| /* |
| * Copyright (C) 2012 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #ifndef LATINIME_GEOMETRY_UTILS_H |
| #define LATINIME_GEOMETRY_UTILS_H |
| |
| #include <cmath> |
| |
| #define MAX_PATHS 2 |
| |
| #define DEBUG_DECODER false |
| |
| #define M_PI_F 3.14159265f |
| |
| #define ROUND_FLOAT_10000(f) ((f) < 1000.0f && (f) > 0.001f) \ |
| ? (floorf((f) * 10000.0f) / 10000.0f) : (f) |
| |
| #define SQUARE_FLOAT(x) ((x) * (x)) |
| |
| namespace latinime { |
| |
| static inline float getSquaredDistanceFloat(float x1, float y1, float x2, float y2) { |
| const float deltaX = x1 - x2; |
| const float deltaY = y1 - y2; |
| return SQUARE_FLOAT(deltaX) + SQUARE_FLOAT(deltaY); |
| } |
| |
| static inline float getDistanceFloat(float x1, float y1, float x2, float y2) { |
| return hypotf(x1 - x2, y1 - y2); |
| } |
| |
| static inline int getDistanceInt(int x1, int y1, int x2, int y2) { |
| return static_cast<int>(getDistanceFloat(static_cast<float>(x1), static_cast<float>(y1), |
| static_cast<float>(x2), static_cast<float>(y2))); |
| } |
| |
| static inline float getAngle(int x1, int y1, int x2, int y2) { |
| const int dx = x1 - x2; |
| const int dy = y1 - y2; |
| if (dx == 0 && dy == 0) return 0; |
| return atan2f(static_cast<float>(dy), static_cast<float>(dx)); |
| } |
| |
| static inline float getAngleDiff(float a1, float a2) { |
| const float deltaA = fabsf(a1 - a2); |
| const float diff = ROUND_FLOAT_10000(deltaA); |
| if (diff > M_PI_F) { |
| const float normalizedDiff = 2.0f * M_PI_F - diff; |
| return ROUND_FLOAT_10000(normalizedDiff); |
| } |
| return diff; |
| } |
| |
| // static float pointToLineSegSquaredDistanceFloat( |
| // float x, float y, float x1, float y1, float x2, float y2) { |
| // float A = x - x1; |
| // float B = y - y1; |
| // float C = x2 - x1; |
| // float D = y2 - y1; |
| // return fabsf(A * D - C * B) / sqrtf(C * C + D * D); |
| // } |
| |
| static inline float pointToLineSegSquaredDistanceFloat( |
| float x, float y, float x1, float y1, float x2, float y2) { |
| const float ray1x = x - x1; |
| const float ray1y = y - y1; |
| const float ray2x = x2 - x1; |
| const float ray2y = y2 - y1; |
| |
| const float dotProduct = ray1x * ray2x + ray1y * ray2y; |
| const float lineLengthSqr = SQUARE_FLOAT(ray2x) + SQUARE_FLOAT(ray2y); |
| const float projectionLengthSqr = dotProduct / lineLengthSqr; |
| |
| float projectionX; |
| float projectionY; |
| if (projectionLengthSqr < 0.0f) { |
| projectionX = x1; |
| projectionY = y1; |
| } else if (projectionLengthSqr > 1.0f) { |
| projectionX = x2; |
| projectionY = y2; |
| } else { |
| projectionX = x1 + projectionLengthSqr * ray2x; |
| projectionY = y1 + projectionLengthSqr * ray2y; |
| } |
| return getSquaredDistanceFloat(x, y, projectionX, projectionY); |
| } |
| } // namespace latinime |
| #endif // LATINIME_GEOMETRY_UTILS_H |