The Android Open Source Project | d6054a3 | 2008-10-21 07:00:00 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright 2008, The Android Open Source Project |
| 3 | * |
| 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | * you may not use this file except in compliance with the License. |
| 6 | * You may obtain a copy of the License at |
| 7 | * |
| 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | * |
| 10 | * Unless required by applicable law or agreed to in writing, software |
| 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | * See the License for the specific language governing permissions and |
| 14 | * limitations under the License. |
| 15 | */ |
| 16 | |
| 17 | #define LOG_TAG "Sensors" |
| 18 | |
| 19 | #include <hardware/sensors.h> |
| 20 | #include <fcntl.h> |
| 21 | #include <errno.h> |
| 22 | #include <dirent.h> |
| 23 | #include <math.h> |
| 24 | #include <poll.h> |
| 25 | |
| 26 | #include <linux/input.h> |
| 27 | #include <linux/akm8976.h> |
| 28 | |
| 29 | #include <cutils/log.h> |
| 30 | #include <cutils/atomic.h> |
| 31 | |
| 32 | /*****************************************************************************/ |
| 33 | |
| 34 | #define AKM_DEVICE_NAME "/dev/akm8976_aot" |
| 35 | |
| 36 | #define SUPPORTED_SENSORS (SENSORS_ORIENTATION | \ |
| 37 | SENSORS_ACCELERATION | \ |
| 38 | SENSORS_MAGNETIC_FIELD | \ |
| 39 | SENSORS_ORIENTATION_RAW) |
| 40 | |
| 41 | |
| 42 | // sensor IDs must be a power of two and |
| 43 | // must match values in SensorManager.java |
| 44 | #define EVENT_TYPE_ACCEL_X ABS_X |
| 45 | #define EVENT_TYPE_ACCEL_Y ABS_Z |
| 46 | #define EVENT_TYPE_ACCEL_Z ABS_Y |
| 47 | #define EVENT_TYPE_ACCEL_STATUS ABS_WHEEL |
| 48 | |
| 49 | #define EVENT_TYPE_YAW ABS_RX |
| 50 | #define EVENT_TYPE_PITCH ABS_RY |
| 51 | #define EVENT_TYPE_ROLL ABS_RZ |
| 52 | #define EVENT_TYPE_ORIENT_STATUS ABS_RUDDER |
| 53 | |
| 54 | #define EVENT_TYPE_MAGV_X ABS_HAT0X |
| 55 | #define EVENT_TYPE_MAGV_Y ABS_HAT0Y |
| 56 | #define EVENT_TYPE_MAGV_Z ABS_BRAKE |
| 57 | |
| 58 | #define EVENT_TYPE_TEMPERATURE ABS_THROTTLE |
| 59 | #define EVENT_TYPE_STEP_COUNT ABS_GAS |
| 60 | |
| 61 | // 720 LSG = 1G |
| 62 | #define LSG (720.0f) |
| 63 | |
| 64 | // conversion of acceleration data to SI units (m/s^2) |
| 65 | #define CONVERT_A (GRAVITY_EARTH / LSG) |
| 66 | #define CONVERT_A_X (CONVERT_A) |
| 67 | #define CONVERT_A_Y (-CONVERT_A) |
| 68 | #define CONVERT_A_Z (CONVERT_A) |
| 69 | |
| 70 | // conversion of magnetic data to uT units |
| 71 | #define CONVERT_M (1.0f/16.0f) |
| 72 | #define CONVERT_M_X (CONVERT_M) |
| 73 | #define CONVERT_M_Y (CONVERT_M) |
| 74 | #define CONVERT_M_Z (CONVERT_M) |
| 75 | |
| 76 | #define SENSOR_STATE_MASK (0x7FFF) |
| 77 | |
| 78 | /*****************************************************************************/ |
| 79 | |
| 80 | static int sAkmFD = -1; |
| 81 | static uint32_t sActiveSensors = 0; |
| 82 | |
| 83 | /*****************************************************************************/ |
