blob: 1434b7edc2dde1213d79a59e9c8410521436d8b4 [file] [log] [blame]
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
use libc::EIO;
use std::io;
use super::common::{build_fsverity_digest, merkle_tree_height, FsverityError, SHA256_HASH_SIZE};
use crate::common::{divide_roundup, CHUNK_SIZE};
use crate::file::{ChunkBuffer, ReadByChunk};
use openssl::sha::{sha256, Sha256};
const ZEROS: [u8; CHUNK_SIZE as usize] = [0u8; CHUNK_SIZE as usize];
type HashBuffer = [u8; SHA256_HASH_SIZE];
fn hash_with_padding(chunk: &[u8], pad_to: usize) -> HashBuffer {
let padding_size = pad_to - chunk.len();
let mut ctx = Sha256::new();
ctx.update(chunk);
ctx.update(&ZEROS[..padding_size]);
ctx.finish()
}
fn verity_check<T: ReadByChunk>(
chunk: &[u8],
chunk_index: u64,
file_size: u64,
merkle_tree: &T,
) -> Result<HashBuffer, FsverityError> {
// The caller should not be able to produce a chunk at the first place if `file_size` is 0. The
// current implementation expects to crash when a `ReadByChunk` implementation reads
// beyond the file size, including empty file.
assert_ne!(file_size, 0);
let chunk_hash = hash_with_padding(chunk, CHUNK_SIZE as usize);
// When the file is smaller or equal to CHUNK_SIZE, the root of Merkle tree is defined as the
// hash of the file content, plus padding.
if file_size <= CHUNK_SIZE {
return Ok(chunk_hash);
}
fsverity_walk(chunk_index, file_size, merkle_tree)?.try_fold(
chunk_hash,
|actual_hash, result| {
let (merkle_chunk, hash_offset_in_chunk) = result?;
let expected_hash =
&merkle_chunk[hash_offset_in_chunk..hash_offset_in_chunk + SHA256_HASH_SIZE];
if actual_hash != expected_hash {
return Err(FsverityError::CannotVerify);
}
Ok(hash_with_padding(&merkle_chunk, CHUNK_SIZE as usize))
},
)
}
/// Given a chunk index and the size of the file, returns an iterator that walks the Merkle tree
/// from the leaf to the root. The iterator carries the slice of the chunk/node as well as the
/// offset of the child node's hash. It is up to the iterator user to use the node and hash,
/// e.g. for the actual verification.
#[allow(clippy::needless_collect)]
fn fsverity_walk<T: ReadByChunk>(
chunk_index: u64,
file_size: u64,
merkle_tree: &T,
) -> Result<impl Iterator<Item = Result<([u8; 4096], usize), FsverityError>> + '_, FsverityError> {
let hashes_per_node = CHUNK_SIZE / SHA256_HASH_SIZE as u64;
debug_assert_eq!(hashes_per_node, 128u64);
let max_level = merkle_tree_height(file_size).expect("file should not be empty") as u32;
let root_to_leaf_steps = (0..=max_level)
.rev()
.map(|x| {
let leaves_per_hash = hashes_per_node.pow(x);
let leaves_size_per_hash = CHUNK_SIZE * leaves_per_hash;
let leaves_size_per_node = leaves_size_per_hash * hashes_per_node;
let nodes_at_level = divide_roundup(file_size, leaves_size_per_node);
let level_size = nodes_at_level * CHUNK_SIZE;
let offset_in_level = (chunk_index / leaves_per_hash) * SHA256_HASH_SIZE as u64;
(level_size, offset_in_level)
})
.scan(0, |level_offset, (level_size, offset_in_level)| {
let this_level_offset = *level_offset;
*level_offset += level_size;
let global_hash_offset = this_level_offset + offset_in_level;
Some(global_hash_offset)
})
.map(|global_hash_offset| {
let chunk_index = global_hash_offset / CHUNK_SIZE;
let hash_offset_in_chunk = (global_hash_offset % CHUNK_SIZE) as usize;
(chunk_index, hash_offset_in_chunk)
})
.collect::<Vec<_>>(); // Needs to collect first to be able to reverse below.
Ok(root_to_leaf_steps.into_iter().rev().map(move |(chunk_index, hash_offset_in_chunk)| {
let mut merkle_chunk = [0u8; 4096];
// read_chunk is supposed to return a full chunk, or an incomplete one at the end of the
// file. In the incomplete case, the hash is calculated with 0-padding to the chunk size.
// Therefore, we don't need to check the returned size here.
let _ = merkle_tree.read_chunk(chunk_index, &mut merkle_chunk)?;
Ok((merkle_chunk, hash_offset_in_chunk))
}))
}
pub struct VerifiedFileReader<F: ReadByChunk, M: ReadByChunk> {
pub file_size: u64,
chunked_file: F,
merkle_tree: M,
root_hash: HashBuffer,
}
impl<F: ReadByChunk, M: ReadByChunk> VerifiedFileReader<F, M> {
pub fn new(
chunked_file: F,
file_size: u64,
expected_digest: &[u8],
merkle_tree: M,
) -> Result<VerifiedFileReader<F, M>, FsverityError> {
let mut buf = [0u8; CHUNK_SIZE as usize];
if file_size <= CHUNK_SIZE {
let _size = chunked_file.read_chunk(0, &mut buf)?;
// The rest of buffer is 0-padded.
