blob: 88644c792b3eb0651cd388d73d8db0f94a0f5939 [file] [log] [blame]
/*
* Copyright (C) 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//! Verifies APK Signature Scheme V3
//!
//! [v3 verification]: https://source.android.com/security/apksigning/v3#verification
use anyhow::{ensure, Context, Result};
use bytes::Bytes;
use openssl::pkey::{self, PKey};
use openssl::x509::X509;
use std::fs::File;
use std::io::{Read, Seek};
use std::ops::RangeInclusive;
use std::path::Path;
use crate::algorithms::SignatureAlgorithmID;
use crate::bytes_ext::{BytesExt, LengthPrefixed, ReadFromBytes};
use crate::sigutil::ApkSections;
pub const APK_SIGNATURE_SCHEME_V3_BLOCK_ID: u32 = 0xf05368c0;
type Signers = LengthPrefixed<Vec<LengthPrefixed<Signer>>>;
#[derive(Debug)]
pub(crate) struct Signer {
signed_data: LengthPrefixed<Bytes>, // not verified yet
min_sdk: u32,
max_sdk: u32,
signatures: LengthPrefixed<Vec<LengthPrefixed<Signature>>>,
public_key: PKey<pkey::Public>,
}
/// Contains the signed data part of an APK v3 signature.
#[derive(Debug)]
pub struct SignedData {
digests: LengthPrefixed<Vec<LengthPrefixed<Digest>>>,
certificates: LengthPrefixed<Vec<LengthPrefixed<X509Certificate>>>,
min_sdk: u32,
max_sdk: u32,
#[allow(dead_code)]
additional_attributes: LengthPrefixed<Vec<LengthPrefixed<AdditionalAttributes>>>,
}
#[derive(Debug)]
pub(crate) struct Signature {
/// Option is used here to allow us to ignore unsupported algorithm.
pub(crate) signature_algorithm_id: Option<SignatureAlgorithmID>,
signature: LengthPrefixed<Bytes>,
}
#[derive(Debug)]
struct Digest {
signature_algorithm_id: Option<SignatureAlgorithmID>,
digest: LengthPrefixed<Bytes>,
}
type X509Certificate = Bytes;
type AdditionalAttributes = Bytes;
/// Verifies APK Signature Scheme v3 signatures of the provided APK and returns the SignedData from
/// the signature.
pub fn verify<P: AsRef<Path>>(apk_path: P, current_sdk: u32) -> Result<SignedData> {
let apk = File::open(apk_path.as_ref())?;
let (signer, mut sections) = extract_signer_and_apk_sections(apk, current_sdk)?;
signer.verify(&mut sections)
}
/// Extracts the SignedData from the signature of the given APK. (The signature is not verified.)
pub fn extract_signed_data<P: AsRef<Path>>(apk_path: P, current_sdk: u32) -> Result<SignedData> {
let apk = File::open(apk_path.as_ref())?;
let (signer, _) = extract_signer_and_apk_sections(apk, current_sdk)?;
signer.parse_signed_data()
}
pub(crate) fn extract_signer_and_apk_sections<R: Read + Seek>(
apk: R,
current_sdk: u32,
) -> Result<(Signer, ApkSections<R>)> {
let mut sections = ApkSections::new(apk)?;
let mut block = sections.find_signature(APK_SIGNATURE_SCHEME_V3_BLOCK_ID).context(
"Fallback to v2 when v3 block not found is not yet implemented.", // b/197052981
)?;
let signers = block.read::<Signers>()?.into_inner();
let mut supported =
signers.into_iter().filter(|s| s.sdk_range().contains(&current_sdk)).collect::<Vec<_>>();
ensure!(
supported.len() == 1,
"APK Signature Scheme V3 only supports one signer: {} signers found.",
supported.len()
);
Ok((supported.pop().unwrap().into_inner(), sections))
}
impl Signer {
fn sdk_range(&self) -> RangeInclusive<u32> {
self.min_sdk..=self.max_sdk
}
/// Selects the signature that has the strongest supported `SignatureAlgorithmID`.
/// The strongest signature is used in both v3 verification and v4 apk digest computation.
pub(crate) fn strongest_signature(&self) -> Result<&Signature> {
Ok(self
.signatures
.iter()
.filter(|sig| sig.signature_algorithm_id.map_or(false, |algo| algo.is_supported()))
.max_by_key(|sig| sig.signature_algorithm_id.unwrap().content_digest_algorithm())
.context("No supported APK signatures found; DSA is not supported")?)
}
pub(crate) fn find_digest_by_algorithm(
&self,
algorithm_id: SignatureAlgorithmID,
) -> Result<Box<[u8]>> {
let signed_data: SignedData = self.signed_data.slice(..).read()?;
let digest = signed_data.find_digest_by_algorithm(algorithm_id)?;
Ok(digest.digest.as_ref().to_vec().into_boxed_slice())
}
/// Verifies a signature over the signed data using the public key.
fn verify_signature(&self, signature: &Signature) -> Result<()> {
let mut verifier = signature
.signature_algorithm_id
.context("Unsupported algorithm")?
