blob: 491d4de440e6289d6027d70866c00400948fe7f8 [file] [log] [blame]
// Copyright 2021, The Android Open Source Project
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Microdroid Manager
mod dice;
mod instance;
mod ioutil;
mod payload;
mod swap;
mod vm_payload_service;
mod vm_secret;
use crate::dice::{DiceDriver, format_payload_config_descriptor};
use crate::instance::{ApexData, ApkData, InstanceDisk, MicrodroidData, RootHash};
use crate::vm_payload_service::register_vm_payload_service;
use android_system_virtualizationcommon::aidl::android::system::virtualizationcommon::ErrorCode::ErrorCode;
use android_system_virtualmachineservice::aidl::android::system::virtualmachineservice::IVirtualMachineService::IVirtualMachineService;
use android_system_virtualization_payload::aidl::android::system::virtualization::payload::IVmPayloadService::{
VM_APK_CONTENTS_PATH,
VM_PAYLOAD_SERVICE_SOCKET_NAME,
ENCRYPTEDSTORE_MOUNTPOINT,
};
use anyhow::{anyhow, bail, ensure, Context, Error, Result};
use apkverify::{get_public_key_der, verify, V4Signature};
use apkmanifest::get_manifest_info;
use binder::Strong;
use diced_open_dice::OwnedDiceArtifacts;
use glob::glob;
use itertools::sorted;
use libc::VMADDR_CID_HOST;
use log::{error, info, warn};
use keystore2_crypto::ZVec;
use microdroid_metadata::{write_metadata, Metadata, PayloadMetadata};
use microdroid_payload_config::{OsConfig, Task, TaskType, VmPayloadConfig};
use nix::sys::signal::Signal;
use openssl::sha::Sha512;
use payload::{get_apex_data_from_payload, load_metadata, to_metadata};
use rand::Fill;
use rpcbinder::RpcSession;
use rustutils::sockets::android_get_control_socket;
use rustutils::system_properties;
use rustutils::system_properties::PropertyWatcher;
use std::borrow::Cow::{Borrowed, Owned};
use std::convert::TryInto;
use std::env;
use std::ffi::CString;
use std::fs::{self, create_dir, OpenOptions, File};
use std::io::{Read, Write};
use std::os::unix::process::CommandExt;
use std::os::unix::process::ExitStatusExt;
use std::os::unix::io::{FromRawFd, OwnedFd};
use std::path::Path;
use std::process::{Child, Command, Stdio};
use std::str;
use std::time::{Duration, SystemTime};
use vm_secret::VmSecret;
const WAIT_TIMEOUT: Duration = Duration::from_secs(10);
const MAIN_APK_PATH: &str = "/dev/block/by-name/microdroid-apk";
const MAIN_APK_IDSIG_PATH: &str = "/dev/block/by-name/microdroid-apk-idsig";
const MAIN_APK_DEVICE_NAME: &str = "microdroid-apk";
const EXTRA_APK_PATH_PATTERN: &str = "/dev/block/by-name/extra-apk-*";
const EXTRA_IDSIG_PATH_PATTERN: &str = "/dev/block/by-name/extra-idsig-*";
const DM_MOUNTED_APK_PATH: &str = "/dev/block/mapper/microdroid-apk";
const AVF_STRICT_BOOT: &str = "/sys/firmware/devicetree/base/chosen/avf,strict-boot";
const AVF_NEW_INSTANCE: &str = "/sys/firmware/devicetree/base/chosen/avf,new-instance";
const AVF_DEBUG_POLICY_RAMDUMP: &str = "/sys/firmware/devicetree/base/avf/guest/common/ramdump";
const DEBUG_MICRODROID_NO_VERIFIED_BOOT: &str =
"/sys/firmware/devicetree/base/virtualization/guest/debug-microdroid,no-verified-boot";
const APKDMVERITY_BIN: &str = "/system/bin/apkdmverity";
const ENCRYPTEDSTORE_BIN: &str = "/system/bin/encryptedstore";
const ZIPFUSE_BIN: &str = "/system/bin/zipfuse";
const APEX_CONFIG_DONE_PROP: &str = "apex_config.done";
const DEBUGGABLE_PROP: &str = "ro.boot.microdroid.debuggable";
// SYNC WITH virtualizationservice/src/crosvm.rs
const FAILURE_SERIAL_DEVICE: &str = "/dev/ttyS1";
const ENCRYPTEDSTORE_BACKING_DEVICE: &str = "/dev/block/by-name/encryptedstore";
const ENCRYPTEDSTORE_KEYSIZE: usize = 32;
#[derive(thiserror::Error, Debug)]
enum MicrodroidError {
