Avichal Rakesh | e1857f8 | 2022-06-08 17:47:23 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 2022 The Android Open Source Project |
| 3 | * |
| 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | * you may not use this file except in compliance with the License. |
| 6 | * You may obtain a copy of the License at |
| 7 | * |
| 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | * |
| 10 | * Unless required by applicable law or agreed to in writing, software |
| 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | * See the License for the specific language governing permissions and |
| 14 | * limitations under the License. |
| 15 | */ |
| 16 | |
| 17 | #define LOG_TAG "ExtCamUtils" |
| 18 | // #define LOG_NDEBUG 0 |
| 19 | |
| 20 | #include "ExternalCameraUtils.h" |
| 21 | |
| 22 | #include <aidlcommonsupport/NativeHandle.h> |
| 23 | #include <jpeglib.h> |
| 24 | #include <linux/videodev2.h> |
| 25 | #include <log/log.h> |
| 26 | #include <algorithm> |
| 27 | #include <cinttypes> |
| 28 | #include <cmath> |
| 29 | |
| 30 | #define HAVE_JPEG // required for libyuv.h to export MJPEG decode APIs |
| 31 | #include <libyuv.h> |
| 32 | |
| 33 | namespace android { |
| 34 | namespace hardware { |
| 35 | namespace camera { |
| 36 | |
| 37 | namespace external { |
| 38 | namespace common { |
| 39 | |
| 40 | namespace { |
| 41 | const int kDefaultCameraIdOffset = 100; |
| 42 | const int kDefaultJpegBufSize = 5 << 20; // 5MB |
| 43 | const int kDefaultNumVideoBuffer = 4; |
| 44 | const int kDefaultNumStillBuffer = 2; |
| 45 | const int kDefaultOrientation = 0; // suitable for natural landscape displays like tablet/TV |
| 46 | // For phone devices 270 is better |
| 47 | } // anonymous namespace |
| 48 | |
| 49 | const char* ExternalCameraConfig::kDefaultCfgPath = "/vendor/etc/external_camera_config.xml"; |
| 50 | |
| 51 | ExternalCameraConfig ExternalCameraConfig::loadFromCfg(const char* cfgPath) { |
| 52 | using namespace tinyxml2; |
| 53 | ExternalCameraConfig ret; |
| 54 | |
| 55 | XMLDocument configXml; |
| 56 | XMLError err = configXml.LoadFile(cfgPath); |
| 57 | if (err != XML_SUCCESS) { |
| 58 | ALOGE("%s: Unable to load external camera config file '%s'. Error: %s", __FUNCTION__, |
| 59 | cfgPath, XMLDocument::ErrorIDToName(err)); |
| 60 | return ret; |
| 61 | } else { |
| 62 | ALOGI("%s: load external camera config succeeded!", __FUNCTION__); |
| 63 | } |
| 64 | |
| 65 | XMLElement* extCam = configXml.FirstChildElement("ExternalCamera"); |
| 66 | if (extCam == nullptr) { |
| 67 | ALOGI("%s: no external camera config specified", __FUNCTION__); |
| 68 | return ret; |
| 69 | } |
| 70 | |
| 71 | XMLElement* providerCfg = extCam->FirstChildElement("Provider"); |
| 72 | if (providerCfg == nullptr) { |
| 73 | ALOGI("%s: no external camera provider config specified", __FUNCTION__); |
| 74 | return ret; |
| 75 | } |
| 76 | |
| 77 | XMLElement* cameraIdOffset = providerCfg->FirstChildElement("CameraIdOffset"); |
| 78 | if (cameraIdOffset != nullptr) { |
| 79 | ret.cameraIdOffset = std::atoi(cameraIdOffset->GetText()); |
| 80 | } |
| 81 | |
| 82 | XMLElement* ignore = providerCfg->FirstChildElement("ignore"); |
| 83 | if (ignore == nullptr) { |
| 84 | ALOGI("%s: no internal ignored device specified", __FUNCTION__); |
| 85 | return ret; |
| 86 | } |
| 87 | |
| 88 | XMLElement* id = ignore->FirstChildElement("id"); |
| 89 | while (id != nullptr) { |
| 90 | const char* text = id->GetText(); |
| 91 | if (text != nullptr) { |
