|  | /* | 
|  | * Copyright 2014 The Android Open Source Project | 
|  | * | 
|  | * Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | * you may not use this file except in compliance with the License. | 
|  | * You may obtain a copy of the License at | 
|  | * | 
|  | * http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | * Unless required by applicable law or agreed to in writing, software | 
|  | * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | * See the License for the specific language governing permissions and | 
|  | * limitations under the License. | 
|  | * | 
|  | * clatd_test.cpp - unit tests for clatd | 
|  | */ | 
|  |  | 
|  | #include <iostream> | 
|  |  | 
|  | #include <arpa/inet.h> | 
|  | #include <linux/if_packet.h> | 
|  | #include <netinet/in6.h> | 
|  | #include <stdio.h> | 
|  | #include <sys/uio.h> | 
|  |  | 
|  | #include <gtest/gtest.h> | 
|  |  | 
|  | #include "netutils/ifc.h" | 
|  | #include "tun_interface.h" | 
|  |  | 
|  | extern "C" { | 
|  | #include "checksum.h" | 
|  | #include "clatd.h" | 
|  | #include "config.h" | 
|  | #include "translate.h" | 
|  | } | 
|  |  | 
|  | // For convenience. | 
|  | #define ARRAYSIZE(x) sizeof((x)) / sizeof((x)[0]) | 
|  |  | 
|  | using android::net::TunInterface; | 
|  |  | 
|  | // Default translation parameters. | 
|  | static const char kIPv4LocalAddr[]  = "192.0.0.4"; | 
|  | static const char kIPv6LocalAddr[]  = "2001:db8:0:b11::464"; | 
|  | static const char kIPv6PlatSubnet[] = "64:ff9b::"; | 
|  |  | 
|  | // clang-format off | 
|  | // Test packet portions. Defined as macros because it's easy to concatenate them to make packets. | 
|  | #define IPV4_HEADER(p, c1, c2) \ | 
|  | 0x45, 0x00,    0,   41,  /* Version=4, IHL=5, ToS=0x80, len=41 */     \ | 
|  | 0x00, 0x00, 0x40, 0x00,  /* ID=0x0000, flags=IP_DF, offset=0 */       \ | 
|  | 55,  (p), (c1), (c2),  /* TTL=55, protocol=p, checksum=c1,c2 */     \ | 
|  | 192,    0,    0,    4,  /* Src=192.0.0.4 */                          \ | 
|  | 8,    8,    8,    8,  /* Dst=8.8.8.8 */ | 
|  | #define IPV4_UDP_HEADER IPV4_HEADER(IPPROTO_UDP, 0x73, 0xb0) | 
|  | #define IPV4_ICMP_HEADER IPV4_HEADER(IPPROTO_ICMP, 0x73, 0xc0) | 
|  |  | 
|  | #define IPV6_HEADER(p) \ | 
|  | 0x60, 0x00,    0,    0,  /* Version=6, tclass=0x00, flowlabel=0 */    \ | 
|  | 0,   21,  (p),   55,  /* plen=11, nxthdr=p, hlim=55 */             \ | 
|  | 0x20, 0x01, 0x0d, 0xb8,  /* Src=2001:db8:0:b11::464 */                \ | 
|  | 0x00, 0x00, 0x0b, 0x11,                                               \ | 
|  | 0x00, 0x00, 0x00, 0x00,                                               \ | 
|  | 0x00, 0x00, 0x04, 0x64,                                               \ | 
|  | 0x00, 0x64, 0xff, 0x9b,  /* Dst=64:ff9b::8.8.8.8 */                   \ | 
|  | 0x00, 0x00, 0x00, 0x00,                                               \ | 
|  | 0x00, 0x00, 0x00, 0x00,                                               \ | 
|  | 0x08, 0x08, 0x08, 0x08, | 
|  | #define IPV6_UDP_HEADER IPV6_HEADER(IPPROTO_UDP) | 
|  | #define IPV6_ICMPV6_HEADER IPV6_HEADER(IPPROTO_ICMPV6) | 
|  |  | 
|  | #define UDP_LEN 21 | 
|  | #define UDP_HEADER \ | 
|  | 0xc8, 0x8b,    0,   53,  /* Port 51339->53 */                         \ | 
|  | 0x00, UDP_LEN, 0,    0,  /* Length 21, checksum empty for now */ | 
|  |  | 
|  | #define PAYLOAD 'H', 'e', 'l', 'l', 'o', ' ', 0x4e, 0xb8, 0x96, 0xe7, 0x95, 0x8c, 0x00 | 
|  |  | 
|  | #define IPV4_PING \ | 
|  | 0x08, 0x00, 0x88, 0xd0,  /* Type 8, code 0, checksum 0x88d0 */        \ | 
|  | 0xd0, 0x0d, 0x00, 0x03,  /* ID=0xd00d, seq=3 */ | 
|  |  | 
|  | #define IPV6_PING \ | 
|  | 0x80, 0x00, 0xc3, 0x42,  /* Type 128, code 0, checksum 0xc342 */      \ | 
|  | 0xd0, 0x0d, 0x00, 0x03,  /* ID=0xd00d, seq=3 */ | 
|  |  | 
|  | // Macros to return pseudo-headers from packets. | 
|  | #define IPV4_PSEUDOHEADER(ip, tlen)                                  \ | 
|  | ip[12], ip[13], ip[14], ip[15],        /* Source address      */   \ | 
|  | ip[16], ip[17], ip[18], ip[19],        /* Destination address */   \ | 
|  | 0, ip[9],                              /* 0, protocol         */   \ | 
|  | ((tlen) >> 16) & 0xff, (tlen) & 0xff,  /* Transport length */ | 
|  |  | 
|  | #define IPV6_PSEUDOHEADER(ip6, protocol, tlen)                       \ | 
|  | ip6[8],  ip6[9],  ip6[10], ip6[11],  /* Source address */          \ | 
|  | ip6[12], ip6[13], ip6[14], ip6[15],                                \ | 
|  | ip6[16], ip6[17], ip6[18], ip6[19],                                \ | 
|  | ip6[20], ip6[21], ip6[22], ip6[23],                                \ | 
|  | ip6[24], ip6[25], ip6[26], ip6[27],  /* Destination address */     \ | 
|  | ip6[28], ip6[29], ip6[30], ip6[31],                                \ | 