#[error("Cannot connect to virtualization service: {0}")]
FailedToConnectToVirtualizationService(String),
#[error("Payload has changed: {0}")]
PayloadChanged(String),
#[error("Payload verification has failed: {0}")]
PayloadVerificationFailed(String),
#[error("Payload config is invalid: {0}")]
InvalidConfig(String),
}
fn translate_error(err: &Error) -> (ErrorCode, String) {
if let Some(e) = err.downcast_ref::<MicrodroidError>() {
match e {
MicrodroidError::PayloadChanged(msg) => (ErrorCode::PAYLOAD_CHANGED, msg.to_string()),
MicrodroidError::PayloadVerificationFailed(msg) => {
(ErrorCode::PAYLOAD_VERIFICATION_FAILED, msg.to_string())
}
MicrodroidError::InvalidConfig(msg) => {
(ErrorCode::PAYLOAD_CONFIG_INVALID, msg.to_string())
}
// Connection failure won't be reported to VS; return the default value
MicrodroidError::FailedToConnectToVirtualizationService(msg) => {
(ErrorCode::UNKNOWN, msg.to_string())
}
}
} else {
(ErrorCode::UNKNOWN, err.to_string())
}
}
fn write_death_reason_to_serial(err: &Error) -> Result<()> {
let death_reason = if let Some(e) = err.downcast_ref::<MicrodroidError>() {
Borrowed(match e {
MicrodroidError::FailedToConnectToVirtualizationService(_) => {
"MICRODROID_FAILED_TO_CONNECT_TO_VIRTUALIZATION_SERVICE"
}
MicrodroidError::PayloadChanged(_) => "MICRODROID_PAYLOAD_HAS_CHANGED",
MicrodroidError::PayloadVerificationFailed(_) => {
"MICRODROID_PAYLOAD_VERIFICATION_FAILED"
}
MicrodroidError::InvalidConfig(_) => "MICRODROID_INVALID_PAYLOAD_CONFIG",
})
} else {
// Send context information back after a separator, to ease diagnosis.
// These errors occur before the payload runs, so this should not leak sensitive
// information.
Owned(format!("MICRODROID_UNKNOWN_RUNTIME_ERROR|{:?}", err))
};
for chunk in death_reason.as_bytes().chunks(16) {
// TODO(b/220071963): Sometimes, sending more than 16 bytes at once makes MM hang.
OpenOptions::new().read(false).write(true).open(FAILURE_SERIAL_DEVICE)?.write_all(chunk)?;
}
Ok(())
}
fn get_vms_rpc_binder() -> Result<Strong<dyn IVirtualMachineService>> {
// The host is running a VirtualMachineService for this VM on a port equal
// to the CID of this VM.
let port = vsock::get_local_cid().context("Could not determine local CID")?;
RpcSession::new()
.setup_vsock_client(VMADDR_CID_HOST, port)
.context("Could not connect to IVirtualMachineService")
}
fn main() -> Result<()> {
// If debuggable, print full backtrace to console log with stdio_to_kmsg
if system_properties::read_bool(DEBUGGABLE_PROP, true)? {
env::set_var("RUST_BACKTRACE", "full");
}
scopeguard::defer! {
info!("Shutting down...");
if let Err(e) = system_properties::write("sys.powerctl", "shutdown") {
error!("failed to shutdown {:?}", e);
}
}
try_main().map_err(|e| {
error!("Failed with {:?}.", e);
if let Err(e) = write_death_reason_to_serial(&e) {
error!("Failed to write death reason {:?}", e);
}
e
})
}
/// Prepares a socket file descriptor for the vm payload service.
///
/// # Safety
///
/// The caller must ensure that this function is the only place that claims ownership
/// of the file descriptor and it is called only once.
unsafe fn prepare_vm_payload_service_socket() -> Result<OwnedFd> {
let raw_fd = android_get_control_socket(VM_PAYLOAD_SERVICE_SOCKET_NAME)?;
// Creating OwnedFd for stdio FDs is not safe.
if [libc::STDIN_FILENO, libc::STDOUT_FILENO, libc::STDERR_FILENO].contains(&raw_fd) {
bail!("File descriptor {raw_fd} is standard I/O descriptor");
}
// SAFETY: Initializing OwnedFd for a RawFd created by the init.
// We checked that the integer value corresponds to a valid FD and that the caller
// ensures that this is the only place to claim its ownership.