| 92 | ret.mInternalDevices.insert(text); |
| 93 | ALOGI("%s: device %s will be ignored by external camera provider", __FUNCTION__, text); |
| 94 | } |
| 95 | id = id->NextSiblingElement("id"); |
| 96 | } |
| 97 | |
| 98 | XMLElement* deviceCfg = extCam->FirstChildElement("Device"); |
| 99 | if (deviceCfg == nullptr) { |
| 100 | ALOGI("%s: no external camera device config specified", __FUNCTION__); |
| 101 | return ret; |
| 102 | } |
| 103 | |
| 104 | XMLElement* jpegBufSz = deviceCfg->FirstChildElement("MaxJpegBufferSize"); |
| 105 | if (jpegBufSz == nullptr) { |
| 106 | ALOGI("%s: no max jpeg buffer size specified", __FUNCTION__); |
| 107 | } else { |
| 108 | ret.maxJpegBufSize = jpegBufSz->UnsignedAttribute("bytes", /*Default*/ kDefaultJpegBufSize); |
| 109 | } |
| 110 | |
| 111 | XMLElement* numVideoBuf = deviceCfg->FirstChildElement("NumVideoBuffers"); |
| 112 | if (numVideoBuf == nullptr) { |
| 113 | ALOGI("%s: no num video buffers specified", __FUNCTION__); |
| 114 | } else { |
| 115 | ret.numVideoBuffers = |
| 116 | numVideoBuf->UnsignedAttribute("count", /*Default*/ kDefaultNumVideoBuffer); |
| 117 | } |
| 118 | |
| 119 | XMLElement* numStillBuf = deviceCfg->FirstChildElement("NumStillBuffers"); |
| 120 | if (numStillBuf == nullptr) { |
| 121 | ALOGI("%s: no num still buffers specified", __FUNCTION__); |
| 122 | } else { |
| 123 | ret.numStillBuffers = |
| 124 | numStillBuf->UnsignedAttribute("count", /*Default*/ kDefaultNumStillBuffer); |
| 125 | } |
| 126 | |
| 127 | XMLElement* fpsList = deviceCfg->FirstChildElement("FpsList"); |
| 128 | if (fpsList == nullptr) { |
| 129 | ALOGI("%s: no fps list specified", __FUNCTION__); |
| 130 | } else { |
| 131 | if (!updateFpsList(fpsList, ret.fpsLimits)) { |
| 132 | return ret; |
| 133 | } |
| 134 | } |
| 135 | |
| 136 | XMLElement* depth = deviceCfg->FirstChildElement("Depth16Supported"); |
| 137 | if (depth == nullptr) { |
| 138 | ret.depthEnabled = false; |
| 139 | ALOGI("%s: depth output is not enabled", __FUNCTION__); |
| 140 | } else { |
| 141 | ret.depthEnabled = depth->BoolAttribute("enabled", false); |
| 142 | } |
| 143 | |
| 144 | if (ret.depthEnabled) { |
| 145 | XMLElement* depthFpsList = deviceCfg->FirstChildElement("DepthFpsList"); |
| 146 | if (depthFpsList == nullptr) { |
| 147 | ALOGW("%s: no depth fps list specified", __FUNCTION__); |
| 148 | } else { |
| 149 | if (!updateFpsList(depthFpsList, ret.depthFpsLimits)) { |
| 150 | return ret; |
| 151 | } |
| 152 | } |
| 153 | } |
| 154 | |
| 155 | XMLElement* minStreamSize = deviceCfg->FirstChildElement("MinimumStreamSize"); |
| 156 | if (minStreamSize == nullptr) { |
| 157 | ALOGI("%s: no minimum stream size specified", __FUNCTION__); |
| 158 | } else { |
| 159 | ret.minStreamSize = { |
| 160 | static_cast<int32_t>(minStreamSize->UnsignedAttribute("width", /*Default*/ 0)), |
| 161 | static_cast<int32_t>(minStreamSize->UnsignedAttribute("height", /*Default*/ 0))}; |
| 162 | } |
| 163 | |
| 164 | XMLElement* orientation = deviceCfg->FirstChildElement("Orientation"); |
| 165 | if (orientation == nullptr) { |
| 166 | ALOGI("%s: no sensor orientation specified", __FUNCTION__); |
| 167 | } else { |
| 168 | ret.orientation = orientation->IntAttribute("degree", /*Default*/ kDefaultOrientation); |
| 169 | } |
| 170 | |
| 171 | ALOGI("%s: external camera cfg loaded: maxJpgBufSize %d," |
| 172 | " num video buffers %d, num still buffers %d, orientation %d", |