.new_verifier(&self.public_key)?;
verifier.update(&self.signed_data)?;
ensure!(verifier.verify(&signature.signature)?, "Signature is invalid.");
Ok(())
}
/// Returns the signed data, converted from bytes.
fn parse_signed_data(&self) -> Result<SignedData> {
self.signed_data.slice(..).read()
}
/// The steps in this method implements APK Signature Scheme v3 verification step 3.
fn verify<R: Read + Seek>(&self, sections: &mut ApkSections<R>) -> Result<SignedData> {
// 1. Choose the strongest supported signature algorithm ID from signatures.
let strongest = self.strongest_signature()?;
// 2. Verify the corresponding signature from signatures against signed data using public
// key.
self.verify_signature(strongest)?;
// It is now safe to parse signed data.
let verified_signed_data = self.parse_signed_data()?;
// 3. Verify the min and max SDK versions in the signed data match those specified for the
// signer.
ensure!(
self.sdk_range() == verified_signed_data.sdk_range(),
"SDK versions mismatch between signed and unsigned in v3 signer block."
);
// 4. Verify that the ordered list of signature algorithm IDs in digests and signatures is
// identical. (This is to prevent signature stripping/addition.)
ensure!(
self.signatures
.iter()
.map(|sig| sig.signature_algorithm_id)
.eq(verified_signed_data.digests.iter().map(|dig| dig.signature_algorithm_id)),
"Signature algorithms don't match between digests and signatures records"
);
// 5. Compute the digest of APK contents using the same digest algorithm as the digest
// algorithm used by the signature algorithm.
let digest = verified_signed_data.find_digest_by_algorithm(
strongest.signature_algorithm_id.context("Unsupported algorithm")?,
)?;
let computed = sections.compute_digest(digest.signature_algorithm_id.unwrap())?;
// 6. Verify that the computed digest is identical to the corresponding digest from digests.
ensure!(
computed == digest.digest.as_ref(),
"Digest mismatch: computed={:?} vs expected={:?}",
hex::encode(&computed),
hex::encode(digest.digest.as_ref()),
);
// 7. Verify that public key of the first certificate of certificates is identical to public
// key.
let cert = X509::from_der(verified_signed_data.first_certificate_der()?)?;
ensure!(
cert.public_key()?.public_eq(&self.public_key),
"Public key mismatch between certificate and signature record"
);
// TODO(b/245914104)
// 8. If the proof-of-rotation attribute exists for the signer verify that the
// struct is valid and this signer is the last certificate in the list.
Ok(verified_signed_data)
}
}
impl SignedData {
/// Returns the first X.509 certificate in the signed data, encoded in DER form. (All other
/// certificates are ignored for v3; this certificate describes the public key that was actually
/// used to sign the APK.)
pub fn first_certificate_der(&self) -> Result<&[u8]> {
Ok(self.certificates.first().context("No certificates listed")?)
}
fn sdk_range(&self) -> RangeInclusive<u32> {
self.min_sdk..=self.max_sdk
}
fn find_digest_by_algorithm(&self, algorithm_id: SignatureAlgorithmID) -> Result<&Digest> {
Ok(self
.digests
.iter()
.find(|&dig| dig.signature_algorithm_id == Some(algorithm_id))
.context(format!("Digest not found for algorithm: {:?}", algorithm_id))?)
}
}
// ReadFromBytes implementations
// TODO(b/190343842): add derive macro: #[derive(ReadFromBytes)]
impl ReadFromBytes for Signer {
fn read_from_bytes(buf: &mut Bytes) -> Result<Self> {
Ok(Self {
signed_data: buf.read()?,
min_sdk: buf.read()?,
max_sdk: buf.read()?,
signatures: buf.read()?,
public_key: buf.read()?,
})
}
}
impl ReadFromBytes for SignedData {
fn read_from_bytes(buf: &mut Bytes) -> Result<Self> {
Ok(Self {
digests: buf.read()?,
certificates: buf.read()?,
min_sdk: buf.read()?,
max_sdk: buf.read()?,
additional_attributes: buf.read()?,
})
}
}
impl ReadFromBytes for Signature {
fn read_from_bytes(buf: &mut Bytes) -> Result<Self> {
Ok(Signature { signature_algorithm_id: buf.read()?, signature: buf.read()? })
}
}
impl ReadFromBytes for Digest {
fn read_from_bytes(buf: &mut Bytes) -> Result<Self> {
Ok(Self { signature_algorithm_id: buf.read()?, digest: buf.read()? })
}
}
impl ReadFromBytes for PKey<pkey::Public> {
fn read_from_bytes(buf: &mut Bytes) -> Result<Self> {
let raw_public_key = buf.read::<LengthPrefixed<Bytes>>()?;
Ok(PKey::public_key_from_der(raw_public_key.as_ref())?)
}
}