Ok(unsafe { OwnedFd::from_raw_fd(raw_fd) })
}
fn try_main() -> Result<()> {
android_logger::init_once(
android_logger::Config::default()
.with_tag("microdroid_manager")
.with_min_level(log::Level::Info),
);
info!("started.");
// SAFETY: This is the only place we take the ownership of the fd of the vm payload service.
//
// To ensure that the CLOEXEC flag is set on the file descriptor as early as possible,
// it is necessary to fetch the socket corresponding to vm_payload_service at the
// very beginning, as android_get_control_socket() sets the CLOEXEC flag on the file
// descriptor.
let vm_payload_service_fd = unsafe { prepare_vm_payload_service_socket()? };
load_crashkernel_if_supported().context("Failed to load crashkernel")?;
swap::init_swap().context("Failed to initialize swap")?;
info!("swap enabled.");
let service = get_vms_rpc_binder()
.context("cannot connect to VirtualMachineService")
.map_err(|e| MicrodroidError::FailedToConnectToVirtualizationService(e.to_string()))?;
match try_run_payload(&service, vm_payload_service_fd) {
Ok(code) => {
if code == 0 {
info!("task successfully finished");
} else {
error!("task exited with exit code: {}", code);
}
if let Err(e) = post_payload_work() {
error!(
"Failed to run post payload work. It is possible that certain tasks
like syncing encrypted store might be incomplete. Error: {:?}",
e
);
};
info!("notifying payload finished");
service.notifyPayloadFinished(code)?;
Ok(())
}
Err(err) => {
let (error_code, message) = translate_error(&err);
service.notifyError(error_code, &message)?;
Err(err)
}
}
}
fn post_payload_work() -> Result<()> {
// Sync the encrypted storage filesystem (flushes the filesystem caches).
if Path::new(ENCRYPTEDSTORE_BACKING_DEVICE).exists() {
let mountpoint = CString::new(ENCRYPTEDSTORE_MOUNTPOINT).unwrap();
// SAFETY: `mountpoint` is a valid C string. `syncfs` and `close` are safe for any parameter
// values.
let ret = unsafe {
let dirfd = libc::open(
mountpoint.as_ptr(),
libc::O_DIRECTORY | libc::O_RDONLY | libc::O_CLOEXEC,
);
ensure!(dirfd >= 0, "Unable to open {:?}", mountpoint);
let ret = libc::syncfs(dirfd);
libc::close(dirfd);
ret
};
if ret != 0 {
error!("failed to sync encrypted storage.");
return Err(anyhow!(std::io::Error::last_os_error()));
}
}
Ok(())
}
fn dice_derivation(
dice: DiceDriver,
verified_data: &MicrodroidData,
payload_metadata: &PayloadMetadata,
) -> Result<OwnedDiceArtifacts> {
// Calculate compound digests of code and authorities
let mut code_hash_ctx = Sha512::new();
let mut authority_hash_ctx = Sha512::new();
code_hash_ctx.update(verified_data.apk_data.root_hash.as_ref());
authority_hash_ctx.update(verified_data.apk_data.pubkey.as_ref());
for extra_apk in &verified_data.extra_apks_data {
code_hash_ctx.update(extra_apk.root_hash.as_ref());
authority_hash_ctx.update(extra_apk.pubkey.as_ref());
}
for apex in &verified_data.apex_data {
code_hash_ctx.update(apex.root_digest.as_ref());
authority_hash_ctx.update(apex.public_key.as_ref());
}
let code_hash = code_hash_ctx.finish();
let authority_hash = authority_hash_ctx.finish();
let config_descriptor = format_payload_config_descriptor(payload_metadata)?;
// Check debuggability, conservatively assuming it is debuggable
let debuggable = system_properties::read_bool(DEBUGGABLE_PROP, true)?;
// Send the details to diced
let hidden = verified_data.salt.clone().try_into().unwrap();
dice.derive(code_hash, &config_descriptor, authority_hash, debuggable, hidden)
}
fn is_strict_boot() -> bool {
Path::new(AVF_STRICT_BOOT).exists()
}
fn is_new_instance() -> bool {
Path::new(AVF_NEW_INSTANCE).exists()
}
fn is_verified_boot() -> bool {
!Path::new(DEBUG_MICRODROID_NO_VERIFIED_BOOT).exists()
}
fn should_export_tombstones(config: &VmPayloadConfig) -> bool {
match config.export_tombstones {
Some(b) => b,
None => system_properties::read_bool(DEBUGGABLE_PROP, true).unwrap_or(false),
}
}
/// Get debug policy value in bool. It's true iff the value is explicitly set to <1>.
fn get_debug_policy_bool(path: &'static str) -> Result<Option<bool>> {
let mut file = match File::open(path) {
Ok(dp) => dp,
Err(e) => {
info!(
"Assumes that debug policy is disabled because failed to read debug policy ({e:?})"
);
return Ok(Some(false));
}
};
let mut log: [u8; 4] = Default::default();
file.read_exact(&mut log).context("Malformed data in {path}")?;
// DT spec uses big endian although Android is always little endian.
