blob: 0a292dfa63584c910b70fc9173b4d4c050431e86 [file] [log] [blame]
/*
* Copyright (C) 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//! Verifies APK Signature Scheme V3
use anyhow::{anyhow, bail, Result};
use bytes::Bytes;
use std::fs::File;
use std::ops::Range;
use std::path::Path;
use crate::bytes_ext::{BytesExt, LengthPrefixed, ReadFromBytes};
use crate::sigutil::{find_signature, is_supported_signature_algorithm, rank_signature_algorithm};
pub const APK_SIGNATURE_SCHEME_V3_BLOCK_ID: u32 = 0xf05368c0;
// TODO(jooyung): get "ro.build.version.sdk"
const SDK_INT: u32 = 31;
/// Data model for Signature Scheme V3
/// https://source.android.com/security/apksigning/v3#verification
type Signers = LengthPrefixed<Vec<LengthPrefixed<Signer>>>;
struct Signer {
signed_data: LengthPrefixed<Bytes>, // not verified yet
min_sdk: u32,
max_sdk: u32,
signatures: LengthPrefixed<Vec<LengthPrefixed<Signature>>>,
public_key: LengthPrefixed<Bytes>,
}
impl Signer {
fn sdk_range(&self) -> Range<u32> {
self.min_sdk..self.max_sdk
}
}
struct SignedData {
digests: LengthPrefixed<Vec<LengthPrefixed<Digest>>>,
certificates: LengthPrefixed<Vec<LengthPrefixed<X509Certificate>>>,
min_sdk: u32,
max_sdk: u32,
additional_attributes: LengthPrefixed<Vec<LengthPrefixed<AdditionalAttributes>>>,
}
impl SignedData {
fn sdk_range(&self) -> Range<u32> {
self.min_sdk..self.max_sdk
}
}
struct Signature {
signature_algorithm_id: u32,
signature: LengthPrefixed<Bytes>,
}
struct Digest {
signature_algorithm_id: u32,
digest: LengthPrefixed<Bytes>,
}
type X509Certificate = Bytes;
type AdditionalAttributes = Bytes;
/// Verifies APK Signature Scheme v3 signatures of the provided APK and returns the certificates
/// associated with each signer.
pub fn verify<P: AsRef<Path>>(path: P) -> Result<()> {
let f = File::open(path.as_ref())?;
let signature = find_signature(f, APK_SIGNATURE_SCHEME_V3_BLOCK_ID)?;
verify_signature(&signature.signature_block)?;
Ok(())
}
/// Verifies the contents of the provided APK file against the provided APK Signature Scheme v3
/// Block.
fn verify_signature(block: &Bytes) -> Result<()> {
// parse v3 scheme block
let signers = block.slice(..).read::<Signers>()?;
// find supported by platform
let mut supported =
signers.iter().filter(|s| s.sdk_range().contains(&SDK_INT)).collect::<Vec<_>>();
// there should be exactly one
if supported.len() != 1 {
bail!("APK Signature Scheme V3 only supports one signer: {} signers found.", signers.len())
}
// and it should be verified
supported.pop().unwrap().verify()?;
Ok(())
}
impl Signer {
fn verify(&self) -> Result<()> {
// 1. Choose the strongest supported signature algorithm ID from signatures. The strength
// ordering is up to each implementation/platform version.
let strongest: &Signature = self
.signatures
.iter()
.filter(|sig| is_supported_signature_algorithm(sig.signature_algorithm_id))
.max_by_key(|sig| rank_signature_algorithm(sig.signature_algorithm_id).unwrap())
.ok_or_else(|| anyhow!("No supported signatures found"))?;
// 2. Verify the corresponding signature from signatures against signed data using public key.
// (It is now safe to parse signed data.)
verify_data(&self.signed_data, strongest, &self.public_key)?;
// It is now safe to parse signed data.
let signed_data: SignedData = self.signed_data.slice(..).read()?;
// 3. Verify the min and max SDK versions in the signed data match those specified for the
// signer.
if self.sdk_range() != signed_data.sdk_range() {
bail!("SDK versions mismatch between signed and unsigned in v3 signer block.");
}
// TODO(jooyung) 4. Verify that the ordered list of signature algorithm IDs in digests and signatures is identical. (This is to prevent signature stripping/addition.)
// TODO(jooyung) 5. Compute the digest of APK contents using the same digest algorithm as the digest algorithm used by the signature algorithm.
// TODO(jooyung) 6. Verify that the computed digest is identical to the corresponding digest from digests.
// TODO(jooyung) 7. Verify that SubjectPublicKeyInfo of the first certificate of certificates is identical to public key.
// TODO(jooyung) 8. If the proof-of-rotation attribute exists for the signer verify that the struct is valid and this signer is the last certificate in the list.
Ok(())
}
}
fn verify_data(_data: &Bytes, _signature: &Signature, _public_key: &Bytes) -> Result<()> {
// TODO(jooyung): verify signed_data with signature/public key
Ok(())
}
// ReadFromBytes implementations
// TODO(jooyung): add derive macro: #[derive(ReadFromBytes)]
impl ReadFromBytes for Signer {
fn read_from_bytes(buf: &mut Bytes) -> Result<Self> {
Ok(Self {
signed_data: buf.read()?,
min_sdk: buf.read()?,
max_sdk: buf.read()?,
signatures: buf.read()?,
public_key: buf.read()?,
})
}
}
impl ReadFromBytes for SignedData {
fn read_from_bytes(buf: &mut Bytes) -> Result<Self> {
Ok(Self {
digests: buf.read()?,
certificates: buf.read()?,
min_sdk: buf.read()?,
max_sdk: buf.read()?,
additional_attributes: buf.read()?,
})
}
}
impl ReadFromBytes for Signature {
fn read_from_bytes(buf: &mut Bytes) -> Result<Self> {
Ok(Signature { signature_algorithm_id: buf.read()?, signature: buf.read()? })
}
}
impl ReadFromBytes for Digest {
fn read_from_bytes(buf: &mut Bytes) -> Result<Self> {
Ok(Self { signature_algorithm_id: buf.read()?, digest: buf.read()? })
}
}