|  | ip6[32], ip6[33], ip6[34], ip6[35],                                \ | 
|  | ip6[36], ip6[37], ip6[38], ip6[39],                                \ | 
|  | ((tlen) >> 24) & 0xff,               /* Transport length */        \ | 
|  | ((tlen) >> 16) & 0xff,                                             \ | 
|  | ((tlen) >> 8) & 0xff,                                              \ | 
|  | (tlen) & 0xff,                                                     \ | 
|  | 0, 0, 0, (protocol), | 
|  |  | 
|  | // A fragmented DNS request. | 
|  | static const uint8_t kIPv4Frag1[] = { | 
|  | 0x45, 0x00, 0x00, 0x24, 0xfe, 0x47, 0x20, 0x00, 0x40, 0x11, | 
|  | 0x8c, 0x6d, 0xc0, 0x00, 0x00, 0x04, 0x08, 0x08, 0x08, 0x08, | 
|  | 0x14, 0x5d, 0x00, 0x35, 0x00, 0x29, 0x68, 0xbb, 0x50, 0x47, | 
|  | 0x01, 0x00, 0x00, 0x01, 0x00, 0x00 | 
|  | }; | 
|  | static const uint8_t kIPv4Frag2[] = { | 
|  | 0x45, 0x00, 0x00, 0x24, 0xfe, 0x47, 0x20, 0x02, 0x40, 0x11, | 
|  | 0x8c, 0x6b, 0xc0, 0x00, 0x00, 0x04, 0x08, 0x08, 0x08, 0x08, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x04, 0x69, 0x70, 0x76, 0x34, 0x06, | 
|  | 0x67, 0x6f, 0x6f, 0x67, 0x6c, 0x65 | 
|  | }; | 
|  | static const uint8_t kIPv4Frag3[] = { | 
|  | 0x45, 0x00, 0x00, 0x1d, 0xfe, 0x47, 0x00, 0x04, 0x40, 0x11, | 
|  | 0xac, 0x70, 0xc0, 0x00, 0x00, 0x04, 0x08, 0x08, 0x08, 0x08, | 
|  | 0x03, 0x63, 0x6f, 0x6d, 0x00, 0x00, 0x01, 0x00, 0x01 | 
|  | }; | 
|  | static const uint8_t *kIPv4Fragments[] = { kIPv4Frag1, kIPv4Frag2, kIPv4Frag3 }; | 
|  | static const size_t kIPv4FragLengths[] = { sizeof(kIPv4Frag1), sizeof(kIPv4Frag2), | 
|  | sizeof(kIPv4Frag3) }; | 
|  |  | 
|  | static const uint8_t kIPv6Frag1[] = { | 
|  | 0x60, 0x00, 0x00, 0x00, 0x00, 0x18, 0x2c, 0x40, 0x20, 0x01, | 
|  | 0x0d, 0xb8, 0x00, 0x00, 0x0b, 0x11, 0x00, 0x00, 0x00, 0x00, | 
|  | 0x00, 0x00, 0x04, 0x64, 0x00, 0x64, 0xff, 0x9b, 0x00, 0x00, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x08, 0x08, 0x08, | 
|  | 0x11, 0x00, 0x00, 0x01, 0x00, 0x00, 0xfe, 0x47, 0x14, 0x5d, | 
|  | 0x00, 0x35, 0x00, 0x29, 0xeb, 0x91, 0x50, 0x47, 0x01, 0x00, | 
|  | 0x00, 0x01, 0x00, 0x00 | 
|  | }; | 
|  |  | 
|  | static const uint8_t kIPv6Frag2[] = { | 
|  | 0x60, 0x00, 0x00, 0x00, 0x00, 0x18, 0x2c, 0x40, 0x20, 0x01, | 
|  | 0x0d, 0xb8, 0x00, 0x00, 0x0b, 0x11, 0x00, 0x00, 0x00, 0x00, | 
|  | 0x00, 0x00, 0x04, 0x64, 0x00, 0x64, 0xff, 0x9b, 0x00, 0x00, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x08, 0x08, 0x08, | 
|  | 0x11, 0x00, 0x00, 0x11, 0x00, 0x00, 0xfe, 0x47, 0x00, 0x00, | 
|  | 0x00, 0x00, 0x04, 0x69, 0x70, 0x76, 0x34, 0x06, 0x67, 0x6f, | 
|  | 0x6f, 0x67, 0x6c, 0x65 | 
|  | }; | 
|  |  | 
|  | static const uint8_t kIPv6Frag3[] = { | 
|  | 0x60, 0x00, 0x00, 0x00, 0x00, 0x11, 0x2c, 0x40, 0x20, 0x01, | 
|  | 0x0d, 0xb8, 0x00, 0x00, 0x0b, 0x11, 0x00, 0x00, 0x00, 0x00, | 
|  | 0x00, 0x00, 0x04, 0x64, 0x00, 0x64, 0xff, 0x9b, 0x00, 0x00, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x08, 0x08, 0x08, | 
|  | 0x11, 0x00, 0x00, 0x20, 0x00, 0x00, 0xfe, 0x47, 0x03, 0x63, | 
|  | 0x6f, 0x6d, 0x00, 0x00, 0x01, 0x00, 0x01 | 
|  | }; | 
|  | static const uint8_t *kIPv6Fragments[] = { kIPv6Frag1, kIPv6Frag2, kIPv6Frag3 }; | 
|  | static const size_t kIPv6FragLengths[] = { sizeof(kIPv6Frag1), sizeof(kIPv6Frag2), | 
|  | sizeof(kIPv6Frag3) }; | 
|  |  | 
|  | static const uint8_t kReassembledIPv4[] = { | 
|  | 0x45, 0x00, 0x00, 0x3d, 0xfe, 0x47, 0x00, 0x00, 0x40, 0x11, | 
|  | 0xac, 0x54, 0xc0, 0x00, 0x00, 0x04, 0x08, 0x08, 0x08, 0x08, | 
|  | 0x14, 0x5d, 0x00, 0x35, 0x00, 0x29, 0x68, 0xbb, 0x50, 0x47, | 
|  | 0x01, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | 
|  | 0x04, 0x69, 0x70, 0x76, 0x34, 0x06, 0x67, 0x6f, 0x6f, 0x67, | 
|  | 0x6c, 0x65, 0x03, 0x63, 0x6f, 0x6d, 0x00, 0x00, 0x01, 0x00, | 
|  | 0x01 | 
|  | }; | 
|  | // clang-format on | 
|  |  | 
|  | // Expected checksums. | 
|  | static const uint32_t kUdpPartialChecksum     = 0xd5c8; | 
|  | static const uint32_t kPayloadPartialChecksum = 0x31e9c; | 
|  | static const uint16_t kUdpV4Checksum          = 0xd0c7; | 
|  | static const uint16_t kUdpV6Checksum          = 0xa74a; | 
|  |  | 
|  | uint8_t ip_version(const uint8_t *packet) { | 
|  | uint8_t version = packet[0] >> 4; | 
|  | return version; | 
|  | } | 
|  |  | 
|  | int is_ipv4_fragment(struct iphdr *ip) { | 
|  | // A packet is a fragment if its fragment offset is nonzero or if the MF flag is set. | 
|  | return ntohs(ip->frag_off) & (IP_OFFMASK | IP_MF); | 
|  | } | 
|  |  | 
|  | int is_ipv6_fragment(struct ip6_hdr *ip6, size_t len) { | 
|  | if (ip6->ip6_nxt != IPPROTO_FRAGMENT) { | 
|  | return 0; | 
|  | } | 
|  | struct ip6_frag *frag = (struct ip6_frag *)(ip6 + 1); | 
|  | return len >= sizeof(*ip6) + sizeof(*frag) && | 