Ok(Some(u32::from_be_bytes(log) == 1))
}
fn try_run_payload(
service: &Strong<dyn IVirtualMachineService>,
vm_payload_service_fd: OwnedFd,
) -> Result<i32> {
let metadata = load_metadata().context("Failed to load payload metadata")?;
let dice = DiceDriver::new(Path::new("/dev/open-dice0")).context("Failed to load DICE")?;
let mut instance = InstanceDisk::new().context("Failed to load instance.img")?;
let saved_data =
instance.read_microdroid_data(&dice).context("Failed to read identity data")?;
if is_strict_boot() {
// Provisioning must happen on the first boot and never again.
if is_new_instance() {
ensure!(
saved_data.is_none(),
MicrodroidError::InvalidConfig("Found instance data on first boot.".to_string())
);
} else {
ensure!(
saved_data.is_some(),
MicrodroidError::InvalidConfig("Instance data not found.".to_string())
);
};
}
// Verify the payload before using it.
let verified_data = verify_payload(&metadata, saved_data.as_ref())
.context("Payload verification failed")
.map_err(|e| MicrodroidError::PayloadVerificationFailed(e.to_string()))?;
// In case identity is ignored (by debug policy), we should reuse existing payload data, even
// when the payload is changed. This is to keep the derived secret same as before.
let verified_data = if let Some(saved_data) = saved_data {
if !is_verified_boot() {
if saved_data != verified_data {
info!("Detected an update of the payload, but continue (regarding debug policy)")
}
} else {
ensure!(
saved_data == verified_data,
MicrodroidError::PayloadChanged(String::from(
"Detected an update of the payload which isn't supported yet."
))
);
info!("Saved data is verified.");
}
saved_data
} else {
info!("Saving verified data.");
instance
.write_microdroid_data(&verified_data, &dice)
.context("Failed to write identity data")?;
verified_data
};
let payload_metadata = metadata.payload.ok_or_else(|| {
MicrodroidError::InvalidConfig("No payload config in metadata".to_string())
})?;
// To minimize the exposure to untrusted data, derive dice profile as soon as possible.
info!("DICE derivation for payload");
let dice_artifacts = dice_derivation(dice, &verified_data, &payload_metadata)?;
let vm_secret = VmSecret::new(dice_artifacts).context("Failed to create VM secrets")?;
// Run encryptedstore binary to prepare the storage
let encryptedstore_child = if Path::new(ENCRYPTEDSTORE_BACKING_DEVICE).exists() {
info!("Preparing encryptedstore ...");
Some(prepare_encryptedstore(&vm_secret).context("encryptedstore run")?)
} else {
None
};
let mut zipfuse = Zipfuse::default();
// Before reading a file from the APK, start zipfuse
zipfuse.mount(
MountForExec::Allowed,
"fscontext=u:object_r:zipfusefs:s0,context=u:object_r:system_file:s0",
Path::new(DM_MOUNTED_APK_PATH),
Path::new(VM_APK_CONTENTS_PATH),
"microdroid_manager.apk.mounted".to_owned(),
)?;
// Restricted APIs are only allowed to be used by platform or test components. Infer this from
// the use of a VM config file since those can only be used by platform and test components.
let allow_restricted_apis = match payload_metadata {
PayloadMetadata::ConfigPath(_) => true,
PayloadMetadata::Config(_) => false,
_ => false, // default is false for safety
};
let config = load_config(payload_metadata).context("Failed to load payload metadata")?;
let task = config
.task
.as_ref()
.ok_or_else(|| MicrodroidError::InvalidConfig("No task in VM config".to_string()))?;
ensure!(
config.extra_apks.len() == verified_data.extra_apks_data.len(),
"config expects {} extra apks, but found {}",
config.extra_apks.len(),
verified_data.extra_apks_data.len()
);
mount_extra_apks(&config, &mut zipfuse)?;
// Wait until apex config is done. (e.g. linker configuration for apexes)
wait_for_apex_config_done()?;
setup_config_sysprops(&config)?;
// Set export_tombstones if enabled
if should_export_tombstones(&config) {
// This property is read by tombstone_handler.
