGO)) {
error!(
"Only ES256 algorithm is supported. Algo type in the COSE Key: {:?}",
cose_key.alg
);
return Err(Error::Unimplemented);
}
let crv = get_label_value(&cose_key, Label::Int(iana::Ec2KeyParameter::Crv.to_i64()))?;
if &Value::from(P256_CURVE.to_i64()) != crv {
error!("Only EC P-256 curve is supported. Curve type in the COSE Key: {crv:?}");
return Err(Error::Unimplemented);
}
let x = get_label_value_as_bytes(&cose_key, Label::Int(iana::Ec2KeyParameter::X.to_i64()))?;
let y = get_label_value_as_bytes(&cose_key, Label::Int(iana::Ec2KeyParameter::Y.to_i64()))?;
check_p256_affine_coordinate_size(x)?;
check_p256_affine_coordinate_size(y)?;
let x = BigNum::from_slice(x)?;
let y = BigNum::from_slice(y)?;
let ec_key = EcKey::new_p256()?;
// SAFETY: All the parameters are checked non-null and initialized.
// The function only reads the coordinates x and y within their bounds.
let ret = unsafe {
EC_KEY_set_public_key_affine_coordinates(ec_key.0.as_ptr(), x.as_ref(), y.as_ref())
};
check_int_result(ret, ApiName::EC_KEY_set_public_key_affine_coordinates)?;
Ok(ec_key)
}
/// Performs several checks on the key. See BoringSSL doc for more details:
///
/// https://commondatastorage.googleapis.com/chromium-boringssl-docs/ec_key.h.html#EC_KEY_check_key
pub fn check_key(&self) -> Result<()> {
// SAFETY: This function only reads the `EC_KEY` pointer, the non-null check is performed
// within the function.
let ret = unsafe { EC_KEY_check_key(self.0.as_ptr()) };
check_int_result(ret, ApiName::EC_KEY_check_key)
}
/// Verifies the DER-encoded ECDSA `signature` of the `message` with the current `EcKey`.
pub fn ecdsa_verify(&self, _signature: &[u8], _message: &[u8]) -> Result<()> {
// TODO(b/310634099): Implement ECDSA sign with `bssl::ECDSA_do_sign`.
Ok(())
}
/// Signs the `message` with the current `EcKey` using ECDSA.
///
/// Returns the DER-encoded ECDSA signature.
pub fn ecdsa_sign(&self, _message: &[u8]) -> Result<Vec<u8>> {
// TODO(b/310634099): Implement ECDSA verify with `bssl::ECDSA_do_verify`.
Ok(Vec::new())
}
/// Generates a random, private key, calculates the corresponding public key and stores both
/// in the `EC_KEY`.
pub fn generate_key(&mut self) -> Result<()> {
// SAFETY: The non-null pointer is created with `EC_KEY_new_by_curve_name` and should
// point to a valid `EC_KEY`.
// The randomness is provided by `getentropy()` in `vmbase`.
let ret = unsafe { EC_KEY_generate_key(self.0.as_ptr()) };
check_int_result(ret, ApiName::EC_KEY_generate_key)
}
/// Returns the `CoseKey` for the public key.
pub fn cose_public_key(&self) -> Result<CoseKey> {
let (x, y) = self.public_key_coordinates()?;
let key = CoseKeyBuilder::new_ec2_pub_key(P256_CURVE, x.to_vec(), y.to_vec())
.algorithm(ES256_ALGO)
.build();
Ok(key)
}
/// Returns the x and y coordinates of the public key.
fn public_key_coordinates(&self) -> Result<(Coordinate, Coordinate)> {
let ec_group = self.ec_group()?;
let ec_point = self.public_key_ec_point()?;
let mut x = BigNum::new()?;
let mut y = BigNum::new()?;
let ctx = ptr::null_mut();
// SAFETY: All the parameters are checked non-null and initialized when needed.
// The last parameter `ctx` is generated when needed inside the function.
let ret = unsafe {
EC_POINT_get_affine_coordinates(ec_group, ec_point, x.as_mut_ptr(), y.as_mut_ptr(), ctx)
};
check_int_result(ret, ApiName::EC_POINT_get_affine_coordinates)?;
Ok((x.try_into()?, y.try_into()?))
}
/// Returns a pointer to the public key point inside `EC_KEY`. The memory region pointed
/// by the pointer is owned by the `EC_KEY`.
fn public_key_ec_point(&self) -> Result<*const EC_POINT> {
let ec_point =
// SAFETY: It is safe since the key pair has been generated and stored in the
// `EC_KEY` pointer.
unsafe { EC_KEY_get0_public_key(self.0.as_ptr()) };
if ec_point.is_null() {
Err(to_call_failed_error(ApiName::EC_KEY_get0_public_key))
} else {
Ok(ec_point)
}
}
/// Returns a pointer to the `EC_GROUP` object inside `EC_KEY`. The memory region pointed
/// by the pointer is owned by the `EC_KEY`.
fn ec_group(&self) -> Result<*const EC_GROUP> {
let group =
// SAFETY: It is safe since the key pair has been generated and stored in the
// `EC_KEY` pointer.
unsafe { EC_KEY_get0_group(self.0.as_ptr()) };
if group.is_null() {
Err(to_call_failed_error(ApiName::EC_KEY_get0_group))
} else {
Ok(group)
}
}
/// Constructs an `EcKey` instance from the provided DER-encoded ECPrivateKey slice.
