| // Copyright 2023, The Android Open Source Project |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| //! Code to inspect/manipulate the BCC (DICE Chain) we receive from our loader (the hypervisor). |
| |
| // TODO(b/279910232): Unify this, somehow, with the similar but different code in hwtrust. |
| |
| use alloc::vec; |
| use alloc::vec::Vec; |
| use ciborium::value::Value; |
| use core::fmt; |
| use core::mem::size_of; |
| use coset::{iana, Algorithm, CborSerializable, CoseKey}; |
| use diced_open_dice::{BccHandover, Cdi, DiceArtifacts, DiceMode}; |
| use log::trace; |
| |
| type Result<T> = core::result::Result<T, BccError>; |
| |
| pub enum BccError { |
| CborDecodeError, |
| CborEncodeError, |
| CosetError(coset::CoseError), |
| DiceError(diced_open_dice::DiceError), |
| MalformedBcc(&'static str), |
| MissingBcc, |
| } |
| |
| impl From<coset::CoseError> for BccError { |
| fn from(e: coset::CoseError) -> Self { |
| Self::CosetError(e) |
| } |
| } |
| |
| impl fmt::Display for BccError { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| match self { |
| Self::CborDecodeError => write!(f, "Error parsing BCC CBOR"), |
| Self::CborEncodeError => write!(f, "Error encoding BCC CBOR"), |
| Self::CosetError(e) => write!(f, "Encountered an error with coset: {e}"), |
| Self::DiceError(e) => write!(f, "Dice error: {e:?}"), |
| Self::MalformedBcc(s) => { |
| write!(f, "BCC does not have the expected CBOR structure: {s}") |
| } |
| Self::MissingBcc => write!(f, "Missing BCC"), |
| } |
| } |
| } |
| |
| /// Return a new CBOR encoded BccHandover that is based on the incoming CDIs but does not chain |
| /// from the received BCC. |
| pub fn truncate(bcc_handover: BccHandover) -> Result<Vec<u8>> { |
| // Note: The strings here are deliberately different from those used in a normal DICE handover |
| // because we want this to not be equivalent to any valid DICE derivation. |
| let cdi_seal = taint_cdi(bcc_handover.cdi_seal(), "TaintCdiSeal")?; |
| let cdi_attest = taint_cdi(bcc_handover.cdi_attest(), "TaintCdiAttest")?; |
| |
| // BccHandover = { |
| // 1 : bstr .size 32, ; CDI_Attest |
| // 2 : bstr .size 32, ; CDI_Seal |
| // ? 3 : Bcc, ; Certificate chain |
| // } |
| let bcc_handover: Vec<(Value, Value)> = |
| vec![(1.into(), cdi_attest.as_slice().into()), (2.into(), cdi_seal.as_slice().into())]; |
| cbor_util::serialize(&bcc_handover).map_err(|_| BccError::CborEncodeError) |
| } |
| |
| fn taint_cdi(cdi: &Cdi, info: &str) -> Result<Cdi> { |
| // An arbitrary value generated randomly. |
| const SALT: [u8; 64] = [ |
| 0xdc, 0x0d, 0xe7, 0x40, 0x47, 0x9d, 0x71, 0xb8, 0x69, 0xd0, 0x71, 0x85, 0x27, 0x47, 0xf5, |
| 0x65, 0x7f, 0x16, 0xfa, 0x59, 0x23, 0x19, 0x6a, 0x6b, 0x77, 0x41, 0x01, 0x45, 0x90, 0x3b, |
| 0xfa, 0x68, 0xad, 0xe5, 0x26, 0x31, 0x5b, 0x40, 0x85, 0x71, 0x97, 0x12, 0xbd, 0x0b, 0x38, |
| 0x5c, 0x98, 0xf3, 0x0e, 0xe1, 0x7c, 0x82, 0x23, 0xa4, 0x38, 0x38, 0x85, 0x84, 0x85, 0x0d, |
| 0x02, 0x90, 0x60, 0xd3, |
| ]; |
| let mut result = [0u8; size_of::<Cdi>()]; |
