blob: d04db065eb8c250d98dedb4a194ed073ca281413 [file] [log] [blame]
// Copyright 2022, The Android Open Source Project
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! pVM firmware.
#![no_main]
#![no_std]
extern crate alloc;
mod bcc;
mod bootargs;
mod config;
mod device_assignment;
mod dice;
mod entry;
mod exceptions;
mod fdt;
mod gpt;
mod instance;
mod memory;
mod rollback;
use crate::bcc::Bcc;
use crate::dice::PartialInputs;
use crate::entry::RebootReason;
use crate::fdt::{modify_for_next_stage, sanitize_device_tree};
use crate::rollback::perform_rollback_protection;
use alloc::borrow::Cow;
use alloc::boxed::Box;
use bssl_avf::Digester;
use core::ops::Range;
use cstr::cstr;
use diced_open_dice::{bcc_handover_parse, DiceArtifacts, DiceContext, Hidden, VM_KEY_ALGORITHM};
use libfdt::{Fdt, FdtNode};
use log::{debug, error, info, trace, warn};
use pvmfw_avb::verify_payload;
use pvmfw_avb::DebugLevel;
use pvmfw_embedded_key::PUBLIC_KEY;
use vmbase::fdt::pci::{PciError, PciInfo};
use vmbase::heap;
use vmbase::memory::{flush, init_shared_pool, SIZE_4KB};
use vmbase::rand;
use vmbase::virtio::pci;
fn main(
untrusted_fdt: &mut Fdt,
signed_kernel: &[u8],
ramdisk: Option<&[u8]>,
current_bcc_handover: &[u8],
mut debug_policy: Option<&[u8]>,
vm_dtbo: Option<&mut [u8]>,
vm_ref_dt: Option<&[u8]>,
) -> Result<(Range<usize>, bool), RebootReason> {
info!("pVM firmware");
debug!("FDT: {:?}", untrusted_fdt.as_ptr());
debug!("Signed kernel: {:?} ({:#x} bytes)", signed_kernel.as_ptr(), signed_kernel.len());
debug!("AVB public key: addr={:?}, size={:#x} ({1})", PUBLIC_KEY.as_ptr(), PUBLIC_KEY.len());
if let Some(rd) = ramdisk {
debug!("Ramdisk: {:?} ({:#x} bytes)", rd.as_ptr(), rd.len());
} else {
debug!("Ramdisk: None");
}
let bcc_handover = bcc_handover_parse(current_bcc_handover).map_err(|e| {
error!("Invalid BCC Handover: {e:?}");
RebootReason::InvalidBcc
})?;
trace!("BCC: {bcc_handover:x?}");
let cdi_seal = bcc_handover.cdi_seal();
let bcc = Bcc::new(bcc_handover.bcc()).map_err(|e| {
error!("{e}");
RebootReason::InvalidBcc
})?;
// The bootloader should never pass us a debug policy when the boot is secure (the bootloader
// is locked). If it gets it wrong, disregard it & log it, to avoid it causing problems.
if debug_policy.is_some() && !bcc.is_debug_mode() {
warn!("Ignoring debug policy, BCC does not indicate Debug mode");
debug_policy = None;
}
let verified_boot_data = verify_payload(signed_kernel, ramdisk, PUBLIC_KEY).map_err(|e| {
error!("Failed to verify the payload: {e}");
RebootReason::PayloadVerificationError
})?;
let debuggable = verified_boot_data.debug_level != DebugLevel::None;
if debuggable {
info!("Successfully verified a debuggable payload.");
info!("Please disregard any previous libavb ERROR about initrd_normal.");
}
let guest_page_size = verified_boot_data.page_size.unwrap_or(SIZE_4KB);
let fdt_info = sanitize_device_tree(untrusted_fdt, vm_dtbo, vm_ref_dt, guest_page_size)?;
let fdt = untrusted_fdt; // DT has now been sanitized.
let pci_info = PciInfo::from_fdt(fdt).map_err(handle_pci_error)?;
debug!("PCI: {:#x?}", pci_info);
// Set up PCI bus for VirtIO devices.
let mut pci_root = pci::initialize(pci_info).map_err(|e| {
error!("Failed to initialize PCI: {e}");
RebootReason::InternalError
})?;
init_shared_pool(fdt_info.swiotlb_info.fixed_range()).map_err(|e| {
error!("Failed to initialize shared pool: {e}");
RebootReason::InternalError
})?;
let next_bcc_size = guest_page_size;
let next_bcc = heap::aligned_boxed_slice(next_bcc_size, guest_page_size).ok_or_else(|| {
error!("Failed to allocate the next-stage BCC");
RebootReason::InternalError
})?;
// By leaking the slice, its content will be left behind for the next stage.
