blob: d15eabac6c013609773c841cfa63be9da8cb063f [file] [log] [blame]
// Copyright 2022, The Android Open Source Project
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! High-level FDT functions.
use crate::cstr;
use crate::helpers::flatten;
use crate::helpers::GUEST_PAGE_SIZE;
use crate::helpers::SIZE_4KB;
use crate::memory::BASE_ADDR;
use crate::memory::MAX_ADDR;
use crate::RebootReason;
use alloc::ffi::CString;
use alloc::vec::Vec;
use core::cmp::max;
use core::cmp::min;
use core::ffi::CStr;
use core::mem::size_of;
use core::ops::Range;
use fdtpci::PciMemoryFlags;
use fdtpci::PciRangeType;
use libfdt::AddressRange;
use libfdt::CellIterator;
use libfdt::Fdt;
use libfdt::FdtError;
use libfdt::FdtNode;
use log::debug;
use log::error;
use log::info;
use tinyvec::ArrayVec;
/// Extract from /config the address range containing the pre-loaded kernel. Absence of /config is
/// not an error.
fn read_kernel_range_from(fdt: &Fdt) -> libfdt::Result<Option<Range<usize>>> {
let addr = cstr!("kernel-address");
let size = cstr!("kernel-size");
if let Some(config) = fdt.node(cstr!("/config"))? {
if let (Some(addr), Some(size)) = (config.getprop_u32(addr)?, config.getprop_u32(size)?) {
let addr = addr as usize;
let size = size as usize;
return Ok(Some(addr..(addr + size)));
}
}
Ok(None)
}
/// Extract from /chosen the address range containing the pre-loaded ramdisk. Absence is not an
/// error as there can be initrd-less VM.
fn read_initrd_range_from(fdt: &Fdt) -> libfdt::Result<Option<Range<usize>>> {
let start = cstr!("linux,initrd-start");
let end = cstr!("linux,initrd-end");
if let Some(chosen) = fdt.chosen()? {
if let (Some(start), Some(end)) = (chosen.getprop_u32(start)?, chosen.getprop_u32(end)?) {
return Ok(Some((start as usize)..(end as usize)));
}
}
Ok(None)
}
fn patch_initrd_range(fdt: &mut Fdt, initrd_range: &Range<usize>) -> libfdt::Result<()> {
let start = u32::try_from(initrd_range.start).unwrap();
let end = u32::try_from(initrd_range.end).unwrap();
let mut node = fdt.chosen_mut()?.ok_or(FdtError::NotFound)?;
node.setprop(cstr!("linux,initrd-start"), &start.to_be_bytes())?;
node.setprop(cstr!("linux,initrd-end"), &end.to_be_bytes())?;
Ok(())
}
fn read_bootargs_from(fdt: &Fdt) -> libfdt::Result<Option<CString>> {
if let Some(chosen) = fdt.chosen()? {
if let Some(bootargs) = chosen.getprop_str(cstr!("bootargs"))? {
// We need to copy the string to heap because the original fdt will be invalidated
// by the templated DT
let copy = CString::new(bootargs.to_bytes()).map_err(|_| FdtError::BadValue)?;
return Ok(Some(copy));
}
}
Ok(None)
}
fn patch_bootargs(fdt: &mut Fdt, bootargs: &CStr) -> libfdt::Result<()> {
let mut node = fdt.chosen_mut()?.ok_or(FdtError::NotFound)?;
// TODO(b/275306568) filter out dangerous options
node.setprop(cstr!("bootargs"), bootargs.to_bytes_with_nul())
}
/// Read the first range in /memory node in DT
fn read_memory_range_from(fdt: &Fdt) -> libfdt::Result<Range<usize>> {
fdt.memory()?.ok_or(FdtError::NotFound)?.next().ok_or(FdtError::NotFound)
}
/// Check if memory range is ok
fn validate_memory_range(range: &Range<usize>) -> Result<(), RebootReason> {
let base = range.start;
if base != BASE_ADDR {
error!("Memory base address {:#x} is not {:#x}", base, BASE_ADDR);
return Err(RebootReason::InvalidFdt);
}
let size = range.len();
if size % GUEST_PAGE_SIZE != 0 {
error!("Memory size {:#x} is not a multiple of page size {:#x}", size, GUEST_PAGE_SIZE);
return Err(RebootReason::InvalidFdt);
}
if size == 0 {
error!("Memory size is 0");
return Err(RebootReason::InvalidFdt);
}
Ok(())
}
fn patch_memory_range(fdt: &mut Fdt, memory_range: &Range<usize>) -> libfdt::Result<()> {
let size = memory_range.len() as u64;
fdt.node_mut(cstr!("/memory"))?