system_properties::write("microdroid_manager.export_tombstones.enabled", "1")
.context("set microdroid_manager.export_tombstones.enabled")?;
}
// Wait until zipfuse has mounted the APKs so we can access the payload
zipfuse.wait_until_done()?;
register_vm_payload_service(
allow_restricted_apis,
service.clone(),
vm_secret,
vm_payload_service_fd,
)?;
// Wait for encryptedstore to finish mounting the storage (if enabled) before setting
// microdroid_manager.init_done. Reason is init stops uneventd after that.
// Encryptedstore, however requires ueventd
if let Some(mut child) = encryptedstore_child {
let exitcode = child.wait().context("Wait for encryptedstore child")?;
ensure!(exitcode.success(), "Unable to prepare encrypted storage. Exitcode={}", exitcode);
}
wait_for_property_true("dev.bootcomplete").context("failed waiting for dev.bootcomplete")?;
system_properties::write("microdroid_manager.init_done", "1")
.context("set microdroid_manager.init_done")?;
info!("boot completed, time to run payload");
exec_task(task, service).context("Failed to run payload")
}
struct ApkDmverityArgument<'a> {
apk: &'a str,
idsig: &'a str,
name: &'a str,
saved_root_hash: Option<&'a RootHash>,
}
fn run_apkdmverity(args: &[ApkDmverityArgument]) -> Result<Child> {
let mut cmd = Command::new(APKDMVERITY_BIN);
for argument in args {
cmd.arg("--apk").arg(argument.apk).arg(argument.idsig).arg(argument.name);
if let Some(root_hash) = argument.saved_root_hash {
cmd.arg(&to_hex_string(root_hash));
} else {
cmd.arg("none");
}
}
cmd.spawn().context("Spawn apkdmverity")
}
enum MountForExec {
Allowed,
Disallowed,
}
#[derive(Default)]
struct Zipfuse {
ready_properties: Vec<String>,
}
impl Zipfuse {
fn mount(
&mut self,
noexec: MountForExec,
option: &str,
zip_path: &Path,
mount_dir: &Path,
ready_prop: String,
) -> Result<Child> {
let mut cmd = Command::new(ZIPFUSE_BIN);
if let MountForExec::Disallowed = noexec {
cmd.arg("--noexec");
}
// Let root own the files in APK, so we can access them, but set the group to
// allow all payloads to have access too.
let (uid, gid) = (microdroid_uids::ROOT_UID, microdroid_uids::MICRODROID_PAYLOAD_GID);
cmd.args(["-p", &ready_prop, "-o", option]);
cmd.args(["-u", &uid.to_string()]);
cmd.args(["-g", &gid.to_string()]);
cmd.arg(zip_path).arg(mount_dir);
self.ready_properties.push(ready_prop);
cmd.spawn().with_context(|| format!("Failed to run zipfuse for {mount_dir:?}"))
}
fn wait_until_done(self) -> Result<()> {
// We check the last-started check first in the hope that by the time it is done
// all or most of the others will also be done, minimising the number of times we
// block on a property.
for property in self.ready_properties.into_iter().rev() {
wait_for_property_true(&property)
.with_context(|| format!("Failed waiting for {property}"))?;
}
Ok(())
}
}
fn write_apex_payload_data(
saved_data: Option<&MicrodroidData>,
apex_data_from_payload: &[ApexData],
) -> Result<()> {
if let Some(saved_apex_data) = saved_data.map(|d| &d.apex_data) {
// We don't support APEX updates. (assuming that update will change root digest)
ensure!(
saved_apex_data == apex_data_from_payload,
MicrodroidError::PayloadChanged(String::from("APEXes have changed."))
);
let apex_metadata = to_metadata(apex_data_from_payload);
// Pass metadata(with public keys and root digests) to apexd so that it uses the passed
// metadata instead of the default one (/dev/block/by-name/payload-metadata)
OpenOptions::new()
.create_new(true)
.write(true)
.open("/apex/vm-payload-metadata")
.context("Failed to open /apex/vm-payload-metadata")
.and_then(|f| write_metadata(&apex_metadata, f))?;
}
Ok(())
}
// Verify payload before executing it. For APK payload, Full verification (which is slow) is done
// when the root_hash values from the idsig file and the instance disk are different. This function
// returns the verified root hash (for APK payload) and pubkeys (for APEX payloads) that can be
// saved to the instance disk.
