blob: 8e078eafadb8e0a7d9f50e34650d9ee8e884a7fd [file] [log] [blame]
// Copyright 2022, The Android Open Source Project
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Logic for handling the DICE values and boot operations.
use anyhow::{anyhow, bail, Context, Error, Result};
use byteorder::{NativeEndian, ReadBytesExt};
use ciborium::{cbor, ser};
use diced_open_dice::{
bcc_handover_parse, retry_bcc_main_flow, BccHandover, Config, DiceArtifacts, DiceMode, Hash,
Hidden, InputValues, OwnedDiceArtifacts,
};
use keystore2_crypto::ZVec;
use libc::{c_void, mmap, munmap, MAP_FAILED, MAP_PRIVATE, PROT_READ};
use microdroid_metadata::PayloadMetadata;
use openssl::hkdf::hkdf;
use openssl::md::Md;
use std::fs;
use std::os::unix::io::AsRawFd;
use std::path::{Path, PathBuf};
use std::ptr::null_mut;
use std::slice;
/// Derives a sealing key from the DICE sealing CDI.
pub fn derive_sealing_key(
dice_artifacts: &dyn DiceArtifacts,
salt: &[u8],
info: &[u8],
key: &mut [u8],
) -> Result<()> {
Ok(hkdf(key, Md::sha256(), dice_artifacts.cdi_seal(), salt, info)?)
}
/// Artifacts that are mapped into the process address space from the driver.
pub enum DiceDriver<'a> {
Real {
driver_path: PathBuf,
mmap_addr: *mut c_void,
mmap_size: usize,
bcc_handover: BccHandover<'a>,
},
Fake(OwnedDiceArtifacts),
}
impl DiceDriver<'_> {
fn dice_artifacts(&self) -> &dyn DiceArtifacts {
match self {
Self::Real { bcc_handover, .. } => bcc_handover,
Self::Fake(owned_dice_artifacts) => owned_dice_artifacts,
}
}
pub fn new(driver_path: &Path) -> Result<Self> {
if driver_path.exists() {
log::info!("Using DICE values from driver");
} else if super::is_strict_boot() {
bail!("Strict boot requires DICE value from driver but none were found");
} else {
log::warn!("Using sample DICE values");
let dice_artifacts = diced_sample_inputs::make_sample_bcc_and_cdis()
.expect("Failed to create sample dice artifacts.");
return Ok(Self::Fake(dice_artifacts));
};
let mut file = fs::File::open(driver_path)
.map_err(|error| Error::new(error).context("Opening driver"))?;
let mmap_size =
file.read_u64::<NativeEndian>()
.map_err(|error| Error::new(error).context("Reading driver"))? as usize;
// SAFETY: It's safe to map the driver as the service will only create a single
// mapping per process.
let mmap_addr = unsafe {
let fd = file.as_raw_fd();
mmap(null_mut(), mmap_size, PROT_READ, MAP_PRIVATE, fd, 0)
};
if mmap_addr == MAP_FAILED {
bail!("Failed to mmap {:?}", driver_path);
}
let mmap_buf =
// SAFETY: The slice is created for the region of memory that was just
// successfully mapped into the process address space so it will be
// accessible and not referenced from anywhere else.
unsafe { slice::from_raw_parts((mmap_addr as *const u8).as_ref().unwrap(), mmap_size) };
let bcc_handover =
bcc_handover_parse(mmap_buf).map_err(|_| anyhow!("Failed to parse Bcc Handover"))?;
Ok(Self::Real {
driver_path: driver_path.to_path_buf(),
mmap_addr,
mmap_size,
bcc_handover,
})
}
/// Derives a sealing key of `key_length` bytes from the DICE sealing CDI.
pub fn get_sealing_key(&self, identifier: &[u8], key_length: usize) -> Result<ZVec> {
// Deterministically derive a key to use for sealing data, rather than using the CDI
// directly, so we have the chance to rotate the key if needed. A salt isn't needed as the
// input key material is already cryptographically strong.
let mut key = ZVec::new(key_length)?;
let salt = &[];
derive_sealing_key(self.dice_artifacts(), salt, identifier, &mut key)?;
Ok(key)
}
pub fn derive(
self,
code_hash: Hash,
config_desc: &[u8],
authority_hash: Hash,
debug: bool,
hidden: Hidden,
) -> Result<OwnedDiceArtifacts> {
let input_values = InputValues::new(
code_hash,
Config::Descriptor(config_desc),
authority_hash,
if debug { DiceMode::kDiceModeDebug } else { DiceMode::kDiceModeNormal },
hidden,
);
let current_dice_artifacts = self.dice_artifacts();
let next_dice_artifacts = retry_bcc_main_flow(
current_dice_artifacts.cdi_attest(),
current_dice_artifacts.cdi_seal(),
current_dice_artifacts.bcc().ok_or_else(|| anyhow!("bcc is none"))?,
&input_values,
)
.context("DICE derive from driver")?;
if let Self::Real { driver_path, .. } = &self {
// Writing to the device wipes the artifacts. The string is ignored by the driver but
// included for documentation.