| diced_open_dice::kdf(cdi.as_slice(), &SALT, info.as_bytes(), result.as_mut_slice()) |
| .map_err(BccError::DiceError)?; |
| Ok(result) |
| } |
| |
| /// Represents a (partially) decoded BCC DICE chain. |
| pub struct Bcc { |
| is_debug_mode: bool, |
| leaf_subject_pubkey: PublicKey, |
| } |
| |
| impl Bcc { |
| /// Returns whether any node in the received DICE chain is marked as debug (and hence is not |
| /// secure). |
| pub fn new(received_bcc: Option<&[u8]>) -> Result<Bcc> { |
| let received_bcc = received_bcc.unwrap_or(&[]); |
| if received_bcc.is_empty() { |
| return Err(BccError::MissingBcc); |
| } |
| |
| // We don't attempt to fully validate the BCC (e.g. we don't check the signatures) - we |
| // have to trust our loader. But if it's invalid CBOR or otherwise clearly ill-formed, |
| // something is very wrong, so we fail. |
| let bcc_cbor = |
| cbor_util::deserialize(received_bcc).map_err(|_| BccError::CborDecodeError)?; |
| |
| // Bcc = [ |
| // PubKeyEd25519 / PubKeyECDSA256, // DK_pub |
| // + BccEntry, // Root -> leaf (KM_pub) |
| // ] |
| let bcc = match bcc_cbor { |
| Value::Array(v) if v.len() >= 2 => v, |
| _ => return Err(BccError::MalformedBcc("Invalid top level value")), |
| }; |
| // Decode all the DICE payloads to make sure they are well-formed. |
| let payloads = bcc |
| .into_iter() |
| .skip(1) |
| .map(|v| BccEntry::new(v).payload()) |
| .collect::<Result<Vec<_>>>()?; |
| |
| let is_debug_mode = is_any_payload_debug_mode(&payloads)?; |
| // Safe to unwrap because we checked the length above. |
| let leaf_subject_pubkey = payloads.last().unwrap().subject_public_key()?; |
| Ok(Self { is_debug_mode, leaf_subject_pubkey }) |
| } |
| |
| pub fn is_debug_mode(&self) -> bool { |
| self.is_debug_mode |
| } |
| |
| pub fn leaf_subject_pubkey(&self) -> &PublicKey { |
| &self.leaf_subject_pubkey |
| } |
| } |
| |
| fn is_any_payload_debug_mode(payloads: &[BccPayload]) -> Result<bool> { |
| // Check if any payload in the chain is marked as Debug mode, which means the device is not |
| // secure. (Normal means it is a secure boot, for that stage at least; we ignore recovery |
| // & not configured /invalid values, since it's not clear what they would mean in this |
| // context.) |
| for payload in payloads { |
| if payload.is_debug_mode()? { |
| return Ok(true); |
| } |
| } |
| Ok(false) |
| } |
| |
| #[repr(transparent)] |
| struct BccEntry(Value); |
| |
| #[repr(transparent)] |
| struct BccPayload(Value); |
| |
| #[derive(Debug, Clone)] |
| pub struct PublicKey { |
| /// The COSE key algorithm for the public key, representing the value of the `alg` |
| /// field in the COSE key format of the public key. See RFC 8152, section 7 for details. |
| pub cose_alg: iana::Algorithm, |
| } |
| |
| impl BccEntry { |
| pub fn new(entry: Value) -> Self { |
| Self(entry) |
| } |
| |
| pub fn payload(&self) -> Result<BccPayload> { |
| // BccEntry = [ // COSE_Sign1 (untagged) |
| // protected : bstr .cbor { |
| // 1 : AlgorithmEdDSA / AlgorithmES256, // Algorithm |
| // }, |
| // unprotected: {}, |