.ok_or(FdtError::NotFound)?
.setprop_inplace(cstr!("reg"), flatten(&[BASE_ADDR.to_be_bytes(), size.to_be_bytes()]))
}
/// Read the number of CPUs from DT
fn read_num_cpus_from(fdt: &Fdt) -> libfdt::Result<usize> {
Ok(fdt.compatible_nodes(cstr!("arm,arm-v8"))?.count())
}
/// Validate number of CPUs
fn validate_num_cpus(num_cpus: usize) -> Result<(), RebootReason> {
if num_cpus == 0 {
error!("Number of CPU can't be 0");
return Err(RebootReason::InvalidFdt);
}
if DeviceTreeInfo::GIC_REDIST_SIZE_PER_CPU.checked_mul(num_cpus.try_into().unwrap()).is_none() {
error!("Too many CPUs for gic: {}", num_cpus);
return Err(RebootReason::InvalidFdt);
}
Ok(())
}
/// Patch DT by keeping `num_cpus` number of arm,arm-v8 compatible nodes, and pruning the rest.
fn patch_num_cpus(fdt: &mut Fdt, num_cpus: usize) -> libfdt::Result<()> {
let cpu = cstr!("arm,arm-v8");
let mut next = fdt.root_mut()?.next_compatible(cpu)?;
for _ in 0..num_cpus {
next = if let Some(current) = next {
current.next_compatible(cpu)?
} else {
return Err(FdtError::NoSpace);
};
}
while let Some(current) = next {
next = current.delete_and_next_compatible(cpu)?;
}
Ok(())
}
#[derive(Debug)]
struct PciInfo {
ranges: [PciAddrRange; 2],
irq_masks: ArrayVec<[PciIrqMask; PciInfo::MAX_IRQS]>,
irq_maps: ArrayVec<[PciIrqMap; PciInfo::MAX_IRQS]>,
}
impl PciInfo {
const IRQ_MASK_CELLS: usize = 4;
const IRQ_MAP_CELLS: usize = 10;
const MAX_IRQS: usize = 8;
}
type PciAddrRange = AddressRange<(u32, u64), u64, u64>;
type PciIrqMask = [u32; PciInfo::IRQ_MASK_CELLS];
type PciIrqMap = [u32; PciInfo::IRQ_MAP_CELLS];
/// Iterator that takes N cells as a chunk
struct CellChunkIterator<'a, const N: usize> {
cells: CellIterator<'a>,
}
impl<'a, const N: usize> CellChunkIterator<'a, N> {
fn new(cells: CellIterator<'a>) -> Self {
Self { cells }
}
}
impl<'a, const N: usize> Iterator for CellChunkIterator<'a, N> {
type Item = [u32; N];
fn next(&mut self) -> Option<Self::Item> {
let mut ret: Self::Item = [0; N];
for i in ret.iter_mut() {
*i = self.cells.next()?;
}
Some(ret)
}
}
/// Read pci host controller ranges, irq maps, and irq map masks from DT
fn read_pci_info_from(fdt: &Fdt) -> libfdt::Result<PciInfo> {
let node =
fdt.compatible_nodes(cstr!("pci-host-cam-generic"))?.next().ok_or(FdtError::NotFound)?;
let mut ranges = node.ranges::<(u32, u64), u64, u64>()?.ok_or(FdtError::NotFound)?;
let range0 = ranges.next().ok_or(FdtError::NotFound)?;
let range1 = ranges.next().ok_or(FdtError::NotFound)?;
let irq_masks = node.getprop_cells(cstr!("interrupt-map-mask"))?.ok_or(FdtError::NotFound)?;
let irq_masks = CellChunkIterator::<{ PciInfo::IRQ_MASK_CELLS }>::new(irq_masks);
let irq_masks: ArrayVec<[PciIrqMask; PciInfo::MAX_IRQS]> =
irq_masks.take(PciInfo::MAX_IRQS).collect();
let irq_maps = node.getprop_cells(cstr!("interrupt-map"))?.ok_or(FdtError::NotFound)?;
let irq_maps = CellChunkIterator::<{ PciInfo::IRQ_MAP_CELLS }>::new(irq_maps);
let irq_maps: ArrayVec<[PciIrqMap; PciInfo::MAX_IRQS]> =