| 84 | |
| 85 | /* |
| 86 | * We use a Least Mean Squares filter to smooth out the output of the yaw |
| 87 | * sensor. |
| 88 | * |
| 89 | * The goal is to estimate the output of the sensor based on previous acquired |
| 90 | * samples. |
| 91 | * |
| 92 | * We approximate the input by a line with the equation: |
| 93 | * Z(t) = a * t + b |
| 94 | * |
| 95 | * We use the Least Mean Squares method to calculate a and b so that the |
| 96 | * distance between the line and the measured COUNT inputs Z(t) is minimal. |
| 97 | * |
| 98 | * In practice we only need to compute b, which is the value we're looking for |
| 99 | * (it's the estimated Z at t=0). However, to improve the latency a little bit, |
| 100 | * we're going to discard a certain number of samples that are too far from |
| 101 | * the estimated line and compute b again with the new (trimmed down) samples. |
| 102 | * |
| 103 | * notes: |
| 104 | * 'a' is the slope of the line, and physicaly represent how fast the input |
| 105 | * is changing. In our case, how fast the yaw is changing, that is, how fast the |
| 106 | * user is spinning the device (in degre / nanosecond). This value should be |
| 107 | * zero when the device is not moving. |
| 108 | * |
| 109 | * The minimum distance between the line and the samples (which we are not |
| 110 | * explicitely computing here), is an indication of how bad the samples are |
| 111 | * and gives an idea of the "quality" of the estimation (well, really of the |
| 112 | * sensor values). |
| 113 | * |
| 114 | */ |
| 115 | |
| 116 | /* sensor rate in me */ |
| 117 | #define SENSORS_RATE_MS 20 |
| 118 | /* timeout (constant value) in ms */ |
| 119 | #define SENSORS_TIMEOUT_MS 100 |
| 120 | /* # of samples to look at in the past for filtering */ |
| 121 | #define COUNT 24 |
| 122 | /* prediction ratio */ |
| 123 | #define PREDICTION_RATIO (1.0f/3.0f) |
| 124 | /* prediction time in seconds (>=0) */ |
| 125 | #define PREDICTION_TIME ((SENSORS_RATE_MS*COUNT/1000.0f)*PREDICTION_RATIO) |
| 126 | |
| 127 | static float mV[COUNT*2]; |
| 128 | static float mT[COUNT*2]; |
| 129 | static int mIndex; |
| 130 | |
| 131 | static inline |
| 132 | float normalize(float x) |
| 133 | { |
| 134 | x *= (1.0f / 360.0f); |
| 135 | if (fabsf(x) >= 0.5f) |
| 136 | x = x - ceilf(x + 0.5f) + 1.0f; |
| 137 | if (x < 0) |
| 138 | x += 1.0f; |
| 139 | x *= 360.0f; |
| 140 | return x; |
| 141 | } |
| 142 | |
| 143 | static void LMSInit(void) |
| 144 | { |
| 145 | memset(mV, 0, sizeof(mV)); |
| 146 | memset(mT, 0, sizeof(mT)); |
| 147 | mIndex = COUNT; |
| 148 | } |
| 149 | |
| 150 | static float LMSFilter(int64_t time, int v) |
| 151 | { |
| 152 | const float ns = 1.0f / 1000000000.0f; |
| 153 | const float t = time*ns; |
| 154 | float v1 = mV[mIndex]; |
| 155 | if ((v-v1) > 180) { |
| 156 | v -= 360; |
| 157 | } else if ((v1-v) > 180) { |
| 158 | v += 360; |
| 159 | } |
| 160 | /* Manage the circular buffer, we write the data twice spaced by COUNT |