| // payload: bstr .cbor BccPayload, |
| // signature: bstr // PureEd25519(SigningKey, bstr .cbor BccEntryInput) / |
| // // ECDSA(SigningKey, bstr .cbor BccEntryInput) |
| // // See RFC 8032 for details of how to encode the signature value for Ed25519. |
| // ] |
| let payload = |
| self.payload_bytes().ok_or(BccError::MalformedBcc("Invalid payload in BccEntry"))?; |
| let payload = cbor_util::deserialize(payload).map_err(|_| BccError::CborDecodeError)?; |
| trace!("Bcc payload: {payload:?}"); |
| Ok(BccPayload(payload)) |
| } |
| |
| fn payload_bytes(&self) -> Option<&Vec<u8>> { |
| let entry = self.0.as_array()?; |
| if entry.len() != 4 { |
| return None; |
| }; |
| entry[2].as_bytes() |
| } |
| } |
| |
| const KEY_MODE: i32 = -4670551; |
| const MODE_DEBUG: u8 = DiceMode::kDiceModeDebug as u8; |
| const SUBJECT_PUBLIC_KEY: i32 = -4670552; |
| |
| impl BccPayload { |
| pub fn is_debug_mode(&self) -> Result<bool> { |
| // BccPayload = { // CWT |
| // ... |
| // ? -4670551 : bstr, // Mode |
| // ... |
| // } |
| |
| let Some(value) = self.value_from_key(KEY_MODE) else { return Ok(false) }; |
| |
| // Mode is supposed to be encoded as a 1-byte bstr, but some implementations instead |
| // encode it as an integer. Accept either. See b/273552826. |
| // If Mode is omitted, it should be treated as if it was Unknown, according to the Open |
| // Profile for DICE spec. |
| let mode = if let Some(bytes) = value.as_bytes() { |
| if bytes.len() != 1 { |
| return Err(BccError::MalformedBcc("Invalid mode bstr")); |
| } |
| bytes[0].into() |
| } else { |
| value.as_integer().ok_or(BccError::MalformedBcc("Invalid type for mode"))? |
| }; |
| Ok(mode == MODE_DEBUG.into()) |
| } |
| |
| fn subject_public_key(&self) -> Result<PublicKey> { |
| // BccPayload = { ; CWT [RFC8392] |
| // ... |
| // -4670552 : bstr .cbor PubKeyEd25519 / |
| // bstr .cbor PubKeyECDSA256 / |
| // bstr .cbor PubKeyECDSA384, ; Subject Public Key |
| // ... |
| // } |
| self.value_from_key(SUBJECT_PUBLIC_KEY) |
| .ok_or(BccError::MalformedBcc("Subject public key missing"))? |
| .as_bytes() |
| .ok_or(BccError::MalformedBcc("Subject public key is not a byte string")) |
| .and_then(|v| PublicKey::from_slice(v)) |
| } |
| |
| fn value_from_key(&self, key: i32) -> Option<&Value> { |
| // BccPayload is just a map; we only use integral keys, but in general it's legitimate |
| // for other things to be present, or for the key we care about not to be present. |
| // Ciborium represents the map as a Vec, preserving order (and allowing duplicate keys, |
| // which we ignore) but preventing fast lookup. |
| let payload = self.0.as_map()?; |
| for (k, v) in payload { |
| if k.as_integer() == Some(key.into()) { |
| return Some(v); |
| } |
| } |
| None |
| } |
| } |
| |
| impl PublicKey { |
| fn from_slice(slice: &[u8]) -> Result<Self> { |
| let key = CoseKey::from_slice(slice)?; |
| let Some(Algorithm::Assigned(cose_alg)) = key.alg else { |
| return Err(BccError::MalformedBcc("Invalid algorithm in public key")); |
| }; |
| Ok(Self { cose_alg }) |
| } |
| } |