irq_maps.take(PciInfo::MAX_IRQS).collect();
Ok(PciInfo { ranges: [range0, range1], irq_masks, irq_maps })
}
fn validate_pci_info(pci_info: &PciInfo, memory_range: &Range<usize>) -> Result<(), RebootReason> {
for range in pci_info.ranges.iter() {
validate_pci_addr_range(range, memory_range)?;
}
for irq_mask in pci_info.irq_masks.iter() {
validate_pci_irq_mask(irq_mask)?;
}
for (idx, irq_map) in pci_info.irq_maps.iter().enumerate() {
validate_pci_irq_map(irq_map, idx)?;
}
Ok(())
}
fn validate_pci_addr_range(
range: &PciAddrRange,
memory_range: &Range<usize>,
) -> Result<(), RebootReason> {
let mem_flags = PciMemoryFlags(range.addr.0);
let range_type = mem_flags.range_type();
let prefetchable = mem_flags.prefetchable();
let bus_addr = range.addr.1;
let cpu_addr = range.parent_addr;
let size = range.size;
if range_type != PciRangeType::Memory64 {
error!("Invalid range type {:?} for bus address {:#x} in PCI node", range_type, bus_addr);
return Err(RebootReason::InvalidFdt);
}
if prefetchable {
error!("PCI bus address {:#x} in PCI node is prefetchable", bus_addr);
return Err(RebootReason::InvalidFdt);
}
// Enforce ID bus-to-cpu mappings, as used by crosvm.
if bus_addr != cpu_addr {
error!("PCI bus address: {:#x} is different from CPU address: {:#x}", bus_addr, cpu_addr);
return Err(RebootReason::InvalidFdt);
}
let Some(bus_end) = bus_addr.checked_add(size) else {
error!("PCI address range size {:#x} overflows", size);
return Err(RebootReason::InvalidFdt);
};
if bus_end > MAX_ADDR.try_into().unwrap() {
error!("PCI address end {:#x} is outside of translatable range", bus_end);
return Err(RebootReason::InvalidFdt);
}
let memory_start = memory_range.start.try_into().unwrap();
let memory_end = memory_range.end.try_into().unwrap();
if max(bus_addr, memory_start) < min(bus_end, memory_end) {
error!(
"PCI address range {:#x}-{:#x} overlaps with main memory range {:#x}-{:#x}",
bus_addr, bus_end, memory_start, memory_end
);
return Err(RebootReason::InvalidFdt);
}
Ok(())
}
fn validate_pci_irq_mask(irq_mask: &PciIrqMask) -> Result<(), RebootReason> {
const IRQ_MASK_ADDR_HI: u32 = 0xf800;
const IRQ_MASK_ADDR_ME: u32 = 0x0;
const IRQ_MASK_ADDR_LO: u32 = 0x0;
const IRQ_MASK_ANY_IRQ: u32 = 0x7;
const EXPECTED: PciIrqMask =
[IRQ_MASK_ADDR_HI, IRQ_MASK_ADDR_ME, IRQ_MASK_ADDR_LO, IRQ_MASK_ANY_IRQ];
if *irq_mask != EXPECTED {
error!("Invalid PCI irq mask {:#?}", irq_mask);
return Err(RebootReason::InvalidFdt);
}
Ok(())
}
fn validate_pci_irq_map(irq_map: &PciIrqMap, idx: usize) -> Result<(), RebootReason> {
const PCI_DEVICE_IDX: usize = 11;
const PCI_IRQ_ADDR_ME: u32 = 0;
const PCI_IRQ_ADDR_LO: u32 = 0;
const PCI_IRQ_INTC: u32 = 1;
const AARCH64_IRQ_BASE: u32 = 4; // from external/crosvm/aarch64/src/lib.rs
const GIC_SPI: u32 = 0;
const IRQ_TYPE_LEVEL_HIGH: u32 = 4;
let pci_addr = (irq_map[0], irq_map[1], irq_map[2]);
let pci_irq_number = irq_map[3];
let _controller_phandle = irq_map[4]; // skipped.