| 161 | * values, so that we don't have to memcpy() the array when it's full */ |
| 162 | mIndex++; |
| 163 | if (mIndex >= COUNT*2) |
| 164 | mIndex = COUNT; |
| 165 | mV[mIndex] = v; |
| 166 | mT[mIndex] = t; |
| 167 | mV[mIndex-COUNT] = v; |
| 168 | mT[mIndex-COUNT] = t; |
| 169 | |
| 170 | float A, B, C, D, E; |
| 171 | float a, b; |
| 172 | int i; |
| 173 | |
| 174 | A = B = C = D = E = 0; |
| 175 | for (i=0 ; i<COUNT-1 ; i++) { |
| 176 | const int j = mIndex - 1 - i; |
| 177 | const float Z = mV[j]; |
| 178 | const float T = 0.5f*(mT[j] + mT[j+1]) - t; |
| 179 | float dT = mT[j] - mT[j+1]; |
| 180 | dT *= dT; |
| 181 | A += Z*dT; |
| 182 | B += T*(T*dT); |
| 183 | C += (T*dT); |
| 184 | D += Z*(T*dT); |
| 185 | E += dT; |
| 186 | } |
| 187 | b = (A*B + C*D) / (E*B + C*C); |
| 188 | a = (E*b - A) / C; |
| 189 | float f = b + PREDICTION_TIME*a; |
| 190 | |
| 191 | //LOGD("A=%f, B=%f, C=%f, D=%f, E=%f", A,B,C,D,E); |
| 192 | //LOGD("%lld %d %f %f", time, v, f, a); |
| 193 | |
| 194 | f = normalize(f); |
| 195 | return f; |
| 196 | } |
| 197 | |
| 198 | /*****************************************************************************/ |
| 199 | |
| 200 | static int open_input() |
| 201 | { |
| 202 | /* scan all input drivers and look for "compass" */ |
| 203 | int fd = -1; |
| 204 | const char *dirname = "/dev/input"; |
| 205 | char devname[PATH_MAX]; |
| 206 | char *filename; |
| 207 | DIR *dir; |
| 208 | struct dirent *de; |
| 209 | dir = opendir(dirname); |
| 210 | if(dir == NULL) |
| 211 | return -1; |
| 212 | strcpy(devname, dirname); |
| 213 | filename = devname + strlen(devname); |
| 214 | *filename++ = '/'; |
| 215 | while((de = readdir(dir))) { |
| 216 | if(de->d_name[0] == '.' && |
| 217 | (de->d_name[1] == '\0' || |
| 218 | (de->d_name[1] == '.' && de->d_name[2] == '\0'))) |
| 219 | continue; |
| 220 | strcpy(filename, de->d_name); |
| 221 | fd = open(devname, O_RDONLY); |
| 222 | if (fd>=0) { |
| 223 | char name[80]; |
| 224 | if (ioctl(fd, EVIOCGNAME(sizeof(name) - 1), &name) < 1) { |
| 225 | name[0] = '\0'; |
| 226 | } |
| 227 | if (!strcmp(name, "compass")) { |
| 228 | LOGD("using %s (name=%s)", devname, name); |
| 229 | break; |
| 230 | } |
| 231 | close(fd); |
| 232 | fd = -1; |
| 233 | } |
| 234 | } |
| 235 | closedir(dir); |
| 236 | |
| 237 | if (fd < 0) { |
| 238 | LOGE("Couldn't find or open 'compass' driver (%s)", strerror(errno)); |
| 239 | } |
| 240 | return fd; |
| 241 | } |
| 242 | |
| 243 | static int open_akm() |
| 244 | { |
| 245 | if (sAkmFD <= 0) { |
| 246 | sAkmFD = open(AKM_DEVICE_NAME, O_RDONLY); |
| 247 | LOGD("%s, fd=%d", __PRETTY_FUNCTION__, sAkmFD); |
| 248 | LOGE_IF(sAkmFD<0, "Couldn't open %s (%s)", |
| 249 | AKM_DEVICE_NAME, strerror(errno)); |
| 250 | if (sAkmFD >= 0) { |
| 251 | sActiveSensors = 0; |
| 252 | } |
| 253 | } |
| 254 | return sAkmFD; |
| 255 | } |
| 256 | |
| 257 | static void close_akm() |
| 258 | { |
| 259 | if (sAkmFD > 0) { |