|  | (frag->ip6f_offlg & (IP6F_OFF_MASK | IP6F_MORE_FRAG)); | 
|  | } | 
|  |  | 
|  | int ipv4_fragment_offset(struct iphdr *ip) { | 
|  | return ntohs(ip->frag_off) & IP_OFFMASK; | 
|  | } | 
|  |  | 
|  | int ipv6_fragment_offset(struct ip6_frag *frag) { | 
|  | return ntohs((frag->ip6f_offlg & IP6F_OFF_MASK) >> 3); | 
|  | } | 
|  |  | 
|  | void check_packet(const uint8_t *packet, size_t len, const char *msg) { | 
|  | void *payload; | 
|  | size_t payload_length    = 0; | 
|  | uint32_t pseudo_checksum = 0; | 
|  | uint8_t protocol         = 0; | 
|  | int version              = ip_version(packet); | 
|  | switch (version) { | 
|  | case 4: { | 
|  | struct iphdr *ip = (struct iphdr *)packet; | 
|  | ASSERT_GE(len, sizeof(*ip)) << msg << ": IPv4 packet shorter than IPv4 header\n"; | 
|  | EXPECT_EQ(5, ip->ihl) << msg << ": Unsupported IP header length\n"; | 
|  | EXPECT_EQ(len, ntohs(ip->tot_len)) << msg << ": Incorrect IPv4 length\n"; | 
|  | EXPECT_EQ(0, ip_checksum(ip, sizeof(*ip))) << msg << ": Incorrect IP checksum\n"; | 
|  | protocol = ip->protocol; | 
|  | payload  = ip + 1; | 
|  | if (!is_ipv4_fragment(ip)) { | 
|  | payload_length  = len - sizeof(*ip); | 
|  | pseudo_checksum = ipv4_pseudo_header_checksum(ip, payload_length); | 
|  | } | 
|  | ASSERT_TRUE(protocol == IPPROTO_TCP || protocol == IPPROTO_UDP || protocol == IPPROTO_ICMP) | 
|  | << msg << ": Unsupported IPv4 protocol " << protocol << "\n"; | 
|  | break; | 
|  | } | 
|  | case 6: { | 
|  | struct ip6_hdr *ip6 = (struct ip6_hdr *)packet; | 
|  | ASSERT_GE(len, sizeof(*ip6)) << msg << ": IPv6 packet shorter than IPv6 header\n"; | 
|  | EXPECT_EQ(len - sizeof(*ip6), htons(ip6->ip6_plen)) << msg << ": Incorrect IPv6 length\n"; | 
|  |  | 
|  | if (ip6->ip6_nxt == IPPROTO_FRAGMENT) { | 
|  | struct ip6_frag *frag = (struct ip6_frag *)(ip6 + 1); | 
|  | ASSERT_GE(len, sizeof(*ip6) + sizeof(*frag)) | 
|  | << msg << ": IPv6 fragment: short fragment header\n"; | 
|  | protocol = frag->ip6f_nxt; | 
|  | payload  = frag + 1; | 
|  | // Even though the packet has a Fragment header, it might not be a fragment. | 
|  | if (!is_ipv6_fragment(ip6, len)) { | 
|  | payload_length = len - sizeof(*ip6) - sizeof(*frag); | 
|  | } | 
|  | } else { | 
|  | // Since there are no extension headers except Fragment, this must be the payload. | 
|  | protocol       = ip6->ip6_nxt; | 
|  | payload        = ip6 + 1; | 
|  | payload_length = len - sizeof(*ip6); | 
|  | } | 
|  | ASSERT_TRUE(protocol == IPPROTO_TCP || protocol == IPPROTO_UDP || protocol == IPPROTO_ICMPV6) | 
|  | << msg << ": Unsupported IPv6 next header " << protocol; | 
|  | if (payload_length) { | 
|  | pseudo_checksum = ipv6_pseudo_header_checksum(ip6, payload_length, protocol); | 
|  | } | 
|  | break; | 
|  | } | 
|  | default: | 
|  | FAIL() << msg << ": Unsupported IP version " << version << "\n"; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If we understand the payload, verify the checksum. | 
|  | if (payload_length) { | 
|  | uint16_t checksum; | 
|  | switch (protocol) { | 
|  | case IPPROTO_UDP: | 
|  | case IPPROTO_TCP: | 
|  | case IPPROTO_ICMPV6: | 
|  | checksum = ip_checksum_finish(ip_checksum_add(pseudo_checksum, payload, payload_length)); | 
|  | break; | 
|  | case IPPROTO_ICMP: | 
|  | checksum = ip_checksum(payload, payload_length); | 
|  | break; | 
|  | default: | 
|  | checksum = 0;  // Don't check. | 
|  | break; | 
|  | } | 
|  | EXPECT_EQ(0, checksum) << msg << ": Incorrect transport checksum\n"; | 
|  | } | 
|  |  | 
|  | if (protocol == IPPROTO_UDP) { | 
|  | struct udphdr *udp = (struct udphdr *)payload; | 
|  | EXPECT_NE(0, udp->check) << msg << ": UDP checksum 0 should be 0xffff"; | 
|  | // If this is not a fragment, check the UDP length field. | 
|  | if (payload_length) { | 
|  | EXPECT_EQ(payload_length, ntohs(udp->len)) << msg << ": Incorrect UDP length\n"; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void reassemble_packet(const uint8_t **fragments, const size_t lengths[], int numpackets, | 
|  | uint8_t *reassembled, size_t *reassembled_len, const char *msg) { | 
|  | struct iphdr *ip    = nullptr; | 
|  | struct ip6_hdr *ip6 = nullptr; | 
|  | size_t total_length, pos = 0; | 
|  | uint8_t protocol = 0; | 
|  | uint8_t version  = ip_version(fragments[0]); | 
|  |  | 
|  | for (int i = 0; i < numpackets; i++) { | 
|  | const uint8_t *packet = fragments[i]; | 
|  | int len               = lengths[i]; | 
|  | int headersize, payload_offset; | 
|  |  | 
|  | ASSERT_EQ(ip_version(packet), version) << msg << ": Inconsistent fragment versions\n"; | 
|  | check_packet(packet, len, "Fragment sanity check"); | 
|  |  | 
|  | switch (version) { | 
|  | case 4: { | 
|  | struct iphdr *ip_orig = (struct iphdr *)packet; | 