let gic_addr = (irq_map[5], irq_map[6]); // address-cells is <2> for GIC
// interrupt-cells is <3> for GIC
let gic_peripheral_interrupt_type = irq_map[7];
let gic_irq_number = irq_map[8];
let gic_irq_type = irq_map[9];
let phys_hi: u32 = (0x1 << PCI_DEVICE_IDX) * (idx + 1) as u32;
let expected_pci_addr = (phys_hi, PCI_IRQ_ADDR_ME, PCI_IRQ_ADDR_LO);
if pci_addr != expected_pci_addr {
error!("PCI device address {:#x} {:#x} {:#x} in interrupt-map is different from expected address \
{:#x} {:#x} {:#x}",
pci_addr.0, pci_addr.1, pci_addr.2, expected_pci_addr.0, expected_pci_addr.1, expected_pci_addr.2);
return Err(RebootReason::InvalidFdt);
}
if pci_irq_number != PCI_IRQ_INTC {
error!(
"PCI INT# {:#x} in interrupt-map is different from expected value {:#x}",
pci_irq_number, PCI_IRQ_INTC
);
return Err(RebootReason::InvalidFdt);
}
if gic_addr != (0, 0) {
error!(
"GIC address {:#x} {:#x} in interrupt-map is different from expected address \
{:#x} {:#x}",
gic_addr.0, gic_addr.1, 0, 0
);
return Err(RebootReason::InvalidFdt);
}
if gic_peripheral_interrupt_type != GIC_SPI {
error!("GIC peripheral interrupt type {:#x} in interrupt-map is different from expected value \
{:#x}", gic_peripheral_interrupt_type, GIC_SPI);
return Err(RebootReason::InvalidFdt);
}
let irq_nr: u32 = AARCH64_IRQ_BASE + (idx as u32);
if gic_irq_number != irq_nr {
error!(
"GIC irq number {:#x} in interrupt-map is unexpected. Expected {:#x}",
gic_irq_number, irq_nr
);
return Err(RebootReason::InvalidFdt);
}
if gic_irq_type != IRQ_TYPE_LEVEL_HIGH {
error!(
"IRQ type in {:#x} is invalid. Must be LEVEL_HIGH {:#x}",
gic_irq_type, IRQ_TYPE_LEVEL_HIGH
);
return Err(RebootReason::InvalidFdt);
}
Ok(())
}
fn patch_pci_info(fdt: &mut Fdt, pci_info: &PciInfo) -> libfdt::Result<()> {
let mut node = fdt
.root_mut()?
.next_compatible(cstr!("pci-host-cam-generic"))?
.ok_or(FdtError::NotFound)?;
let irq_masks_size = pci_info.irq_masks.len() * size_of::<PciIrqMask>();
node.trimprop(cstr!("interrupt-map-mask"), irq_masks_size)?;
let irq_maps_size = pci_info.irq_maps.len() * size_of::<PciIrqMap>();
node.trimprop(cstr!("interrupt-map"), irq_maps_size)?;
node.setprop_inplace(
cstr!("ranges"),
flatten(&[pci_info.ranges[0].to_cells(), pci_info.ranges[1].to_cells()]),
)
}
#[derive(Default, Debug)]
struct SerialInfo {
addrs: ArrayVec<[u64; Self::MAX_SERIALS]>,
}
impl SerialInfo {
const MAX_SERIALS: usize = 4;
}
fn read_serial_info_from(fdt: &Fdt) -> libfdt::Result<SerialInfo> {
let mut addrs: ArrayVec<[u64; SerialInfo::MAX_SERIALS]> = Default::default();
for node in fdt.compatible_nodes(cstr!("ns16550a"))?.take(SerialInfo::MAX_SERIALS) {
let reg = node.reg()?.ok_or(FdtError::NotFound)?.next().ok_or(FdtError::NotFound)?;
addrs.push(reg.addr);
}
Ok(SerialInfo { addrs })
}
/// Patch the DT by deleting the ns16550a compatible nodes whose address are unknown
fn patch_serial_info(fdt: &mut Fdt, serial_info: &SerialInfo) -> libfdt::Result<()> {
let name = cstr!("ns16550a");
let mut next = fdt.root_mut()?.next_compatible(name);
while let Some(current) = next? {
let reg = FdtNode::from_mut(&current)
.reg()?