| 260 | LOGD("%s, fd=%d", __PRETTY_FUNCTION__, sAkmFD); |
| 261 | close(sAkmFD); |
| 262 | sAkmFD = -1; |
| 263 | } |
| 264 | } |
| 265 | |
| 266 | static void enable_disable(int fd, uint32_t sensors, uint32_t mask) |
| 267 | { |
| 268 | if (fd<0) return; |
| 269 | short flags; |
| 270 | |
| 271 | if (sensors & SENSORS_ORIENTATION_RAW) { |
| 272 | sensors |= SENSORS_ORIENTATION; |
| 273 | mask |= SENSORS_ORIENTATION; |
| 274 | } else if (mask & SENSORS_ORIENTATION_RAW) { |
| 275 | mask |= SENSORS_ORIENTATION; |
| 276 | } |
| 277 | |
| 278 | if (mask & SENSORS_ORIENTATION) { |
| 279 | flags = (sensors & SENSORS_ORIENTATION) ? 1 : 0; |
| 280 | if (ioctl(fd, ECS_IOCTL_APP_SET_MFLAG, &flags) < 0) { |
| 281 | LOGE("ECS_IOCTL_APP_SET_MFLAG error (%s)", strerror(errno)); |
| 282 | } |
| 283 | } |
| 284 | if (mask & SENSORS_ACCELERATION) { |
| 285 | flags = (sensors & SENSORS_ACCELERATION) ? 1 : 0; |
| 286 | if (ioctl(fd, ECS_IOCTL_APP_SET_AFLAG, &flags) < 0) { |
| 287 | LOGE("ECS_IOCTL_APP_SET_AFLAG error (%s)", strerror(errno)); |
| 288 | } |
| 289 | } |
| 290 | if (mask & SENSORS_TEMPERATURE) { |
| 291 | flags = (sensors & SENSORS_TEMPERATURE) ? 1 : 0; |
| 292 | if (ioctl(fd, ECS_IOCTL_APP_SET_TFLAG, &flags) < 0) { |
| 293 | LOGE("ECS_IOCTL_APP_SET_TFLAG error (%s)", strerror(errno)); |
| 294 | } |
| 295 | } |
| 296 | #ifdef ECS_IOCTL_APP_SET_MVFLAG |
| 297 | if (mask & SENSORS_MAGNETIC_FIELD) { |
| 298 | flags = (sensors & SENSORS_MAGNETIC_FIELD) ? 1 : 0; |
| 299 | if (ioctl(fd, ECS_IOCTL_APP_SET_MVFLAG, &flags) < 0) { |
| 300 | LOGE("ECS_IOCTL_APP_SET_MVFLAG error (%s)", strerror(errno)); |
| 301 | } |
| 302 | } |
| 303 | #endif |
| 304 | } |
| 305 | |
| 306 | static uint32_t read_sensors_state(int fd) |
| 307 | { |
| 308 | if (fd<0) return 0; |
| 309 | short flags; |
| 310 | uint32_t sensors = 0; |
| 311 | // read the actual value of all sensors |
| 312 | if (!ioctl(fd, ECS_IOCTL_APP_GET_MFLAG, &flags)) { |
| 313 | if (flags) sensors |= SENSORS_ORIENTATION; |
| 314 | else sensors &= ~SENSORS_ORIENTATION; |
| 315 | } |
| 316 | if (!ioctl(fd, ECS_IOCTL_APP_GET_AFLAG, &flags)) { |
| 317 | if (flags) sensors |= SENSORS_ACCELERATION; |
| 318 | else sensors &= ~SENSORS_ACCELERATION; |
| 319 | } |
| 320 | if (!ioctl(fd, ECS_IOCTL_APP_GET_TFLAG, &flags)) { |
| 321 | if (flags) sensors |= SENSORS_TEMPERATURE; |
| 322 | else sensors &= ~SENSORS_TEMPERATURE; |
| 323 | } |
| 324 | #ifdef ECS_IOCTL_APP_SET_MVFLAG |
| 325 | if (!ioctl(fd, ECS_IOCTL_APP_GET_MVFLAG, &flags)) { |
| 326 | if (flags) sensors |= SENSORS_MAGNETIC_FIELD; |
| 327 | else sensors &= ~SENSORS_MAGNETIC_FIELD; |
| 328 | } |
| 329 | #endif |
| 330 | return sensors; |
| 331 | } |
| 332 | |
| 333 | /*****************************************************************************/ |
| 334 | |
| 335 | uint32_t sensors_control_init() |
| 336 | { |
| 337 | return SUPPORTED_SENSORS; |
| 338 | } |
| 339 | |
| 340 | int sensors_control_open() |
| 341 | { |
| 342 | return open_input(); |