|  | headersize            = sizeof(*ip_orig); | 
|  | ASSERT_TRUE(is_ipv4_fragment(ip_orig)) | 
|  | << msg << ": IPv4 fragment #" << i + 1 << " not a fragment\n"; | 
|  | ASSERT_EQ(pos, ipv4_fragment_offset(ip_orig) * 8 + ((i != 0) ? sizeof(*ip) : 0)) | 
|  | << msg << ": IPv4 fragment #" << i + 1 << ": inconsistent offset\n"; | 
|  |  | 
|  | headersize     = sizeof(*ip_orig); | 
|  | payload_offset = headersize; | 
|  | if (pos == 0) { | 
|  | ip = (struct iphdr *)reassembled; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case 6: { | 
|  | struct ip6_hdr *ip6_orig = (struct ip6_hdr *)packet; | 
|  | struct ip6_frag *frag    = (struct ip6_frag *)(ip6_orig + 1); | 
|  | ASSERT_TRUE(is_ipv6_fragment(ip6_orig, len)) | 
|  | << msg << ": IPv6 fragment #" << i + 1 << " not a fragment\n"; | 
|  | ASSERT_EQ(pos, ipv6_fragment_offset(frag) * 8 + ((i != 0) ? sizeof(*ip6) : 0)) | 
|  | << msg << ": IPv6 fragment #" << i + 1 << ": inconsistent offset\n"; | 
|  |  | 
|  | headersize     = sizeof(*ip6_orig); | 
|  | payload_offset = sizeof(*ip6_orig) + sizeof(*frag); | 
|  | if (pos == 0) { | 
|  | ip6      = (struct ip6_hdr *)reassembled; | 
|  | protocol = frag->ip6f_nxt; | 
|  | } | 
|  | break; | 
|  | } | 
|  | default: | 
|  | FAIL() << msg << ": Invalid IP version << " << version; | 
|  | } | 
|  |  | 
|  | // If this is the first fragment, copy the header. | 
|  | if (pos == 0) { | 
|  | ASSERT_LT(headersize, (int)*reassembled_len) << msg << ": Reassembly buffer too small\n"; | 
|  | memcpy(reassembled, packet, headersize); | 
|  | total_length = headersize; | 
|  | pos += headersize; | 
|  | } | 
|  |  | 
|  | // Copy the payload. | 
|  | int payload_length = len - payload_offset; | 
|  | total_length += payload_length; | 
|  | ASSERT_LT(total_length, *reassembled_len) << msg << ": Reassembly buffer too small\n"; | 
|  | memcpy(reassembled + pos, packet + payload_offset, payload_length); | 
|  | pos += payload_length; | 
|  | } | 
|  |  | 
|  | // Fix up the reassembled headers to reflect fragmentation and length (and IPv4 checksum). | 
|  | ASSERT_EQ(total_length, pos) << msg << ": Reassembled packet length incorrect\n"; | 
|  | if (ip) { | 
|  | ip->frag_off &= ~htons(IP_MF); | 
|  | ip->tot_len = htons(total_length); | 
|  | ip->check   = 0; | 
|  | ip->check   = ip_checksum(ip, sizeof(*ip)); | 
|  | ASSERT_FALSE(is_ipv4_fragment(ip)) << msg << ": reassembled IPv4 packet is a fragment!\n"; | 
|  | } | 
|  | if (ip6) { | 
|  | ip6->ip6_nxt  = protocol; | 
|  | ip6->ip6_plen = htons(total_length - sizeof(*ip6)); | 
|  | ASSERT_FALSE(is_ipv6_fragment(ip6, ip6->ip6_plen)) | 
|  | << msg << ": reassembled IPv6 packet is a fragment!\n"; | 
|  | } | 
|  |  | 
|  | *reassembled_len = total_length; | 
|  | } | 
|  |  | 
|  | void check_data_matches(const void *expected, const void *actual, size_t len, const char *msg) { | 
|  | if (memcmp(expected, actual, len)) { | 
|  | // Hex dump, 20 bytes per line, one space between bytes (1 byte = 3 chars), indented by 4. | 
|  | int hexdump_len = len * 3 + (len / 20 + 1) * 5; | 
|  | char expected_hexdump[hexdump_len], actual_hexdump[hexdump_len]; | 
|  | unsigned pos = 0; | 
|  | for (unsigned i = 0; i < len; i++) { | 
|  | if (i % 20 == 0) { | 
|  | snprintf(expected_hexdump + pos, hexdump_len - pos, "\n   "); | 
|  | snprintf(actual_hexdump + pos, hexdump_len - pos, "\n   "); | 
|  | pos += 4; | 
|  | } | 
|  | snprintf(expected_hexdump + pos, hexdump_len - pos, " %02x", ((uint8_t *)expected)[i]); | 
|  | snprintf(actual_hexdump + pos, hexdump_len - pos, " %02x", ((uint8_t *)actual)[i]); | 
|  | pos += 3; | 
|  | } | 
|  | FAIL() << msg << ": Data doesn't match" | 
|  | << "\n  Expected:" << (char *) expected_hexdump | 
|  | << "\n  Actual:" << (char *) actual_hexdump << "\n"; | 
|  | } | 
|  | } | 
|  |  | 
|  | void fix_udp_checksum(uint8_t *packet) { | 
|  | uint32_t pseudo_checksum; | 
|  | uint8_t version = ip_version(packet); | 
|  | struct udphdr *udp; | 
|  | switch (version) { | 
|  | case 4: { | 
|  | struct iphdr *ip = (struct iphdr *)packet; | 
|  | udp              = (struct udphdr *)(ip + 1); | 
|  | pseudo_checksum  = ipv4_pseudo_header_checksum(ip, ntohs(udp->len)); | 
|  | break; | 
|  | } | 
|  | case 6: { | 
|  | struct ip6_hdr *ip6 = (struct ip6_hdr *)packet; | 
|  | udp                 = (struct udphdr *)(ip6 + 1); | 
|  | pseudo_checksum     = ipv6_pseudo_header_checksum(ip6, ntohs(udp->len), IPPROTO_UDP); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | FAIL() << "unsupported IP version" << version << "\n"; | 
|  | return; | 
|  | } | 
|  |  | 
|  | udp->check = 0; | 
|  | udp->check = ip_checksum_finish(ip_checksum_add(pseudo_checksum, udp, ntohs(udp->len))); | 
|  | } | 
|  |  | 
|  | // Testing stub for send_rawv6. The real version uses sendmsg() with a | 