.ok_or(FdtError::NotFound)?
.next()
.ok_or(FdtError::NotFound)?;
next = if !serial_info.addrs.contains(&reg.addr) {
current.delete_and_next_compatible(name)
} else {
current.next_compatible(name)
}
}
Ok(())
}
#[derive(Debug)]
struct SwiotlbInfo {
size: u64,
align: u64,
}
fn read_swiotlb_info_from(fdt: &Fdt) -> libfdt::Result<SwiotlbInfo> {
let node =
fdt.compatible_nodes(cstr!("restricted-dma-pool"))?.next().ok_or(FdtError::NotFound)?;
let size = node.getprop_u64(cstr!("size"))?.ok_or(FdtError::NotFound)?;
let align = node.getprop_u64(cstr!("alignment"))?.ok_or(FdtError::NotFound)?;
Ok(SwiotlbInfo { size, align })
}
fn validate_swiotlb_info(swiotlb_info: &SwiotlbInfo) -> Result<(), RebootReason> {
let size = swiotlb_info.size;
let align = swiotlb_info.align;
if size == 0 || (size % GUEST_PAGE_SIZE as u64) != 0 {
error!("Invalid swiotlb size {:#x}", size);
return Err(RebootReason::InvalidFdt);
}
if (align % GUEST_PAGE_SIZE as u64) != 0 {
error!("Invalid swiotlb alignment {:#x}", align);
return Err(RebootReason::InvalidFdt);
}
Ok(())
}
fn patch_swiotlb_info(fdt: &mut Fdt, swiotlb_info: &SwiotlbInfo) -> libfdt::Result<()> {
let mut node =
fdt.root_mut()?.next_compatible(cstr!("restricted-dma-pool"))?.ok_or(FdtError::NotFound)?;
node.setprop_inplace(cstr!("size"), &swiotlb_info.size.to_be_bytes())?;
node.setprop_inplace(cstr!("alignment"), &swiotlb_info.align.to_be_bytes())?;
Ok(())
}
fn patch_gic(fdt: &mut Fdt, num_cpus: usize) -> libfdt::Result<()> {
let node = fdt.compatible_nodes(cstr!("arm,gic-v3"))?.next().ok_or(FdtError::NotFound)?;
let mut ranges = node.reg()?.ok_or(FdtError::NotFound)?;
let range0 = ranges.next().ok_or(FdtError::NotFound)?;
let mut range1 = ranges.next().ok_or(FdtError::NotFound)?;
let addr = range0.addr;
// SAFETY - doesn't overflow. checked in validate_num_cpus
let size: u64 =
DeviceTreeInfo::GIC_REDIST_SIZE_PER_CPU.checked_mul(num_cpus.try_into().unwrap()).unwrap();
// range1 is just below range0
range1.addr = addr - size;
range1.size = Some(size);
let range0 = range0.to_cells();
let range1 = range1.to_cells();
let value = [
range0.0, // addr
range0.1.unwrap(), //size
range1.0, // addr
range1.1.unwrap(), //size
];
let mut node =
fdt.root_mut()?.next_compatible(cstr!("arm,gic-v3"))?.ok_or(FdtError::NotFound)?;
node.setprop_inplace(cstr!("reg"), flatten(&value))
}
fn patch_timer(fdt: &mut Fdt, num_cpus: usize) -> libfdt::Result<()> {
const NUM_INTERRUPTS: usize = 4;
const CELLS_PER_INTERRUPT: usize = 3;
let node = fdt.compatible_nodes(cstr!("arm,armv8-timer"))?.next().ok_or(FdtError::NotFound)?;
let interrupts = node.getprop_cells(cstr!("interrupts"))?.ok_or(FdtError::NotFound)?;
let mut value: ArrayVec<[u32; NUM_INTERRUPTS * CELLS_PER_INTERRUPT]> =
interrupts.take(NUM_INTERRUPTS * CELLS_PER_INTERRUPT).collect();
let num_cpus: u32 = num_cpus.try_into().unwrap();
let cpu_mask: u32 = (((0x1 << num_cpus) - 1) & 0xff) << 8;
for v in value.iter_mut().skip(2).step_by(CELLS_PER_INTERRUPT) {
*v |= cpu_mask;
}
for v in value.iter_mut() {
*v = v.to_be();
}
// SAFETY - array size is the same
let value = unsafe {
core::mem::transmute::<
[u32; NUM_INTERRUPTS * CELLS_PER_INTERRUPT],
[u8; NUM_INTERRUPTS * CELLS_PER_INTERRUPT * size_of::<u32>()],
>(value.into_inner())
};
let mut node =
fdt.root_mut()?.next_compatible(cstr!("arm,armv8-timer"))?.ok_or(FdtError::NotFound)?;
node.setprop_inplace(cstr!("interrupts"), value.as_slice())
}
#[derive(Debug)]
pub struct DeviceTreeInfo {
pub kernel_range: Option<Range<usize>>,
pub initrd_range: Option<Range<usize>>,
pub memory_range: Range<usize>,
bootargs: Option<CString>,
num_cpus: usize,
pci_info: PciInfo,