| 343 | } |
| 344 | |
| 345 | uint32_t sensors_control_activate(uint32_t sensors, uint32_t mask) |
| 346 | { |
| 347 | mask &= SUPPORTED_SENSORS; |
| 348 | uint32_t active = sActiveSensors; |
| 349 | uint32_t new_sensors = (active & ~mask) | (sensors & mask); |
| 350 | uint32_t changed = active ^ new_sensors; |
| 351 | if (changed) { |
| 352 | int fd = open_akm(); |
| 353 | if (fd < 0) return 0; |
| 354 | |
| 355 | if (!active && new_sensors) { |
| 356 | // force all sensors to be updated |
| 357 | changed = SUPPORTED_SENSORS; |
| 358 | } |
| 359 | |
| 360 | enable_disable(fd, new_sensors, changed); |
| 361 | |
| 362 | if (active && !new_sensors) { |
| 363 | // close the driver |
| 364 | close_akm(); |
| 365 | } |
| 366 | sActiveSensors = active = new_sensors; |
| 367 | LOGD("sensors=%08x, real=%08x", |
| 368 | sActiveSensors, read_sensors_state(fd)); |
| 369 | } |
| 370 | return active; |
| 371 | } |
| 372 | |
| 373 | int sensors_control_delay(int32_t ms) |
| 374 | { |
| 375 | #ifdef ECS_IOCTL_APP_SET_DELAY |
| 376 | if (sAkmFD <= 0) { |
| 377 | return -1; |
| 378 | } |
| 379 | short delay = ms; |
| 380 | if (!ioctl(sAkmFD, ECS_IOCTL_APP_SET_DELAY, &delay)) { |
| 381 | return -errno; |
| 382 | } |
| 383 | return 0; |
| 384 | #else |
| 385 | return -1; |
| 386 | #endif |
| 387 | } |
| 388 | |
| 389 | /*****************************************************************************/ |
| 390 | |
| 391 | #define MAX_NUM_SENSORS 8 |
| 392 | static int sInputFD = -1; |
| 393 | static const int ID_O = 0; |
| 394 | static const int ID_A = 1; |
| 395 | static const int ID_T = 2; |
| 396 | static const int ID_M = 3; |
| 397 | static const int ID_OR = 7; // orientation raw |
| 398 | static sensors_data_t sSensors[MAX_NUM_SENSORS]; |
| 399 | static uint32_t sPendingSensors; |
| 400 | |
| 401 | int sensors_data_open(int fd) |
| 402 | { |
| 403 | int i; |
| 404 | LMSInit(); |
| 405 | memset(&sSensors, 0, sizeof(sSensors)); |
| 406 | for (i=0 ; i<MAX_NUM_SENSORS ; i++) { |
| 407 | // by default all sensors have high accuracy |
| 408 | // (we do this because we don't get an update if the value doesn't |
| 409 | // change). |
| 410 | sSensors[i].vector.status = SENSOR_STATUS_ACCURACY_HIGH; |
| 411 | } |
| 412 | sPendingSensors = 0; |
| 413 | sInputFD = dup(fd); |
| 414 | LOGD("sensors_data_open: fd = %d", sInputFD); |
| 415 | return 0; |
| 416 | } |
| 417 | |
| 418 | int sensors_data_close() |
| 419 | { |
| 420 | close(sInputFD); |
| 421 | sInputFD = -1; |
| 422 | return 0; |
| 423 | } |
| 424 | |
| 425 | static int pick_sensor(sensors_data_t* values) |
| 426 | { |
| 427 | uint32_t mask = SENSORS_MASK; |
| 428 | while(mask) { |
| 429 | uint32_t i = 31 - __builtin_clz(mask); |
| 430 | mask &= ~(1<<i); |
| 431 | if (sPendingSensors & (1<<i)) { |
| 432 | sPendingSensors &= ~(1<<i); |
| 433 | *values = sSensors[i]; |
| 434 | values->sensor = (1<<i); |
| 435 | LOGD_IF(0, "%d [%f, %f, %f]", (1<<i), |
| 436 | values->vector.x, |
| 437 | values->vector.y, |