|  | // destination IPv6 address, and attempting to call that on our test socketpair | 
|  | // fd results in EINVAL. | 
|  | extern "C" void send_rawv6(int fd, clat_packet out, int iov_len) { writev(fd, out, iov_len); } | 
|  |  | 
|  | void do_translate_packet(const uint8_t *original, size_t original_len, uint8_t *out, size_t *outlen, | 
|  | const char *msg) { | 
|  | int fds[2]; | 
|  | if (socketpair(AF_UNIX, SOCK_DGRAM | SOCK_NONBLOCK, 0, fds)) { | 
|  | abort(); | 
|  | } | 
|  |  | 
|  | char foo[512]; | 
|  | snprintf(foo, sizeof(foo), "%s: Invalid original packet", msg); | 
|  | check_packet(original, original_len, foo); | 
|  |  | 
|  | int read_fd, write_fd; | 
|  | uint16_t expected_proto; | 
|  | int version = ip_version(original); | 
|  | switch (version) { | 
|  | case 4: | 
|  | expected_proto = htons(ETH_P_IPV6); | 
|  | read_fd        = fds[1]; | 
|  | write_fd       = fds[0]; | 
|  | break; | 
|  | case 6: | 
|  | expected_proto = htons(ETH_P_IP); | 
|  | read_fd        = fds[0]; | 
|  | write_fd       = fds[1]; | 
|  | break; | 
|  | default: | 
|  | FAIL() << msg << ": Unsupported IP version " << version << "\n"; | 
|  | break; | 
|  | } | 
|  |  | 
|  | translate_packet(write_fd, (version == 4), original, original_len); | 
|  |  | 
|  | snprintf(foo, sizeof(foo), "%s: Invalid translated packet", msg); | 
|  | if (version == 6) { | 
|  | // Translating to IPv4. Expect a tun header. | 
|  | struct tun_pi new_tun_header; | 
|  | struct iovec iov[] = { | 
|  | { &new_tun_header, sizeof(new_tun_header) }, | 
|  | { out, *outlen }, | 
|  | }; | 
|  |  | 
|  | int len = readv(read_fd, iov, 2); | 
|  | if (len > (int)sizeof(new_tun_header)) { | 
|  | ASSERT_LT((size_t)len, *outlen) << msg << ": Translated packet buffer too small\n"; | 
|  | EXPECT_EQ(expected_proto, new_tun_header.proto) << msg << "Unexpected tun proto\n"; | 
|  | *outlen = len - sizeof(new_tun_header); | 
|  | check_packet(out, *outlen, msg); | 
|  | } else { | 
|  | FAIL() << msg << ": Packet was not translated: len=" << len; | 
|  | *outlen = 0; | 
|  | } | 
|  | } else { | 
|  | // Translating to IPv6. Expect raw packet. | 
|  | *outlen = read(read_fd, out, *outlen); | 
|  | check_packet(out, *outlen, msg); | 
|  | } | 
|  | } | 
|  |  | 
|  | void check_translated_packet(const uint8_t *original, size_t original_len, const uint8_t *expected, | 
|  | size_t expected_len, const char *msg) { | 
|  | uint8_t translated[MAXMTU]; | 
|  | size_t translated_len = sizeof(translated); | 
|  | do_translate_packet(original, original_len, translated, &translated_len, msg); | 
|  | EXPECT_EQ(expected_len, translated_len) << msg << ": Translated packet length incorrect\n"; | 
|  | check_data_matches(expected, translated, translated_len, msg); | 
|  | } | 
|  |  | 
|  | void check_fragment_translation(const uint8_t *original[], const size_t original_lengths[], | 
|  | const uint8_t *expected[], const size_t expected_lengths[], | 
|  | int numfragments, const char *msg) { | 
|  | for (int i = 0; i < numfragments; i++) { | 
|  | // Check that each of the fragments translates as expected. | 
|  | char frag_msg[512]; | 
|  | snprintf(frag_msg, sizeof(frag_msg), "%s: fragment #%d", msg, i + 1); | 
|  | check_translated_packet(original[i], original_lengths[i], expected[i], expected_lengths[i], | 
|  | frag_msg); | 
|  | } | 
|  |  | 
|  | // Sanity check that reassembling the original and translated fragments produces valid packets. | 
|  | uint8_t reassembled[MAXMTU]; | 
|  | size_t reassembled_len = sizeof(reassembled); | 
|  | reassemble_packet(original, original_lengths, numfragments, reassembled, &reassembled_len, msg); | 
|  | check_packet(reassembled, reassembled_len, msg); | 
|  |  | 
|  | uint8_t translated[MAXMTU]; | 
|  | size_t translated_len = sizeof(translated); | 
|  | do_translate_packet(reassembled, reassembled_len, translated, &translated_len, msg); | 
|  | check_packet(translated, translated_len, msg); | 
|  | } | 
|  |  | 
|  | int get_transport_checksum(const uint8_t *packet) { | 
|  | struct iphdr *ip; | 
|  | struct ip6_hdr *ip6; | 
|  | uint8_t protocol; | 
|  | const void *payload; | 
|  |  | 
|  | int version = ip_version(packet); | 
|  | switch (version) { | 
|  | case 4: | 
|  | ip = (struct iphdr *)packet; | 
|  | if (is_ipv4_fragment(ip)) { | 
|  | return -1; | 
|  | } | 
|  | protocol = ip->protocol; | 
|  | payload  = ip + 1; | 
|  | break; | 
|  | case 6: | 
|  | ip6      = (struct ip6_hdr *)packet; | 
|  | protocol = ip6->ip6_nxt; | 
|  | payload  = ip6 + 1; | 
|  | break; | 
|  | default: | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | switch (protocol) { | 
|  | case IPPROTO_UDP: | 
|  | return ((struct udphdr *)payload)->check; | 
|  |  | 