fn verify_payload(
metadata: &Metadata,
saved_data: Option<&MicrodroidData>,
) -> Result<MicrodroidData> {
let start_time = SystemTime::now();
// Verify main APK
let root_hash_from_idsig = get_apk_root_hash_from_idsig(MAIN_APK_IDSIG_PATH)?;
let root_hash_trustful =
saved_data.map(|d| d.apk_data.root_hash_eq(root_hash_from_idsig.as_ref())).unwrap_or(false);
// If root_hash can be trusted, pass it to apkdmverity so that it uses the passed root_hash
// instead of the value read from the idsig file.
let main_apk_argument = {
ApkDmverityArgument {
apk: MAIN_APK_PATH,
idsig: MAIN_APK_IDSIG_PATH,
name: MAIN_APK_DEVICE_NAME,
saved_root_hash: if root_hash_trustful {
Some(root_hash_from_idsig.as_ref())
} else {
None
},
}
};
let mut apkdmverity_arguments = vec![main_apk_argument];
// Verify extra APKs
// For now, we can't read the payload config, so glob APKs and idsigs.
// Later, we'll see if it matches with the payload config.
// sort globbed paths to match apks (extra-apk-{idx}) and idsigs (extra-idsig-{idx})
// e.g. "extra-apk-0" corresponds to "extra-idsig-0"
let extra_apks =
sorted(glob(EXTRA_APK_PATH_PATTERN)?.collect::<Result<Vec<_>, _>>()?).collect::<Vec<_>>();
let extra_idsigs =
sorted(glob(EXTRA_IDSIG_PATH_PATTERN)?.collect::<Result<Vec<_>, _>>()?).collect::<Vec<_>>();
ensure!(
extra_apks.len() == extra_idsigs.len(),
"Extra apks/idsigs mismatch: {} apks but {} idsigs",
extra_apks.len(),
extra_idsigs.len()
);
let extra_root_hashes_from_idsig: Vec<_> = extra_idsigs
.iter()
.map(|idsig| {
get_apk_root_hash_from_idsig(idsig).expect("Can't find root hash from extra idsig")
})
.collect();
let extra_root_hashes_trustful: Vec<_> = if let Some(data) = saved_data {
extra_root_hashes_from_idsig
.iter()
.enumerate()
.map(|(i, root_hash)| data.extra_apk_root_hash_eq(i, root_hash))
.collect()
} else {
vec![false; extra_root_hashes_from_idsig.len()]
};
let extra_apk_names: Vec<_> =
(0..extra_apks.len()).map(|i| format!("extra-apk-{}", i)).collect();
for (i, extra_apk) in extra_apks.iter().enumerate() {
apkdmverity_arguments.push({
ApkDmverityArgument {
apk: extra_apk.to_str().unwrap(),
idsig: extra_idsigs[i].to_str().unwrap(),
name: &extra_apk_names[i],
saved_root_hash: if extra_root_hashes_trustful[i] {
Some(&extra_root_hashes_from_idsig[i])
} else {
None
},
}
});
}
// Start apkdmverity and wait for the dm-verify block
let mut apkdmverity_child = run_apkdmverity(&apkdmverity_arguments)?;
// While waiting for apkdmverity to mount APK, gathers public keys and root digests from
// APEX payload.
let apex_data_from_payload = get_apex_data_from_payload(metadata)?;
// Writing /apex/vm-payload-metadata is to verify that the payload isn't changed.
// Skip writing it if the debug policy ignoring identity is on
if is_verified_boot() {
write_apex_payload_data(saved_data, &apex_data_from_payload)?;
}
// Start apexd to activate APEXes
system_properties::write("ctl.start", "apexd-vm")?;
// TODO(inseob): add timeout
apkdmverity_child.wait()?;
// Do the full verification if the root_hash is un-trustful. This requires the full scanning of
// the APK file and therefore can be very slow if the APK is large. Note that this step is
// taken only when the root_hash is un-trustful which can be either when this is the first boot
// of the VM or APK was updated in the host.