| 438 | values->vector.z); |
| 439 | return (1<<i); |
| 440 | } |
| 441 | } |
| 442 | LOGE("No sensor to return!!! sPendingSensors=%08x", sPendingSensors); |
| 443 | // we may end-up in a busy loop, slow things down, just in case. |
| 444 | usleep(100000); |
| 445 | return -1; |
| 446 | } |
| 447 | |
| 448 | int sensors_data_poll(sensors_data_t* values, uint32_t sensors_of_interest) |
| 449 | { |
| 450 | struct input_event event; |
| 451 | int nread; |
| 452 | int64_t t; |
| 453 | |
| 454 | int fd = sInputFD; |
| 455 | if (fd <= 0) |
| 456 | return -1; |
| 457 | |
| 458 | // there are pending sensors, returns them now... |
| 459 | if (sPendingSensors) { |
| 460 | return pick_sensor(values); |
| 461 | } |
| 462 | |
| 463 | uint32_t new_sensors = 0; |
| 464 | struct pollfd fds; |
| 465 | fds.fd = fd; |
| 466 | fds.events = POLLIN; |
| 467 | fds.revents = 0; |
| 468 | |
| 469 | // wait until we get a complete event for an enabled sensor |
| 470 | while (1) { |
| 471 | nread = 0; |
| 472 | if (sensors_of_interest & SENSORS_ORIENTATION) { |
| 473 | /* We do some special processing if the orientation sensor is |
| 474 | * activated. In particular the yaw value is filtered with a |
| 475 | * LMS filter. Since the kernel only sends an event when the |
| 476 | * value changes, we need to wake up at regular intervals to |
| 477 | * generate an output value (the output value may not be |
| 478 | * constant when the input value is constant) |
| 479 | */ |
| 480 | int err = poll(&fds, 1, SENSORS_TIMEOUT_MS); |
| 481 | if (err == 0) { |
| 482 | struct timespec time; |
| 483 | time.tv_sec = time.tv_nsec = 0; |
| 484 | clock_gettime(CLOCK_MONOTONIC, &time); |
| 485 | |
| 486 | /* generate an output value */ |
| 487 | t = time.tv_sec*1000000000LL+time.tv_nsec; |
| 488 | new_sensors |= SENSORS_ORIENTATION; |
| 489 | sSensors[ID_O].orientation.yaw = |
| 490 | LMSFilter(t, sSensors[ID_O].orientation.yaw); |
| 491 | |
| 492 | /* generate a fake sensors event */ |
| 493 | event.type = EV_SYN; |
| 494 | event.time.tv_sec = time.tv_sec; |
| 495 | event.time.tv_usec = time.tv_nsec/1000; |
| 496 | nread = sizeof(event); |
| 497 | } |
| 498 | } |
| 499 | if (nread == 0) { |
| 500 | /* read the next event */ |
| 501 | nread = read(fd, &event, sizeof(event)); |
| 502 | } |
| 503 | if (nread == sizeof(event)) { |
| 504 | uint32_t v; |
| 505 | if (event.type == EV_ABS) { |
| 506 | //LOGD("type: %d code: %d value: %-5d time: %ds", |
| 507 | // event.type, event.code, event.value, |
| 508 | // (int)event.time.tv_sec); |
| 509 | switch (event.code) { |
| 510 | |
| 511 | case EVENT_TYPE_ACCEL_X: |
| 512 | new_sensors |= SENSORS_ACCELERATION; |
| 513 | sSensors[ID_A].acceleration.x = event.value * CONVERT_A_X; |
| 514 | break; |
| 515 | case EVENT_TYPE_ACCEL_Y: |
| 516 | new_sensors |= SENSORS_ACCELERATION; |
| 517 | sSensors[ID_A].acceleration.y = event.value * CONVERT_A_Y; |
| 518 | break; |
| 519 | case EVENT_TYPE_ACCEL_Z: |
| 520 | new_sensors |= SENSORS_ACCELERATION; |