|  | case IPPROTO_TCP: | 
|  | return ((struct tcphdr *)payload)->check; | 
|  |  | 
|  | case IPPROTO_FRAGMENT: | 
|  | default: | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | class ClatdTest : public ::testing::Test { | 
|  | protected: | 
|  | static TunInterface sTun; | 
|  |  | 
|  | virtual void SetUp() { | 
|  | inet_pton(AF_INET, kIPv4LocalAddr, &Global_Clatd_Config.ipv4_local_subnet); | 
|  | inet_pton(AF_INET6, kIPv6PlatSubnet, &Global_Clatd_Config.plat_subnet); | 
|  | memset(&Global_Clatd_Config.ipv6_local_subnet, 0, sizeof(in6_addr)); | 
|  | Global_Clatd_Config.native_ipv6_interface = const_cast<char *>(sTun.name().c_str()); | 
|  | } | 
|  |  | 
|  | // Static because setting up the tun interface takes about 40ms. | 
|  | static void SetUpTestCase() { ASSERT_EQ(0, sTun.init()); } | 
|  |  | 
|  | // Closing the socket removes the interface and IP addresses. | 
|  | static void TearDownTestCase() { sTun.destroy(); } | 
|  | }; | 
|  |  | 
|  | TunInterface ClatdTest::sTun; | 
|  |  | 
|  | void expect_ipv6_addr_equal(struct in6_addr *expected, struct in6_addr *actual) { | 
|  | if (!IN6_ARE_ADDR_EQUAL(expected, actual)) { | 
|  | char expected_str[INET6_ADDRSTRLEN], actual_str[INET6_ADDRSTRLEN]; | 
|  | inet_ntop(AF_INET6, expected, expected_str, sizeof(expected_str)); | 
|  | inet_ntop(AF_INET6, actual, actual_str, sizeof(actual_str)); | 
|  | FAIL() | 
|  | << "Unexpected IPv6 address:: " | 
|  | << "\n  Expected: " << expected_str | 
|  | << "\n  Actual:   " << actual_str | 
|  | << "\n"; | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_F(ClatdTest, TestIPv6PrefixEqual) { | 
|  | EXPECT_TRUE(ipv6_prefix_equal(&Global_Clatd_Config.plat_subnet, | 
|  | &Global_Clatd_Config.plat_subnet)); | 
|  | EXPECT_FALSE(ipv6_prefix_equal(&Global_Clatd_Config.plat_subnet, | 
|  | &Global_Clatd_Config.ipv6_local_subnet)); | 
|  |  | 
|  | struct in6_addr subnet2 = Global_Clatd_Config.ipv6_local_subnet; | 
|  | EXPECT_TRUE(ipv6_prefix_equal(&Global_Clatd_Config.ipv6_local_subnet, &subnet2)); | 
|  | EXPECT_TRUE(ipv6_prefix_equal(&subnet2, &Global_Clatd_Config.ipv6_local_subnet)); | 
|  |  | 
|  | subnet2.s6_addr[6] = 0xff; | 
|  | EXPECT_FALSE(ipv6_prefix_equal(&Global_Clatd_Config.ipv6_local_subnet, &subnet2)); | 
|  | EXPECT_FALSE(ipv6_prefix_equal(&subnet2, &Global_Clatd_Config.ipv6_local_subnet)); | 
|  | } | 
|  |  | 
|  | TEST_F(ClatdTest, DataSanitycheck) { | 
|  | // Sanity checks the data. | 
|  | uint8_t v4_header[] = { IPV4_UDP_HEADER }; | 
|  | ASSERT_EQ(sizeof(struct iphdr), sizeof(v4_header)) << "Test IPv4 header: incorrect length\n"; | 
|  |  | 
|  | uint8_t v6_header[] = { IPV6_UDP_HEADER }; | 
|  | ASSERT_EQ(sizeof(struct ip6_hdr), sizeof(v6_header)) << "Test IPv6 header: incorrect length\n"; | 
|  |  | 
|  | uint8_t udp_header[] = { UDP_HEADER }; | 
|  | ASSERT_EQ(sizeof(struct udphdr), sizeof(udp_header)) << "Test UDP header: incorrect length\n"; | 
|  |  | 
|  | // Sanity checks check_packet. | 
|  | struct udphdr *udp; | 
|  | uint8_t v4_udp_packet[] = { IPV4_UDP_HEADER UDP_HEADER PAYLOAD }; | 
|  | udp                     = (struct udphdr *)(v4_udp_packet + sizeof(struct iphdr)); | 
|  | fix_udp_checksum(v4_udp_packet); | 
|  | ASSERT_EQ(kUdpV4Checksum, udp->check) << "UDP/IPv4 packet checksum sanity check\n"; | 
|  | check_packet(v4_udp_packet, sizeof(v4_udp_packet), "UDP/IPv4 packet sanity check"); | 
|  |  | 
|  | uint8_t v6_udp_packet[] = { IPV6_UDP_HEADER UDP_HEADER PAYLOAD }; | 
|  | udp                     = (struct udphdr *)(v6_udp_packet + sizeof(struct ip6_hdr)); | 
|  | fix_udp_checksum(v6_udp_packet); | 
|  | ASSERT_EQ(kUdpV6Checksum, udp->check) << "UDP/IPv6 packet checksum sanity check\n"; | 
|  | check_packet(v6_udp_packet, sizeof(v6_udp_packet), "UDP/IPv6 packet sanity check"); | 
|  |  | 
|  | uint8_t ipv4_ping[] = { IPV4_ICMP_HEADER IPV4_PING PAYLOAD }; | 
|  | check_packet(ipv4_ping, sizeof(ipv4_ping), "IPv4 ping sanity check"); | 
|  |  | 
|  | uint8_t ipv6_ping[] = { IPV6_ICMPV6_HEADER IPV6_PING PAYLOAD }; | 
|  | check_packet(ipv6_ping, sizeof(ipv6_ping), "IPv6 ping sanity check"); | 
|  |  | 
|  | // Sanity checks reassemble_packet. | 
|  | uint8_t reassembled[MAXMTU]; | 
|  | size_t total_length = sizeof(reassembled); | 
|  | reassemble_packet(kIPv4Fragments, kIPv4FragLengths, ARRAYSIZE(kIPv4Fragments), reassembled, | 
|  | &total_length, "Reassembly sanity check"); | 
|  | check_packet(reassembled, total_length, "IPv4 Reassembled packet is valid"); | 
|  | ASSERT_EQ(sizeof(kReassembledIPv4), total_length) << "IPv4 reassembly sanity check: length\n"; | 
|  | ASSERT_TRUE(!is_ipv4_fragment((struct iphdr *)reassembled)) | 
|  | << "Sanity check: reassembled packet is a fragment!\n"; | 