// TODO(jooyung): consider multithreading to make this faster
let main_apk_pubkey = get_public_key_from_apk(DM_MOUNTED_APK_PATH, root_hash_trustful)?;
let extra_apks_data = extra_root_hashes_from_idsig
.into_iter()
.enumerate()
.map(|(i, extra_root_hash)| {
let mount_path = format!("/dev/block/mapper/{}", &extra_apk_names[i]);
let apk_pubkey = get_public_key_from_apk(&mount_path, extra_root_hashes_trustful[i])?;
Ok(ApkData { root_hash: extra_root_hash, pubkey: apk_pubkey })
})
.collect::<Result<Vec<_>>>()?;
info!("payload verification successful. took {:#?}", start_time.elapsed().unwrap());
// Use the salt from a verified instance, or generate a salt for a new instance.
let salt = if let Some(saved_data) = saved_data {
saved_data.salt.clone()
} else if is_strict_boot() {
// No need to add more entropy as a previous stage must have used a new, random salt.
vec![0u8; 64]
} else {
let mut salt = vec![0u8; 64];
salt.as_mut_slice().try_fill(&mut rand::thread_rng())?;
salt
};
// At this point, we can ensure that the root_hash from the idsig file is trusted, either by
// fully verifying the APK or by comparing it with the saved root_hash.
Ok(MicrodroidData {
salt,
apk_data: ApkData { root_hash: root_hash_from_idsig, pubkey: main_apk_pubkey },
extra_apks_data,
apex_data: apex_data_from_payload,
})
}
fn mount_extra_apks(config: &VmPayloadConfig, zipfuse: &mut Zipfuse) -> Result<()> {
// For now, only the number of apks is important, as the mount point and dm-verity name is fixed
for i in 0..config.extra_apks.len() {
let mount_dir = format!("/mnt/extra-apk/{i}");
create_dir(Path::new(&mount_dir)).context("Failed to create mount dir for extra apks")?;
let mount_for_exec =
if cfg!(multi_tenant) { MountForExec::Allowed } else { MountForExec::Disallowed };
// These run asynchronously in parallel - we wait later for them to complete.
zipfuse.mount(
mount_for_exec,
"fscontext=u:object_r:zipfusefs:s0,context=u:object_r:extra_apk_file:s0",
Path::new(&format!("/dev/block/mapper/extra-apk-{i}")),
Path::new(&mount_dir),
format!("microdroid_manager.extra_apk.mounted.{i}"),
)?;
}
Ok(())
}
fn setup_config_sysprops(config: &VmPayloadConfig) -> Result<()> {
if config.enable_authfs {
system_properties::write("microdroid_manager.authfs.enabled", "1")
.context("failed to write microdroid_manager.authfs.enabled")?;
}
system_properties::write("microdroid_manager.config_done", "1")
.context("failed to write microdroid_manager.config_done")?;
Ok(())
}
// Waits until linker config is generated
fn wait_for_apex_config_done() -> Result<()> {
wait_for_property_true(APEX_CONFIG_DONE_PROP).context("Failed waiting for apex config done")
}
fn wait_for_property_true(property_name: &str) -> Result<()> {
let mut prop = PropertyWatcher::new(property_name)?;
loop {
prop.wait(None)?;
if system_properties::read_bool(property_name, false)? {
break;
}
}
Ok(())
}
fn get_apk_root_hash_from_idsig<P: AsRef<Path>>(idsig_path: P) -> Result<Box<RootHash>> {
Ok(V4Signature::from_idsig_path(idsig_path)?.hashing_info.raw_root_hash)
}
fn get_public_key_from_apk(apk: &str, root_hash_trustful: bool) -> Result<Box<[u8]>> {
let current_sdk = get_current_sdk()?;
let public_key_der = if !root_hash_trustful {
verify(apk, current_sdk).context(MicrodroidError::PayloadVerificationFailed(format!(
"failed to verify {}",
apk
)))?
} else {
get_public_key_der(apk, current_sdk)?
};
match get_manifest_info(apk) {
Ok(manifest_info) => {
// TODO (b/299591171): Do something with this info
info!("Manifest info is {manifest_info:?}")
}
Err(e) => warn!("Failed to read manifest info from APK: {e:?}"),
};
Ok(public_key_der)
}
fn get_current_sdk() -> Result<u32> {
let current_sdk = system_properties::read("ro.build.version.sdk")?;
let current_sdk = current_sdk.ok_or_else(|| anyhow!("SDK version missing"))?;
current_sdk.parse().context("Malformed SDK version")
}
fn load_config(payload_metadata: PayloadMetadata) -> Result<VmPayloadConfig> {
match payload_metadata {
PayloadMetadata::ConfigPath(path) => {
let path = Path::new(&path);
info!("loading config from {:?}...", path);
let file = ioutil::wait_for_file(path, WAIT_TIMEOUT)
.with_context(|| format!("Failed to read {:?}", path))?;
Ok(serde_json::from_reader(file)?)