serial_info: SerialInfo,
swiotlb_info: SwiotlbInfo,
}
impl DeviceTreeInfo {
const GIC_REDIST_SIZE_PER_CPU: u64 = (32 * SIZE_4KB) as u64;
}
pub fn sanitize_device_tree(fdt: &mut Fdt) -> Result<DeviceTreeInfo, RebootReason> {
let info = parse_device_tree(fdt)?;
debug!("Device tree info: {:?}", info);
fdt.copy_from_slice(pvmfw_fdt_template::RAW).map_err(|e| {
error!("Failed to instantiate FDT from the template DT: {e}");
RebootReason::InvalidFdt
})?;
patch_device_tree(fdt, &info)?;
Ok(info)
}
fn parse_device_tree(fdt: &libfdt::Fdt) -> Result<DeviceTreeInfo, RebootReason> {
let kernel_range = read_kernel_range_from(fdt).map_err(|e| {
error!("Failed to read kernel range from DT: {e}");
RebootReason::InvalidFdt
})?;
let initrd_range = read_initrd_range_from(fdt).map_err(|e| {
error!("Failed to read initrd range from DT: {e}");
RebootReason::InvalidFdt
})?;
let memory_range = read_memory_range_from(fdt).map_err(|e| {
error!("Failed to read memory range from DT: {e}");
RebootReason::InvalidFdt
})?;
validate_memory_range(&memory_range)?;
let bootargs = read_bootargs_from(fdt).map_err(|e| {
error!("Failed to read bootargs from DT: {e}");
RebootReason::InvalidFdt
})?;
let num_cpus = read_num_cpus_from(fdt).map_err(|e| {
error!("Failed to read num cpus from DT: {e}");
RebootReason::InvalidFdt
})?;
validate_num_cpus(num_cpus)?;
let pci_info = read_pci_info_from(fdt).map_err(|e| {
error!("Failed to read pci info from DT: {e}");
RebootReason::InvalidFdt
})?;
validate_pci_info(&pci_info, &memory_range)?;
let serial_info = read_serial_info_from(fdt).map_err(|e| {
error!("Failed to read serial info from DT: {e}");
RebootReason::InvalidFdt
})?;
let swiotlb_info = read_swiotlb_info_from(fdt).map_err(|e| {
error!("Failed to read swiotlb info from DT: {e}");
RebootReason::InvalidFdt
})?;
validate_swiotlb_info(&swiotlb_info)?;
Ok(DeviceTreeInfo {
kernel_range,
initrd_range,
memory_range,
bootargs,
num_cpus,
pci_info,
serial_info,
swiotlb_info,
})
}
fn patch_device_tree(fdt: &mut Fdt, info: &DeviceTreeInfo) -> Result<(), RebootReason> {
fdt.unpack().map_err(|e| {
error!("Failed to unpack DT for patching: {e}");
RebootReason::InvalidFdt
})?;
if let Some(initrd_range) = &info.initrd_range {
patch_initrd_range(fdt, initrd_range).map_err(|e| {
error!("Failed to patch initrd range to DT: {e}");
RebootReason::InvalidFdt
})?;
}
patch_memory_range(fdt, &info.memory_range).map_err(|e| {
error!("Failed to patch memory range to DT: {e}");
RebootReason::InvalidFdt
})?;
if let Some(bootargs) = &info.bootargs {
patch_bootargs(fdt, bootargs.as_c_str()).map_err(|e| {
error!("Failed to patch bootargs to DT: {e}");
RebootReason::InvalidFdt
})?;
}
patch_num_cpus(fdt, info.num_cpus).map_err(|e| {
error!("Failed to patch cpus to DT: {e}");
RebootReason::InvalidFdt
})?;
patch_pci_info(fdt, &info.pci_info).map_err(|e| {
error!("Failed to patch pci info to DT: {e}");
RebootReason::InvalidFdt
})?;
patch_serial_info(fdt, &info.serial_info).map_err(|e| {
error!("Failed to patch serial info to DT: {e}");
RebootReason::InvalidFdt
})?;
patch_swiotlb_info(fdt, &info.swiotlb_info).map_err(|e| {
error!("Failed to patch swiotlb info to DT: {e}");
RebootReason::InvalidFdt
})?;
patch_gic(fdt, info.num_cpus).map_err(|e| {
error!("Failed to patch gic info to DT: {e}");
RebootReason::InvalidFdt
})?;
patch_timer(fdt, info.num_cpus).map_err(|e| {
error!("Failed to patch timer info to DT: {e}");
RebootReason::InvalidFdt
})?;
fdt.pack().map_err(|e| {
error!("Failed to pack DT after patching: {e}");
RebootReason::InvalidFdt
})?;
Ok(())
}
/// Modifies the input DT according to the fields of the configuration.