let next_bcc = Box::leak(next_bcc);
let dice_inputs = PartialInputs::new(&verified_boot_data).map_err(|e| {
error!("Failed to compute partial DICE inputs: {e:?}");
RebootReason::InternalError
})?;
let instance_hash = if cfg!(llpvm_changes) { Some(salt_from_instance_id(fdt)?) } else { None };
let (new_instance, salt, defer_rollback_protection) = perform_rollback_protection(
fdt,
&verified_boot_data,
&dice_inputs,
&mut pci_root,
cdi_seal,
instance_hash,
)?;
trace!("Got salt for instance: {salt:x?}");
let new_bcc_handover = if cfg!(dice_changes) {
Cow::Borrowed(current_bcc_handover)
} else {
// It is possible that the DICE chain we were given is rooted in the UDS. We do not want to
// give such a chain to the payload, or even the associated CDIs. So remove the
// entire chain we were given and taint the CDIs. Note that the resulting CDIs are
// still deterministically derived from those we received, so will vary iff they do.
// TODO(b/280405545): Remove this post Android 14.
let truncated_bcc_handover = bcc::truncate(bcc_handover).map_err(|e| {
error!("{e}");
RebootReason::InternalError
})?;
Cow::Owned(truncated_bcc_handover)
};
trace!("BCC leaf subject public key algorithm: {:?}", bcc.leaf_subject_pubkey().cose_alg);
let dice_context = DiceContext {
authority_algorithm: bcc.leaf_subject_pubkey().cose_alg.try_into().map_err(|e| {
error!("{e}");
RebootReason::InternalError
})?,
subject_algorithm: VM_KEY_ALGORITHM,
};
dice_inputs
.write_next_bcc(
new_bcc_handover.as_ref(),
&salt,
instance_hash,
defer_rollback_protection,
next_bcc,
dice_context,
)
.map_err(|e| {
error!("Failed to derive next-stage DICE secrets: {e:?}");
RebootReason::SecretDerivationError
})?;
flush(next_bcc);
let kaslr_seed = u64::from_ne_bytes(rand::random_array().map_err(|e| {
error!("Failed to generated guest KASLR seed: {e}");
RebootReason::InternalError
})?);
let strict_boot = true;
modify_for_next_stage(
fdt,
next_bcc,
new_instance,
strict_boot,
debug_policy,
debuggable,
kaslr_seed,
)
.map_err(|e| {
error!("Failed to configure device tree: {e}");
RebootReason::InternalError
})?;
info!("Starting payload...");
let bcc_range = {
let r = next_bcc.as_ptr_range();
(r.start as usize)..(r.end as usize)
};
Ok((bcc_range, debuggable))
}
// Get the "salt" which is one of the input for DICE derivation.
// This provides differentiation of secrets for different VM instances with same payloads.
fn salt_from_instance_id(fdt: &Fdt) -> Result<Hidden, RebootReason> {
let id = instance_id(fdt)?;
let salt = Digester::sha512()
.digest(&[&b"InstanceId:"[..], id].concat())
.map_err(|e| {
error!("Failed to get digest of instance-id: {e}");
RebootReason::InternalError
})?
.try_into()
.map_err(|_| RebootReason::InternalError)?;
Ok(salt)
}
fn instance_id(fdt: &Fdt) -> Result<&[u8], RebootReason> {
let node = avf_untrusted_node(fdt)?;
let id = node.getprop(cstr!("instance-id")).map_err(|e| {
error!("Failed to get instance-id in DT: {e}");
RebootReason::InvalidFdt
})?;
id.ok_or_else(|| {
error!("Missing instance-id");
RebootReason::InvalidFdt
})
}
fn avf_untrusted_node(fdt: &Fdt) -> Result<FdtNode, RebootReason> {
let node = fdt.node(cstr!("/avf/untrusted")).map_err(|e| {
error!("Failed to get /avf/untrusted node: {e}");
RebootReason::InvalidFdt
})?;
node.ok_or_else(|| {
error!("/avf/untrusted node is missing in DT");
RebootReason::InvalidFdt
})
}
/// Logs the given PCI error and returns the appropriate `RebootReason`.
fn handle_pci_error(e: PciError) -> RebootReason {
error!("{}", e);
match e {
PciError::FdtErrorPci(_)
| PciError::FdtNoPci
| PciError::FdtErrorReg(_)
| PciError::FdtMissingReg
| PciError::FdtRegEmpty
| PciError::FdtRegMissingSize
| PciError::CamWrongSize(_)
| PciError::FdtErrorRanges(_)
| PciError::FdtMissingRanges
| PciError::RangeAddressMismatch { .. }
| PciError::NoSuitableRange => RebootReason::InvalidFdt,
}
}