blob: 306c9d9de6ed5500fab753e951e306f0021c0140 [file] [log] [blame]
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
use libc::EIO;
use std::io;
use thiserror::Error;
use crate::auth::Authenticator;
use crate::common::divide_roundup;
use crate::crypto::{CryptoError, Sha256Hasher};
use crate::reader::ReadOnlyDataByChunk;
const ZEROS: [u8; 4096] = [0u8; 4096];
// The size of `struct fsverity_formatted_digest` in Linux with SHA-256.
const SIZE_OF_FSVERITY_FORMATTED_DIGEST_SHA256: usize = 12 + Sha256Hasher::HASH_SIZE;
#[derive(Error, Debug)]
pub enum FsverityError {
#[error("Cannot verify a signature")]
BadSignature,
#[error("Insufficient data, only got {0}")]
InsufficientData(usize),
#[error("Cannot verify a block")]
CannotVerify,
#[error("I/O error")]
Io(#[from] io::Error),
#[error("Crypto")]
UnexpectedCryptoError(#[from] CryptoError),
}
type HashBuffer = [u8; Sha256Hasher::HASH_SIZE];
fn hash_with_padding(chunk: &[u8], pad_to: usize) -> Result<HashBuffer, CryptoError> {
let padding_size = pad_to - chunk.len();
Sha256Hasher::new()?.update(&chunk)?.update(&ZEROS[..padding_size])?.finalize()
}
fn verity_check<T: ReadOnlyDataByChunk>(
chunk: &[u8],
chunk_index: u64,
file_size: u64,
merkle_tree: &T,
) -> Result<HashBuffer, FsverityError> {
// The caller should not be able to produce a chunk at the first place if `file_size` is 0. The
// current implementation expects to crash when a `ReadOnlyDataByChunk` implementation reads
// beyone the file size, including empty file.
assert_ne!(file_size, 0);
let chunk_hash = hash_with_padding(&chunk, T::CHUNK_SIZE as usize)?;
fsverity_walk(chunk_index, file_size, merkle_tree)?.try_fold(
chunk_hash,
|actual_hash, result| {
let (merkle_chunk, hash_offset_in_chunk) = result?;
let expected_hash =
&merkle_chunk[hash_offset_in_chunk..hash_offset_in_chunk + Sha256Hasher::HASH_SIZE];
if actual_hash != expected_hash {
return Err(FsverityError::CannotVerify);
}
Ok(hash_with_padding(&merkle_chunk, T::CHUNK_SIZE as usize)?)
},
)
}
fn log128_ceil(num: u64) -> Option<u64> {
match num {
0 => None,
n => Some(divide_roundup(64 - (n - 1).leading_zeros() as u64, 7)),
}
}
/// Given a chunk index and the size of the file, returns an iterator that walks the Merkle tree
/// from the leaf to the root. The iterator carries the slice of the chunk/node as well as the
/// offset of the child node's hash. It is up to the iterator user to use the node and hash,
/// e.g. for the actual verification.
#[allow(clippy::needless_collect)]
fn fsverity_walk<T: ReadOnlyDataByChunk>(
chunk_index: u64,
file_size: u64,
merkle_tree: &T,
) -> Result<impl Iterator<Item = Result<([u8; 4096], usize), FsverityError>> + '_, FsverityError> {
let hashes_per_node = T::CHUNK_SIZE / Sha256Hasher::HASH_SIZE as u64;
let hash_pages = divide_roundup(file_size, hashes_per_node * T::CHUNK_SIZE);
debug_assert_eq!(hashes_per_node, 128u64);
let max_level = log128_ceil(hash_pages).expect("file should not be empty") as u32;
let root_to_leaf_steps = (0..=max_level)
.rev()
.map(|x| {
let leaves_per_hash = hashes_per_node.pow(x);
let leaves_size_per_hash = T::CHUNK_SIZE * leaves_per_hash;
let leaves_size_per_node = leaves_size_per_hash * hashes_per_node;
let nodes_at_level = divide_roundup(file_size, leaves_size_per_node);
let level_size = nodes_at_level * T::CHUNK_SIZE;
let offset_in_level = (chunk_index / leaves_per_hash) * Sha256Hasher::HASH_SIZE as u64;
(level_size, offset_in_level)
})
.scan(0, |level_offset, (level_size, offset_in_level)| {
let this_level_offset = *level_offset;
*level_offset += level_size;
let global_hash_offset = this_level_offset + offset_in_level;
Some(global_hash_offset)
})
.map(|global_hash_offset| {
let chunk_index = global_hash_offset / T::CHUNK_SIZE;
let hash_offset_in_chunk = (global_hash_offset % T::CHUNK_SIZE) as usize;
(chunk_index, hash_offset_in_chunk)
})
.collect::<Vec<_>>();
Ok(root_to_leaf_steps.into_iter().rev().map(move |(chunk_index, hash_offset_in_chunk)| {
let mut merkle_chunk = [0u8; 4096];
let _ = merkle_tree.read_chunk(chunk_index, &mut merkle_chunk)?;
Ok((merkle_chunk, hash_offset_in_chunk))
}))
}
fn build_fsverity_formatted_digest(
root_hash: &HashBuffer,
file_size: u64,
) -> Result<[u8; SIZE_OF_FSVERITY_FORMATTED_DIGEST_SHA256], CryptoError> {
let desc_hash = Sha256Hasher::new()?