pub fn modify_for_next_stage(
fdt: &mut Fdt,
bcc: &[u8],
new_instance: bool,
strict_boot: bool,
debug_policy: Option<&mut [u8]>,
) -> libfdt::Result<()> {
fdt.unpack()?;
patch_dice_node(fdt, bcc.as_ptr() as usize, bcc.len())?;
set_or_clear_chosen_flag(fdt, cstr!("avf,strict-boot"), strict_boot)?;
set_or_clear_chosen_flag(fdt, cstr!("avf,new-instance"), new_instance)?;
if let Some(debug_policy) = debug_policy {
apply_debug_policy(fdt, debug_policy)?;
info!("Debug policy applied.");
} else {
info!("No debug policy found.");
}
fdt.pack()?;
Ok(())
}
/// Patch the "google,open-dice"-compatible reserved-memory node to point to the bcc range
fn patch_dice_node(fdt: &mut Fdt, addr: usize, size: usize) -> libfdt::Result<()> {
// We reject DTs with missing reserved-memory node as validation should have checked that the
// "swiotlb" subnode (compatible = "restricted-dma-pool") was present.
let node = fdt.node_mut(cstr!("/reserved-memory"))?.ok_or(libfdt::FdtError::NotFound)?;
let mut node = node.next_compatible(cstr!("google,open-dice"))?.ok_or(FdtError::NotFound)?;
let addr: u64 = addr.try_into().unwrap();
let size: u64 = size.try_into().unwrap();
node.setprop_inplace(cstr!("reg"), flatten(&[addr.to_be_bytes(), size.to_be_bytes()]))
}
fn set_or_clear_chosen_flag(fdt: &mut Fdt, flag: &CStr, value: bool) -> libfdt::Result<()> {
// TODO(b/249054080): Refactor to not panic if the DT doesn't contain a /chosen node.
let mut chosen = fdt.chosen_mut()?.unwrap();
if value {
chosen.setprop_empty(flag)?;
} else {
match chosen.delprop(flag) {
Ok(()) | Err(FdtError::NotFound) => (),
Err(e) => return Err(e),
}
}
Ok(())
}
fn apply_debug_policy(fdt: &mut Fdt, debug_policy: &mut [u8]) -> libfdt::Result<()> {
let backup_fdt = Vec::from(fdt.as_slice());
let overlay = match Fdt::from_mut_slice(debug_policy) {
Ok(overlay) => overlay,
Err(e) => {
info!("Corrupted debug policy found: {e}. Not applying.");
return Ok(());
}
};
let backup_overlay = Vec::from(overlay.as_slice());
// SAFETY - on failure, the corrupted fdts are discarded and are restored using the backups.
if let Err(e) = unsafe { fdt.apply_overlay(overlay) } {
error!("Failed to apply debug policy: {e}. Recovering...");
fdt.copy_from_slice(backup_fdt.as_slice())?;
overlay.copy_from_slice(backup_overlay.as_slice())?;
// A successful restoration is considered success because an invalid debug policy
// shouldn't DOS the pvmfw
}
Ok(())
}