blob: 438ff9e14b5e3a16568e262bb8a7e7516d26d557 [file] [log] [blame]
// Copyright 2022, The Android Open Source Project
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Functions to scan the PCI bus for VirtIO device.
use aarch64_paging::paging::MemoryRegion;
use alloc::alloc::{alloc, dealloc, Layout};
use core::{mem::size_of, ptr::NonNull};
use fdtpci::PciInfo;
use log::{debug, info};
use virtio_drivers::{
device::blk::VirtIOBlk,
transport::{
pci::{bus::PciRoot, virtio_device_type, PciTransport},
DeviceType, Transport,
},
BufferDirection, Hal, PhysAddr, VirtAddr, PAGE_SIZE,
};
/// The standard sector size of a VirtIO block device, in bytes.
const SECTOR_SIZE_BYTES: usize = 512;
/// The size in sectors of the test block device we expect.
const EXPECTED_SECTOR_COUNT: usize = 4;
pub fn check_pci(pci_root: &mut PciRoot) {
let mut checked_virtio_device_count = 0;
for (device_function, info) in pci_root.enumerate_bus(0) {
let (status, command) = pci_root.get_status_command(device_function);
info!("Found {} at {}, status {:?} command {:?}", info, device_function, status, command);
if let Some(virtio_type) = virtio_device_type(&info) {
info!(" VirtIO {:?}", virtio_type);
let mut transport = PciTransport::new::<HalImpl>(pci_root, device_function).unwrap();
info!(
"Detected virtio PCI device with device type {:?}, features {:#018x}",
transport.device_type(),
transport.read_device_features(),
);
if check_virtio_device(transport, virtio_type) {
checked_virtio_device_count += 1;
}
}
}
assert_eq!(checked_virtio_device_count, 1);
}
/// Checks the given VirtIO device, if we know how to.
///
/// Returns true if the device was checked, or false if it was ignored.
fn check_virtio_device(transport: impl Transport, device_type: DeviceType) -> bool {
if device_type == DeviceType::Block {
let mut blk = VirtIOBlk::<HalImpl, _>::new(transport).expect("failed to create blk driver");
info!("Found {} KiB block device.", blk.capacity() * SECTOR_SIZE_BYTES as u64 / 1024);
assert_eq!(blk.capacity(), EXPECTED_SECTOR_COUNT as u64);
let mut data = [0; SECTOR_SIZE_BYTES * EXPECTED_SECTOR_COUNT];
for i in 0..EXPECTED_SECTOR_COUNT {
blk.read_block(i, &mut data[i * SECTOR_SIZE_BYTES..(i + 1) * SECTOR_SIZE_BYTES])
.expect("Failed to read block device.");
}
for (i, chunk) in data.chunks(size_of::<u32>()).enumerate() {
assert_eq!(chunk, &(i as u32).to_le_bytes());
}
info!("Read expected data from block device.");
true
} else {
false
}
}
/// Gets the memory region in which BARs are allocated.
pub fn get_bar_region(pci_info: &PciInfo) -> MemoryRegion {
MemoryRegion::new(pci_info.bar_range.start as usize, pci_info.bar_range.end as usize)
}
struct HalImpl;
impl Hal for HalImpl {
fn dma_alloc(pages: usize) -> PhysAddr {
debug!("dma_alloc: pages={}", pages);
let layout = Layout::from_size_align(pages * PAGE_SIZE, PAGE_SIZE).unwrap();
// Safe because the layout has a non-zero size.
let vaddr = unsafe { alloc(layout) } as VirtAddr;
virt_to_phys(vaddr)
}
fn dma_dealloc(paddr: PhysAddr, pages: usize) -> i32 {
debug!("dma_dealloc: paddr={:#x}, pages={}", paddr, pages);
let vaddr = Self::phys_to_virt(paddr);
let layout = Layout::from_size_align(pages * PAGE_SIZE, PAGE_SIZE).unwrap();
// Safe because the memory was allocated by `dma_alloc` above using the same allocator, and
// the layout is the same as was used then.
unsafe {
dealloc(vaddr as *mut u8, layout);
}
0
}
fn phys_to_virt(paddr: PhysAddr) -> VirtAddr {
paddr
}
fn share(buffer: NonNull<[u8]>, _direction: BufferDirection) -> PhysAddr {
let vaddr = buffer.as_ptr() as *mut u8 as usize;
// Nothing to do, as the host already has access to all memory.
virt_to_phys(vaddr)
}
fn unshare(_paddr: PhysAddr, _buffer: NonNull<[u8]>, _direction: BufferDirection) {
// Nothing to do, as the host already has access to all memory and we didn't copy the buffer
// anywhere else.
}
}
fn virt_to_phys(vaddr: VirtAddr) -> PhysAddr {
vaddr
}