|  | check_data_matches(kReassembledIPv4, reassembled, total_length, "IPv4 reassembly sanity check"); | 
|  |  | 
|  | total_length = sizeof(reassembled); | 
|  | reassemble_packet(kIPv6Fragments, kIPv6FragLengths, ARRAYSIZE(kIPv6Fragments), reassembled, | 
|  | &total_length, "IPv6 reassembly sanity check"); | 
|  | ASSERT_TRUE(!is_ipv6_fragment((struct ip6_hdr *)reassembled, total_length)) | 
|  | << "Sanity check: reassembled packet is a fragment!\n"; | 
|  | check_packet(reassembled, total_length, "IPv6 Reassembled packet is valid"); | 
|  | } | 
|  |  | 
|  | TEST_F(ClatdTest, PseudoChecksum) { | 
|  | uint32_t pseudo_checksum; | 
|  |  | 
|  | uint8_t v4_header[]        = { IPV4_UDP_HEADER }; | 
|  | uint8_t v4_pseudo_header[] = { IPV4_PSEUDOHEADER(v4_header, UDP_LEN) }; | 
|  | pseudo_checksum            = ipv4_pseudo_header_checksum((struct iphdr *)v4_header, UDP_LEN); | 
|  | EXPECT_EQ(ip_checksum_finish(pseudo_checksum), | 
|  | ip_checksum(v4_pseudo_header, sizeof(v4_pseudo_header))) | 
|  | << "ipv4_pseudo_header_checksum incorrect\n"; | 
|  |  | 
|  | uint8_t v6_header[]        = { IPV6_UDP_HEADER }; | 
|  | uint8_t v6_pseudo_header[] = { IPV6_PSEUDOHEADER(v6_header, IPPROTO_UDP, UDP_LEN) }; | 
|  | pseudo_checksum = ipv6_pseudo_header_checksum((struct ip6_hdr *)v6_header, UDP_LEN, IPPROTO_UDP); | 
|  | EXPECT_EQ(ip_checksum_finish(pseudo_checksum), | 
|  | ip_checksum(v6_pseudo_header, sizeof(v6_pseudo_header))) | 
|  | << "ipv6_pseudo_header_checksum incorrect\n"; | 
|  | } | 
|  |  | 
|  | TEST_F(ClatdTest, TransportChecksum) { | 
|  | uint8_t udphdr[]  = { UDP_HEADER }; | 
|  | uint8_t payload[] = { PAYLOAD }; | 
|  | EXPECT_EQ(kUdpPartialChecksum, ip_checksum_add(0, udphdr, sizeof(udphdr))) | 
|  | << "UDP partial checksum\n"; | 
|  | EXPECT_EQ(kPayloadPartialChecksum, ip_checksum_add(0, payload, sizeof(payload))) | 
|  | << "Payload partial checksum\n"; | 
|  |  | 
|  | uint8_t ip[]             = { IPV4_UDP_HEADER }; | 
|  | uint8_t ip6[]            = { IPV6_UDP_HEADER }; | 
|  | uint32_t ipv4_pseudo_sum = ipv4_pseudo_header_checksum((struct iphdr *)ip, UDP_LEN); | 
|  | uint32_t ipv6_pseudo_sum = | 
|  | ipv6_pseudo_header_checksum((struct ip6_hdr *)ip6, UDP_LEN, IPPROTO_UDP); | 
|  |  | 
|  | EXPECT_NE(0, ipv4_pseudo_sum); | 
|  | EXPECT_NE(0, ipv6_pseudo_sum); | 
|  | EXPECT_EQ(0x3ad0U, ipv4_pseudo_sum % 0xFFFF) << "IPv4 pseudo-checksum sanity check\n"; | 
|  | EXPECT_EQ(0x644dU, ipv6_pseudo_sum % 0xFFFF) << "IPv6 pseudo-checksum sanity check\n"; | 
|  | EXPECT_EQ( | 
|  | kUdpV4Checksum, | 
|  | ip_checksum_finish(ipv4_pseudo_sum + kUdpPartialChecksum + kPayloadPartialChecksum)) | 
|  | << "Unexpected UDP/IPv4 checksum\n"; | 
|  | EXPECT_EQ( | 
|  | kUdpV6Checksum, | 
|  | ip_checksum_finish(ipv6_pseudo_sum + kUdpPartialChecksum + kPayloadPartialChecksum)) | 
|  | << "Unexpected UDP/IPv6 checksum\n"; | 
|  |  | 
|  | EXPECT_EQ(kUdpV6Checksum, | 
|  | ip_checksum_adjust(kUdpV4Checksum, ipv4_pseudo_sum, ipv6_pseudo_sum)) | 
|  | << "Adjust IPv4/UDP checksum to IPv6\n"; | 
|  | EXPECT_EQ(kUdpV4Checksum, | 
|  | ip_checksum_adjust(kUdpV6Checksum, ipv6_pseudo_sum, ipv4_pseudo_sum)) | 
|  | << "Adjust IPv6/UDP checksum to IPv4\n"; | 
|  | } | 
|  |  | 
|  | TEST_F(ClatdTest, AdjustChecksum) { | 
|  | struct checksum_data { | 
|  | uint16_t checksum; | 
|  | uint32_t old_hdr_sum; | 
|  | uint32_t new_hdr_sum; | 
|  | uint16_t result; | 
|  | } DATA[] = { | 
|  | { 0x1423, 0xb8ec, 0x2d757, 0xf5b5 }, | 
|  | { 0xf5b5, 0x2d757, 0xb8ec, 0x1423 }, | 
|  | { 0xdd2f, 0x5555, 0x3285, 0x0000 }, | 
|  | { 0x1215, 0x5560, 0x15560 + 20, 0x1200 }, | 
|  | { 0xd0c7, 0x3ad0, 0x2644b, 0xa74a }, | 
|  | }; | 
|  | unsigned i = 0; | 
|  |  | 
|  | for (i = 0; i < ARRAYSIZE(DATA); i++) { | 
|  | struct checksum_data *data = DATA + i; | 
|  | uint16_t result = ip_checksum_adjust(data->checksum, data->old_hdr_sum, data->new_hdr_sum); | 
|  | EXPECT_EQ(result, data->result) | 
|  | << "Incorrect checksum" << std::showbase << std::hex | 
|  | << "\n  Expected: " << data->result | 
|  | << "\n  Actual:   " << result | 
|  | << "\n    checksum=" << data->checksum | 
|  | << " old_sum=" << data->old_hdr_sum << " new_sum=" << data->new_hdr_sum << "\n"; | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_F(ClatdTest, Translate) { | 
|  | // This test uses hardcoded packets so the clatd address must be fixed. | 
|  | inet_pton(AF_INET6, kIPv6LocalAddr, &Global_Clatd_Config.ipv6_local_subnet); | 
|  |  | 
|  | uint8_t udp_ipv4[] = { IPV4_UDP_HEADER UDP_HEADER PAYLOAD }; | 
|  | uint8_t udp_ipv6[] = { IPV6_UDP_HEADER UDP_HEADER PAYLOAD }; | 
|  | fix_udp_checksum(udp_ipv4); | 
|  | fix_udp_checksum(udp_ipv6); | 
|  | check_translated_packet(udp_ipv4, sizeof(udp_ipv4), udp_ipv6, sizeof(udp_ipv6), | 
|  | "UDP/IPv4 -> UDP/IPv6 translation"); | 