} else {
let size = merkle_tree.read_chunk(0, &mut buf)?;
if buf.len() != size {
return Err(FsverityError::InsufficientData(size));
}
}
let root_hash = sha256(&buf[..]);
if expected_digest == build_fsverity_digest(&root_hash, file_size) {
// Once verified, use the root_hash for verification going forward.
Ok(VerifiedFileReader { chunked_file, file_size, merkle_tree, root_hash })
} else {
Err(FsverityError::InvalidDigest)
}
}
}
impl<F: ReadByChunk, M: ReadByChunk> ReadByChunk for VerifiedFileReader<F, M> {
fn read_chunk(&self, chunk_index: u64, buf: &mut ChunkBuffer) -> io::Result<usize> {
let size = self.chunked_file.read_chunk(chunk_index, buf)?;
let root_hash = verity_check(&buf[..size], chunk_index, self.file_size, &self.merkle_tree)
.map_err(|_| io::Error::from_raw_os_error(EIO))?;
if root_hash != self.root_hash {
Err(io::Error::from_raw_os_error(EIO))
} else {
Ok(size)
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::file::ReadByChunk;
use anyhow::Result;
use authfs_fsverity_metadata::{parse_fsverity_metadata, FSVerityMetadata};
use std::cmp::min;
use std::fs::File;
use std::os::unix::fs::FileExt;
struct LocalFileReader {
file: File,
size: u64,
}
impl LocalFileReader {
fn new(file: File) -> io::Result<LocalFileReader> {
let size = file.metadata()?.len();
Ok(LocalFileReader { file, size })
}
fn len(&self) -> u64 {
self.size
}
}
impl ReadByChunk for LocalFileReader {
fn read_chunk(&self, chunk_index: u64, buf: &mut ChunkBuffer) -> io::Result<usize> {
let start = chunk_index * CHUNK_SIZE;
if start >= self.size {
return Ok(0);
}
let end = min(self.size, start + CHUNK_SIZE);
let read_size = (end - start) as usize;
debug_assert!(read_size <= buf.len());
self.file.read_exact_at(&mut buf[..read_size], start)?;
Ok(read_size)
}
}
type LocalVerifiedFileReader = VerifiedFileReader<LocalFileReader, MerkleTreeReader>;
pub struct MerkleTreeReader {
metadata: Box<FSVerityMetadata>,
}
impl ReadByChunk for MerkleTreeReader {
fn read_chunk(&self, chunk_index: u64, buf: &mut ChunkBuffer) -> io::Result<usize> {
self.metadata.read_merkle_tree(chunk_index * CHUNK_SIZE, buf)
}
}
fn total_chunk_number(file_size: u64) -> u64 {
(file_size + 4095) / 4096
}
// Returns a reader with fs-verity verification and the file size.
fn new_reader_with_fsverity(
content_path: &str,
metadata_path: &str,
) -> Result<(LocalVerifiedFileReader, u64)> {
let file_reader = LocalFileReader::new(File::open(content_path)?)?;
let file_size = file_reader.len();
let metadata = parse_fsverity_metadata(File::open(metadata_path)?)?;
Ok((
VerifiedFileReader::new(
file_reader,
file_size,
&metadata.digest.clone(),
MerkleTreeReader { metadata },
)?,
file_size,
))
}
#[test]
fn fsverity_verify_full_read_4k() -> Result<()> {
let (file_reader, file_size) =
new_reader_with_fsverity("testdata/input.4k", "testdata/input.4k.fsv_meta")?;
for i in 0..total_chunk_number(file_size) {
let mut buf = [0u8; 4096];
assert!(file_reader.read_chunk(i, &mut buf).is_ok());
}
Ok(())
}
#[test]
fn fsverity_verify_full_read_4k1() -> Result<()> {
let (file_reader, file_size) =
new_reader_with_fsverity("testdata/input.4k1", "testdata/input.4k1.fsv_meta")?;
for i in 0..total_chunk_number(file_size) {
let mut buf = [0u8; 4096];
assert!(file_reader.read_chunk(i, &mut buf).is_ok());
}
Ok(())
}
#[test]
fn fsverity_verify_full_read_4m() -> Result<()> {
let (file_reader, file_size) =
new_reader_with_fsverity("testdata/input.4m", "testdata/input.4m.fsv_meta")?;
for i in 0..total_chunk_number(file_size) {
let mut buf = [0u8; 4096];
assert!(file_reader.read_chunk(i, &mut buf).is_ok());
}
Ok(())
}
#[test]
fn fsverity_verify_bad_merkle_tree() -> Result<()> {
let (file_reader, _) = new_reader_with_fsverity(
"testdata/input.4m",
"testdata/input.4m.fsv_meta.bad_merkle", // First leaf node is corrupted.
)?;
// A lowest broken node (a 4K chunk that contains 128 sha256 hashes) will fail the read
// failure of the underlying chunks, but not before or after.
let mut buf = [0u8; 4096];
let num_hashes = 4096 / 32;
let last_index = num_hashes;
for i in 0..last_index {
assert!(file_reader.read_chunk(i, &mut buf).is_err());
}
assert!(file_reader.read_chunk(last_index, &mut buf).is_ok());
Ok(())
}
}