| 521 | sSensors[ID_A].acceleration.z = event.value * CONVERT_A_Z; |
| 522 | break; |
| 523 | |
| 524 | case EVENT_TYPE_MAGV_X: |
| 525 | new_sensors |= SENSORS_MAGNETIC_FIELD; |
| 526 | sSensors[ID_M].magnetic.x = event.value * CONVERT_M_X; |
| 527 | break; |
| 528 | case EVENT_TYPE_MAGV_Y: |
| 529 | new_sensors |= SENSORS_MAGNETIC_FIELD; |
| 530 | sSensors[ID_M].magnetic.y = event.value * CONVERT_M_Y; |
| 531 | break; |
| 532 | case EVENT_TYPE_MAGV_Z: |
| 533 | new_sensors |= SENSORS_MAGNETIC_FIELD; |
| 534 | sSensors[ID_M].magnetic.z = event.value * CONVERT_M_Z; |
| 535 | break; |
| 536 | |
| 537 | case EVENT_TYPE_YAW: |
| 538 | new_sensors |= SENSORS_ORIENTATION | SENSORS_ORIENTATION_RAW; |
| 539 | t = event.time.tv_sec*1000000000LL + |
| 540 | event.time.tv_usec*1000; |
| 541 | sSensors[ID_O].orientation.yaw = |
| 542 | (sensors_of_interest & SENSORS_ORIENTATION) ? |
| 543 | LMSFilter(t, event.value) : event.value; |
| 544 | sSensors[ID_OR].orientation.yaw = event.value; |
| 545 | break; |
| 546 | case EVENT_TYPE_PITCH: |
| 547 | new_sensors |= SENSORS_ORIENTATION | SENSORS_ORIENTATION_RAW; |
| 548 | sSensors[ID_O].orientation.pitch = event.value; |
| 549 | sSensors[ID_OR].orientation.pitch = event.value; |
| 550 | break; |
| 551 | case EVENT_TYPE_ROLL: |
| 552 | new_sensors |= SENSORS_ORIENTATION | SENSORS_ORIENTATION_RAW; |
| 553 | sSensors[ID_O].orientation.roll = event.value; |
| 554 | sSensors[ID_OR].orientation.roll = event.value; |
| 555 | break; |
| 556 | |
| 557 | case EVENT_TYPE_TEMPERATURE: |
| 558 | new_sensors |= SENSORS_TEMPERATURE; |
| 559 | sSensors[ID_T].temperature = event.value; |
| 560 | break; |
| 561 | |
| 562 | case EVENT_TYPE_STEP_COUNT: |
| 563 | // step count (only reported in MODE_FFD) |
| 564 | // we do nothing with it for now. |
| 565 | break; |
| 566 | case EVENT_TYPE_ACCEL_STATUS: |
| 567 | // accuracy of the calibration (never returned!) |
| 568 | //LOGD("G-Sensor status %d", event.value); |
| 569 | break; |
| 570 | case EVENT_TYPE_ORIENT_STATUS: |
| 571 | // accuracy of the calibration |
| 572 | v = (uint32_t)(event.value & SENSOR_STATE_MASK); |
| 573 | LOGD_IF(sSensors[ID_O].orientation.status != (uint8_t)v, |
| 574 | "M-Sensor status %d", v); |
| 575 | sSensors[ID_O].orientation.status = (uint8_t)v; |
| 576 | sSensors[ID_OR].orientation.status = (uint8_t)v; |
| 577 | break; |
| 578 | } |
| 579 | } else if (event.type == EV_SYN) { |
| 580 | if (new_sensors) { |
| 581 | sPendingSensors = new_sensors; |
| 582 | int64_t t = event.time.tv_sec*1000000000LL + |
| 583 | event.time.tv_usec*1000; |
| 584 | while (new_sensors) { |
| 585 | uint32_t i = 31 - __builtin_clz(new_sensors); |
| 586 | new_sensors &= ~(1<<i); |
| 587 | sSensors[i].time = t; |
| 588 | } |
| 589 | return pick_sensor(values); |
| 590 | } |
| 591 | } |
| 592 | } |
| 593 | } |
| 594 | } |
| 595 | |
| 596 | uint32_t sensors_data_get_sensors() { |
| 597 | return SUPPORTED_SENSORS; |
| 598 | } |
| 599 | |