|  | check_translated_packet(udp_ipv6, sizeof(udp_ipv6), udp_ipv4, sizeof(udp_ipv4), | 
|  | "UDP/IPv6 -> UDP/IPv4 translation"); | 
|  |  | 
|  | uint8_t ipv4_ping[] = { IPV4_ICMP_HEADER IPV4_PING PAYLOAD }; | 
|  | uint8_t ipv6_ping[] = { IPV6_ICMPV6_HEADER IPV6_PING PAYLOAD }; | 
|  | check_translated_packet(ipv4_ping, sizeof(ipv4_ping), ipv6_ping, sizeof(ipv6_ping), | 
|  | "ICMP->ICMPv6 translation"); | 
|  | check_translated_packet(ipv6_ping, sizeof(ipv6_ping), ipv4_ping, sizeof(ipv4_ping), | 
|  | "ICMPv6->ICMP translation"); | 
|  | } | 
|  |  | 
|  | TEST_F(ClatdTest, Fragmentation) { | 
|  | // This test uses hardcoded packets so the clatd address must be fixed. | 
|  | inet_pton(AF_INET6, kIPv6LocalAddr, &Global_Clatd_Config.ipv6_local_subnet); | 
|  |  | 
|  | check_fragment_translation(kIPv4Fragments, kIPv4FragLengths, kIPv6Fragments, kIPv6FragLengths, | 
|  | ARRAYSIZE(kIPv4Fragments), "IPv4->IPv6 fragment translation"); | 
|  |  | 
|  | check_fragment_translation(kIPv6Fragments, kIPv6FragLengths, kIPv4Fragments, kIPv4FragLengths, | 
|  | ARRAYSIZE(kIPv6Fragments), "IPv6->IPv4 fragment translation"); | 
|  | } | 
|  |  | 
|  | // picks a random interface ID that is checksum neutral with the IPv4 address and the NAT64 prefix | 
|  | void gen_random_iid(struct in6_addr *myaddr, struct in_addr *ipv4_local_subnet, | 
|  | struct in6_addr *plat_subnet) { | 
|  | // Fill last 8 bytes of IPv6 address with random bits. | 
|  | arc4random_buf(&myaddr->s6_addr[8], 8); | 
|  |  | 
|  | // Make the IID checksum-neutral. That is, make it so that: | 
|  | //   checksum(Local IPv4 | Remote IPv4) = checksum(Local IPv6 | Remote IPv6) | 
|  | // in other words (because remote IPv6 = NAT64 prefix | Remote IPv4): | 
|  | //   checksum(Local IPv4) = checksum(Local IPv6 | NAT64 prefix) | 
|  | // Do this by adjusting the two bytes in the middle of the IID. | 
|  |  | 
|  | uint16_t middlebytes = (myaddr->s6_addr[11] << 8) + myaddr->s6_addr[12]; | 
|  |  | 
|  | uint32_t c1 = ip_checksum_add(0, ipv4_local_subnet, sizeof(*ipv4_local_subnet)); | 
|  | uint32_t c2 = ip_checksum_add(0, plat_subnet, sizeof(*plat_subnet)) + | 
|  | ip_checksum_add(0, myaddr, sizeof(*myaddr)); | 
|  |  | 
|  | uint16_t delta      = ip_checksum_adjust(middlebytes, c1, c2); | 
|  | myaddr->s6_addr[11] = delta >> 8; | 
|  | myaddr->s6_addr[12] = delta & 0xff; | 
|  | } | 
|  |  | 
|  | void check_translate_checksum_neutral(const uint8_t *original, size_t original_len, | 
|  | size_t expected_len, const char *msg) { | 
|  | uint8_t translated[MAXMTU]; | 
|  | size_t translated_len = sizeof(translated); | 
|  | do_translate_packet(original, original_len, translated, &translated_len, msg); | 
|  | EXPECT_EQ(expected_len, translated_len) << msg << ": Translated packet length incorrect\n"; | 
|  | // do_translate_packet already checks packets for validity and verifies the checksum. | 
|  | int original_check   = get_transport_checksum(original); | 
|  | int translated_check = get_transport_checksum(translated); | 
|  | ASSERT_NE(-1, original_check); | 
|  | ASSERT_NE(-1, translated_check); | 
|  | ASSERT_EQ(original_check, translated_check) | 
|  | << "Not checksum neutral: original and translated checksums differ\n"; | 
|  | } | 
|  |  | 
|  | TEST_F(ClatdTest, TranslateChecksumNeutral) { | 
|  | // Generate a random clat IPv6 address and check that translation is checksum-neutral. | 
|  | ASSERT_TRUE(inet_pton(AF_INET6, "2001:db8:1:2:f076:ae99:124e:aa54", | 
|  | &Global_Clatd_Config.ipv6_local_subnet)); | 
|  |  | 
|  | gen_random_iid(&Global_Clatd_Config.ipv6_local_subnet, &Global_Clatd_Config.ipv4_local_subnet, | 
|  | &Global_Clatd_Config.plat_subnet); | 
|  |  | 
|  | ASSERT_NE(htonl((uint32_t)0x00000464), Global_Clatd_Config.ipv6_local_subnet.s6_addr32[3]); | 
|  | ASSERT_NE((uint32_t)0, Global_Clatd_Config.ipv6_local_subnet.s6_addr32[3]); | 
|  |  | 
|  | // Check that translating UDP packets is checksum-neutral. First, IPv4. | 
|  | uint8_t udp_ipv4[] = { IPV4_UDP_HEADER UDP_HEADER PAYLOAD }; | 
|  | fix_udp_checksum(udp_ipv4); | 
|  | check_translate_checksum_neutral(udp_ipv4, sizeof(udp_ipv4), sizeof(udp_ipv4) + 20, | 
|  | "UDP/IPv4 -> UDP/IPv6 checksum neutral"); | 
|  |  | 
|  | // Now try IPv6. | 
|  | uint8_t udp_ipv6[] = { IPV6_UDP_HEADER UDP_HEADER PAYLOAD }; | 
|  | // The test packet uses the static IID, not the random IID. Fix up the source address. | 
|  | struct ip6_hdr *ip6 = (struct ip6_hdr *)udp_ipv6; | 
|  | memcpy(&ip6->ip6_src, &Global_Clatd_Config.ipv6_local_subnet, sizeof(ip6->ip6_src)); | 
|  | fix_udp_checksum(udp_ipv6); | 
|  | check_translate_checksum_neutral(udp_ipv4, sizeof(udp_ipv4), sizeof(udp_ipv4) + 20, | 
|  | "UDP/IPv4 -> UDP/IPv6 checksum neutral"); | 
|  | } |