fs::write(driver_path, "wipe")
.map_err(|err| Error::new(err).context("Wiping driver"))?;
}
Ok(next_dice_artifacts)
}
}
impl Drop for DiceDriver<'_> {
fn drop(&mut self) {
if let &mut Self::Real { mmap_addr, mmap_size, .. } = self {
// SAFETY: All references to the mapped region have the same lifetime as self. Since
// self is being dropped, so are all the references to the mapped region meaning it's
// safe to unmap.
let ret = unsafe { munmap(mmap_addr, mmap_size) };
if ret != 0 {
log::warn!("Failed to munmap ({})", ret);
}
}
}
}
/// Returns a configuration descriptor of the given payload following the BCC's specification:
/// https://cs.android.com/android/platform/superproject/+/master:hardware/interfaces/security/rkp/aidl/android/hardware/security/keymint/ProtectedData.aidl
/// {
/// -70002: "Microdroid payload",
/// ? -71000: tstr // payload_config_path
/// ? -71001: PayloadConfig
/// }
/// PayloadConfig = {
/// 1: tstr // payload_binary_name
/// }
pub fn format_payload_config_descriptor(payload: &PayloadMetadata) -> Result<Vec<u8>> {
const MICRODROID_PAYLOAD_COMPONENT_NAME: &str = "Microdroid payload";
let config_descriptor_cbor_value = match payload {
PayloadMetadata::ConfigPath(payload_config_path) => cbor!({
-70002 => MICRODROID_PAYLOAD_COMPONENT_NAME,
-71000 => payload_config_path
}),
PayloadMetadata::Config(payload_config) => cbor!({
-70002 => MICRODROID_PAYLOAD_COMPONENT_NAME,
-71001 => {1 => payload_config.payload_binary_name}
}),
_ => bail!("Failed to match the payload against a config type: {:?}", payload),
}
.context("Failed to build a CBOR Value from payload metadata")?;
let mut config_descriptor = Vec::new();
ser::into_writer(&config_descriptor_cbor_value, &mut config_descriptor)?;
Ok(config_descriptor)
}
#[cfg(test)]
mod tests {
use super::*;
use microdroid_metadata::PayloadConfig;
#[test]
fn payload_metadata_with_path_formats_correctly() -> Result<()> {
let payload_metadata = PayloadMetadata::ConfigPath("/config_path".to_string());
let config_descriptor = format_payload_config_descriptor(&payload_metadata)?;
static EXPECTED_CONFIG_DESCRIPTOR: &[u8] = &[
0xa2, 0x3a, 0x00, 0x01, 0x11, 0x71, 0x72, 0x4d, 0x69, 0x63, 0x72, 0x6f, 0x64, 0x72,
0x6f, 0x69, 0x64, 0x20, 0x70, 0x61, 0x79, 0x6c, 0x6f, 0x61, 0x64, 0x3a, 0x00, 0x01,
0x15, 0x57, 0x6c, 0x2f, 0x63, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x5f, 0x70, 0x61, 0x74,
0x68,
];
assert_eq!(EXPECTED_CONFIG_DESCRIPTOR, &config_descriptor);
Ok(())
}
#[test]
fn payload_metadata_with_config_formats_correctly() -> Result<()> {
let payload_config = PayloadConfig {
payload_binary_name: "payload_binary".to_string(),
..Default::default()
};
let payload_metadata = PayloadMetadata::Config(payload_config);
let config_descriptor = format_payload_config_descriptor(&payload_metadata)?;
static EXPECTED_CONFIG_DESCRIPTOR: &[u8] = &[
0xa2, 0x3a, 0x00, 0x01, 0x11, 0x71, 0x72, 0x4d, 0x69, 0x63, 0x72, 0x6f, 0x64, 0x72,
0x6f, 0x69, 0x64, 0x20, 0x70, 0x61, 0x79, 0x6c, 0x6f, 0x61, 0x64, 0x3a, 0x00, 0x01,
0x15, 0x58, 0xa1, 0x01, 0x6e, 0x70, 0x61, 0x79, 0x6c, 0x6f, 0x61, 0x64, 0x5f, 0x62,
0x69, 0x6e, 0x61, 0x72, 0x79,
];
assert_eq!(EXPECTED_CONFIG_DESCRIPTOR, &config_descriptor);
Ok(())
}
}