}
PayloadMetadata::Config(payload_config) => {
let task = Task {
type_: TaskType::MicrodroidLauncher,
command: payload_config.payload_binary_name,
};
Ok(VmPayloadConfig {
os: OsConfig { name: "microdroid".to_owned() },
task: Some(task),
apexes: vec![],
extra_apks: vec![],
prefer_staged: false,
export_tombstones: None,
enable_authfs: false,
})
}
_ => bail!("Failed to match config against a config type."),
}
}
/// Loads the crashkernel into memory using kexec if debuggable or debug policy says so.
/// The VM should be loaded with `crashkernel=' parameter in the cmdline to allocate memory
/// for crashkernel.
fn load_crashkernel_if_supported() -> Result<()> {
let supported = std::fs::read_to_string("/proc/cmdline")?.contains(" crashkernel=");
info!("ramdump supported: {}", supported);
if !supported {
return Ok(());
}
let debuggable = system_properties::read_bool(DEBUGGABLE_PROP, true)?;
let ramdump = get_debug_policy_bool(AVF_DEBUG_POLICY_RAMDUMP)?.unwrap_or_default();
let requested = debuggable | ramdump;
if requested {
let status = Command::new("/system/bin/kexec_load").status()?;
if !status.success() {
return Err(anyhow!("Failed to load crashkernel: {:?}", status));
}
info!("ramdump is loaded: debuggable={debuggable}, ramdump={ramdump}");
}
Ok(())
}
/// Executes the given task.
fn exec_task(task: &Task, service: &Strong<dyn IVirtualMachineService>) -> Result<i32> {
info!("executing main task {:?}...", task);
let mut command = match task.type_ {
TaskType::Executable => {
// TODO(b/297501338): Figure out how to handle non-root for system payloads.
Command::new(&task.command)
}
TaskType::MicrodroidLauncher => {
let mut command = Command::new("/system/bin/microdroid_launcher");
command.arg(find_library_path(&task.command)?);
command.uid(microdroid_uids::MICRODROID_PAYLOAD_UID);
command.gid(microdroid_uids::MICRODROID_PAYLOAD_GID);
command
}
};
// SAFETY: We are not accessing any resource of the parent process. This means we can't make any
// log calls inside the closure.
unsafe {
command.pre_exec(|| {
// It is OK to continue with payload execution even if the calls below fail, since
// whether process can use a capability is controlled by the SELinux. Dropping the
// capabilities here is just another defense-in-depth layer.
let _ = cap::drop_inheritable_caps();
let _ = cap::drop_bounding_set();
Ok(())
});
}
command.stdin(Stdio::null()).stdout(Stdio::null()).stderr(Stdio::null());
info!("notifying payload started");
service.notifyPayloadStarted()?;
let exit_status = command.spawn()?.wait()?;
match exit_status.code() {
Some(exit_code) => Ok(exit_code),
None => Err(match exit_status.signal() {
Some(signal) => anyhow!(
"Payload exited due to signal: {} ({})",
signal,
Signal::try_from(signal).map_or("unknown", |s| s.as_str())
),
None => anyhow!("Payload has neither exit code nor signal"),
}),
}
}
fn find_library_path(name: &str) -> Result<String> {
let mut watcher = PropertyWatcher::new("ro.product.cpu.abilist")?;
let value = watcher.read(|_name, value| Ok(value.trim().to_string()))?;
let abi = value.split(',').next().ok_or_else(|| anyhow!("no abilist"))?;
let path = format!("{}/lib/{}/{}", VM_APK_CONTENTS_PATH, abi, name);
let metadata = fs::metadata(&path).with_context(|| format!("Unable to access {}", path))?;
if !metadata.is_file() {
bail!("{} is not a file", &path);
}
Ok(path)
}
fn to_hex_string(buf: &[u8]) -> String {
buf.iter().map(|b| format!("{:02X}", b)).collect()
}
fn prepare_encryptedstore(vm_secret: &VmSecret) -> Result<Child> {
let mut key = ZVec::new(ENCRYPTEDSTORE_KEYSIZE)?;
vm_secret.derive_encryptedstore_key(&mut key)?;
let mut cmd = Command::new(ENCRYPTEDSTORE_BIN);
cmd.arg("--blkdevice")
.arg(ENCRYPTEDSTORE_BACKING_DEVICE)
.arg("--key")
.arg(hex::encode(&*key))
.args(["--mountpoint", ENCRYPTEDSTORE_MOUNTPOINT])
.spawn()
.context("encryptedstore failed")
}