///
/// Currently, only the EC P-256 curve is supported.
pub fn from_ec_private_key(der_encoded_ec_private_key: &[u8]) -> Result<Self> {
// SAFETY: This function only returns a pointer to a static object, and the
// return is checked below.
let ec_group = unsafe {
EC_GROUP_new_by_curve_name(NID_X9_62_prime256v1) // EC P-256 CURVE Nid
};
if ec_group.is_null() {
return Err(to_call_failed_error(ApiName::EC_GROUP_new_by_curve_name));
}
let mut cbs = Cbs::new(der_encoded_ec_private_key);
// SAFETY: The function only reads bytes from the buffer managed by the valid `CBS`
// object, and the returned EC_KEY is checked.
let ec_key = unsafe { EC_KEY_parse_private_key(cbs.as_mut(), ec_group) };
let ec_key = NonNull::new(ec_key)
.map(Self)
.ok_or(to_call_failed_error(ApiName::EC_KEY_parse_private_key))?;
ec_key.check_key()?;
Ok(ec_key)
}
/// Returns the DER-encoded ECPrivateKey structure described in RFC 5915 Section 3:
///
/// https://datatracker.ietf.org/doc/html/rfc5915#section-3
pub fn ec_private_key(&self) -> Result<ZVec> {
const CAPACITY: usize = 256;
let mut buf = Zeroizing::new([0u8; CAPACITY]);
let mut cbb = CbbFixed::new(buf.as_mut());
let enc_flags = 0;
let ret =
// SAFETY: The function only write bytes to the buffer managed by the valid `CBB`
// object, and the key has been allocated by BoringSSL.
unsafe { EC_KEY_marshal_private_key(cbb.as_mut(), self.0.as_ptr(), enc_flags) };
check_int_result(ret, ApiName::EC_KEY_marshal_private_key)?;
// SAFETY: This is safe because the CBB pointer is a valid pointer initialized with
// `CBB_init_fixed()`.
check_int_result(unsafe { CBB_flush(cbb.as_mut()) }, ApiName::CBB_flush)?;
// SAFETY: This is safe because the CBB pointer is initialized with `CBB_init_fixed()`,
// and it has been flushed, thus it has no active children.
let len = unsafe { CBB_len(cbb.as_ref()) };
Ok(buf.get(0..len).ok_or(to_call_failed_error(ApiName::CBB_len))?.to_vec().into())
}
}
fn get_label_value_as_bytes(key: &CoseKey, label: Label) -> Result<&[u8]> {
Ok(get_label_value(key, label)?.as_bytes().ok_or_else(|| {
error!("Value not a bstr.");
Error::CoseKeyDecodingFailed
})?)
}
fn get_label_value(key: &CoseKey, label: Label) -> Result<&Value> {
Ok(&key.params.iter().find(|(k, _)| k == &label).ok_or(Error::CoseKeyDecodingFailed)?.1)
}
fn check_p256_affine_coordinate_size(coordinate: &[u8]) -> Result<()> {
if P256_AFFINE_COORDINATE_SIZE == coordinate.len() {
Ok(())
} else {
error!(
"The size of the affine coordinate '{}' does not match the expected size '{}'",
coordinate.len(),
P256_AFFINE_COORDINATE_SIZE
);
Err(Error::CoseKeyDecodingFailed)
}
}
/// A u8 vector that is zeroed when dropped.
#[derive(Zeroize, ZeroizeOnDrop)]
pub struct ZVec(Vec<u8>);
impl ZVec {
/// Extracts a slice containing the entire vector.
pub fn as_slice(&self) -> &[u8] {
&self.0[..]
}
}
impl From<Vec<u8>> for ZVec {
fn from(v: Vec<u8>) -> Self {
Self(v)
}
}
struct BigNum(NonNull<BIGNUM>);
impl Drop for BigNum {
fn drop(&mut self) {
// SAFETY: The pointer has been created with `BN_new`.
unsafe { BN_clear_free(self.as_mut_ptr()) }
}
}
impl BigNum {
fn from_slice(x: &[u8]) -> Result<Self> {
// SAFETY: The function reads `x` within its bounds, and the returned
// pointer is checked below.
let bn = unsafe { BN_bin2bn(x.as_ptr(), x.len(), ptr::null_mut()) };
NonNull::new(bn).map(Self).ok_or(to_call_failed_error(ApiName::BN_bin2bn))
}
fn new() -> Result<Self> {
// SAFETY: The returned pointer is checked below.
let bn = unsafe { BN_new() };
NonNull::new(bn).map(Self).ok_or(to_call_failed_error(ApiName::BN_new))
}
fn as_mut_ptr(&mut self) -> *mut BIGNUM {
self.0.as_ptr()
}
}
impl AsRef<BIGNUM> for BigNum {
fn as_ref(&self) -> &BIGNUM {
// SAFETY: The pointer is valid and points to an initialized instance of `BIGNUM`
// when the instance was created.
unsafe { self.0.as_ref() }
}
}
/// Converts the `BigNum` to a big-endian integer. The integer is padded with leading zeros up to
/// size `N`. The conversion fails if `N` is smaller thanthe size of the integer.
impl<const N: usize> TryFrom<BigNum> for [u8; N] {
type Error = Error;
fn try_from(bn: BigNum) -> result::Result<Self, Self::Error> {
let mut num = [0u8; N];
// SAFETY: The `BIGNUM` pointer has been created with `BN_new`.
let ret = unsafe { BN_bn2bin_padded(num.as_mut_ptr(), num.len(), bn.0.as_ptr()) };
check_int_result(ret, ApiName::BN_bn2bin_padded)?;
Ok(num)
}
}
// TODO(b/301068421): Unit tests the EcKey.