.update(&1u8.to_le_bytes())? // version
.update(&1u8.to_le_bytes())? // hash_algorithm
.update(&12u8.to_le_bytes())? // log_blocksize
.update(&0u8.to_le_bytes())? // salt_size
.update(&0u32.to_le_bytes())? // sig_size
.update(&file_size.to_le_bytes())? // data_size
.update(root_hash)? // root_hash, first 32 bytes
.update(&[0u8; 32])? // root_hash, last 32 bytes
.update(&[0u8; 32])? // salt
.update(&[0u8; 32])? // reserved
.update(&[0u8; 32])? // reserved
.update(&[0u8; 32])? // reserved
.update(&[0u8; 32])? // reserved
.update(&[0u8; 16])? // reserved
.finalize()?;
let mut fsverity_digest = [0u8; SIZE_OF_FSVERITY_FORMATTED_DIGEST_SHA256];
fsverity_digest[0..8].copy_from_slice(b"FSVerity");
fsverity_digest[8..10].copy_from_slice(&1u16.to_le_bytes());
fsverity_digest[10..12].copy_from_slice(&32u16.to_le_bytes());
fsverity_digest[12..].copy_from_slice(&desc_hash);
Ok(fsverity_digest)
}
pub struct FsverityChunkedFileReader<F: ReadOnlyDataByChunk, M: ReadOnlyDataByChunk> {
chunked_file: F,
file_size: u64,
merkle_tree: M,
root_hash: HashBuffer,
}
impl<F: ReadOnlyDataByChunk, M: ReadOnlyDataByChunk> FsverityChunkedFileReader<F, M> {
pub fn new<A: Authenticator>(
authenticator: &A,
chunked_file: F,
file_size: u64,
sig: Vec<u8>,
merkle_tree: M,
) -> Result<FsverityChunkedFileReader<F, M>, FsverityError> {
// TODO(victorhsieh): Use generic constant directly once supported. No need to assert
// afterward.
let mut buf = [0u8; 4096];
assert_eq!(buf.len() as u64, M::CHUNK_SIZE);
let size = merkle_tree.read_chunk(0, &mut buf)?;
if buf.len() != size {
return Err(FsverityError::InsufficientData(size));
}
let root_hash = Sha256Hasher::new()?.update(&buf[..])?.finalize()?;
let fsverity_digest = build_fsverity_formatted_digest(&root_hash, file_size)?;
let valid = authenticator.verify(&sig, &fsverity_digest)?;
if valid {
Ok(FsverityChunkedFileReader { chunked_file, file_size, merkle_tree, root_hash })
} else {
Err(FsverityError::BadSignature)
}
}
}
impl<F: ReadOnlyDataByChunk, M: ReadOnlyDataByChunk> ReadOnlyDataByChunk
for FsverityChunkedFileReader<F, M>
{
fn read_chunk(&self, chunk_index: u64, buf: &mut [u8]) -> io::Result<usize> {
debug_assert!(buf.len() as u64 >= Self::CHUNK_SIZE);
let size = self.chunked_file.read_chunk(chunk_index, buf)?;
let root_hash = verity_check(&buf[..size], chunk_index, self.file_size, &self.merkle_tree)
.map_err(|_| io::Error::from_raw_os_error(EIO))?;
if root_hash != self.root_hash {
Err(io::Error::from_raw_os_error(EIO))
} else {
Ok(size)
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::auth::FakeAuthenticator;
use crate::reader::{ChunkedFileReader, ReadOnlyDataByChunk};
use anyhow::Result;
use std::fs::File;
use std::io::Read;
type LocalFsverityChunkedFileReader =
FsverityChunkedFileReader<ChunkedFileReader, ChunkedFileReader>;
fn total_chunk_number(file_size: u64) -> u64 {
(file_size + 4095) / 4096
}
// Returns a reader with fs-verity verification and the file size.
fn new_reader_with_fsverity(
content_path: &str,
merkle_tree_path: &str,
signature_path: &str,
) -> Result<(LocalFsverityChunkedFileReader, u64)> {
let file_reader = ChunkedFileReader::new(File::open(content_path)?)?;
let file_size = file_reader.len();
let merkle_tree = ChunkedFileReader::new(File::open(merkle_tree_path)?)?;
let mut sig = Vec::new();
let _ = File::open(signature_path)?.read_to_end(&mut sig)?;
let authenticator = FakeAuthenticator::always_succeed();
Ok((
FsverityChunkedFileReader::new(
&authenticator,
file_reader,
file_size,
sig,
merkle_tree,
)?,
file_size,
))
}
#[test]
fn fsverity_verify_full_read_4k() -> Result<()> {
let (file_reader, file_size) = new_reader_with_fsverity(
"testdata/input.4k",
"testdata/input.4k.merkle_dump",
"testdata/input.4k.fsv_sig",
)?;
for i in 0..total_chunk_number(file_size) {
let mut buf = [0u8; 4096];
assert!(file_reader.read_chunk(i, &mut buf[..]).is_ok());
}
Ok(())
}
#[test]
fn fsverity_verify_full_read_4k1() -> Result<()> {
let (file_reader, file_size) = new_reader_with_fsverity(
"testdata/input.4k1",
"testdata/input.4k1.merkle_dump",
"testdata/input.4k1.fsv_sig",
)?;
for i in 0..total_chunk_number(file_size) {
let mut buf = [0u8; 4096];
assert!(file_reader.read_chunk(i, &mut buf[..]).is_ok());
}
Ok(())
}
#[test]
fn fsverity_verify_full_read_4m() -> Result<()> {
let (file_reader, file_size) = new_reader_with_fsverity(
"testdata/input.4m",
"testdata/input.4m.merkle_dump",
"testdata/input.4m.fsv_sig",
)?;
for i in 0..total_chunk_number(file_size) {
let mut buf = [0u8; 4096];
assert!(file_reader.read_chunk(i, &mut buf[..]).is_ok());
}
Ok(())
}
#[test]
fn fsverity_verify_bad_merkle_tree() -> Result<()> {
let (file_reader, _) = new_reader_with_fsverity(
"testdata/input.4m",
"testdata/input.4m.merkle_dump.bad", // First leaf node is corrupted.
"testdata/input.4m.fsv_sig",
)?;
// A lowest broken node (a 4K chunk that contains 128 sha256 hashes) will fail the read
// failure of the underlying chunks, but not before or after.
let mut buf = [0u8; 4096];
let num_hashes = 4096 / 32;
let last_index = num_hashes;
for i in 0..last_index {
assert!(file_reader.read_chunk(i, &mut buf[..]).is_err());
}
assert!(file_reader.read_chunk(last_index, &mut buf[..]).is_ok());
Ok(())
}
#[test]
fn invalid_signature() -> Result<()> {
let authenticator = FakeAuthenticator::always_fail();
let file_reader = ChunkedFileReader::new(File::open("testdata/input.4m")?)?;
let file_size = file_reader.len();
let merkle_tree = ChunkedFileReader::new(File::open("testdata/input.4m.merkle_dump")?)?;
let sig = include_bytes!("../testdata/input.4m.fsv_sig").to_vec();
assert!(FsverityChunkedFileReader::new(
&authenticator,
file_reader,
file_size,
sig,
merkle_tree
)
.is_err());
Ok(())
}
}