| 173 | __FUNCTION__, ret.maxJpegBufSize, ret.numVideoBuffers, ret.numStillBuffers, |
| 174 | ret.orientation); |
| 175 | for (const auto& limit : ret.fpsLimits) { |
| 176 | ALOGI("%s: fpsLimitList: %dx%d@%f", __FUNCTION__, limit.size.width, limit.size.height, |
| 177 | limit.fpsUpperBound); |
| 178 | } |
| 179 | for (const auto& limit : ret.depthFpsLimits) { |
| 180 | ALOGI("%s: depthFpsLimitList: %dx%d@%f", __FUNCTION__, limit.size.width, limit.size.height, |
| 181 | limit.fpsUpperBound); |
| 182 | } |
| 183 | ALOGI("%s: minStreamSize: %dx%d", __FUNCTION__, ret.minStreamSize.width, |
| 184 | ret.minStreamSize.height); |
| 185 | return ret; |
| 186 | } |
| 187 | |
| 188 | bool ExternalCameraConfig::updateFpsList(tinyxml2::XMLElement* fpsList, |
| 189 | std::vector<FpsLimitation>& fpsLimits) { |
| 190 | using namespace tinyxml2; |
| 191 | std::vector<FpsLimitation> limits; |
| 192 | XMLElement* row = fpsList->FirstChildElement("Limit"); |
| 193 | while (row != nullptr) { |
| 194 | FpsLimitation prevLimit{{0, 0}, 1000.0}; |
| 195 | FpsLimitation limit = { |
| 196 | {/* width */ static_cast<int32_t>(row->UnsignedAttribute("width", /*Default*/ 0)), |
| 197 | /* height */ static_cast<int32_t>( |
| 198 | row->UnsignedAttribute("height", /*Default*/ 0))}, |
| 199 | /* fpsUpperBound */ row->DoubleAttribute("fpsBound", /*Default*/ 1000.0)}; |
| 200 | if (limit.size.width <= prevLimit.size.width || |
| 201 | limit.size.height <= prevLimit.size.height || |
| 202 | limit.fpsUpperBound >= prevLimit.fpsUpperBound) { |
| 203 | ALOGE("%s: FPS limit list must have increasing size and decreasing fps!" |
| 204 | " Prev %dx%d@%f, Current %dx%d@%f", |
| 205 | __FUNCTION__, prevLimit.size.width, prevLimit.size.height, |
| 206 | prevLimit.fpsUpperBound, limit.size.width, limit.size.height, |
| 207 | limit.fpsUpperBound); |
| 208 | return false; |
| 209 | } |
| 210 | limits.push_back(limit); |
| 211 | row = row->NextSiblingElement("Limit"); |
| 212 | } |
| 213 | fpsLimits = limits; |
| 214 | return true; |
| 215 | } |
| 216 | |
| 217 | ExternalCameraConfig::ExternalCameraConfig() |
| 218 | : cameraIdOffset(kDefaultCameraIdOffset), |
| 219 | maxJpegBufSize(kDefaultJpegBufSize), |
| 220 | numVideoBuffers(kDefaultNumVideoBuffer), |
| 221 | numStillBuffers(kDefaultNumStillBuffer), |
| 222 | depthEnabled(false), |
| 223 | orientation(kDefaultOrientation) { |
| 224 | fpsLimits.push_back({/* size */ {/* width */ 640, /* height */ 480}, /* fpsUpperBound */ 30.0}); |
| 225 | fpsLimits.push_back({/* size */ {/* width */ 1280, /* height */ 720}, /* fpsUpperBound */ 7.5}); |
| 226 | fpsLimits.push_back( |
| 227 | {/* size */ {/* width */ 1920, /* height */ 1080}, /* fpsUpperBound */ 5.0}); |
| 228 | minStreamSize = {0, 0}; |
| 229 | } |
| 230 | |
| 231 | } // namespace common |
| 232 | } // namespace external |
| 233 | |
| 234 | namespace device { |
| 235 | namespace implementation { |
| 236 | |
| 237 | double SupportedV4L2Format::FrameRate::getFramesPerSecond() const { |
| 238 | return static_cast<double>(durationDenominator) / durationNumerator; |
| 239 | } |
| 240 | |
| 241 | Frame::Frame(uint32_t width, uint32_t height, uint32_t fourcc) |
| 242 | : mWidth(width), mHeight(height), mFourcc(fourcc) {} |
| 243 | Frame::~Frame() {} |
| 244 | |
| 245 | V4L2Frame::V4L2Frame(uint32_t w, uint32_t h, uint32_t fourcc, int bufIdx, int fd, uint32_t dataSize, |
| 246 | uint64_t offset) |
| 247 | : Frame(w, h, fourcc), mBufferIndex(bufIdx), mFd(fd), mDataSize(dataSize), mOffset(offset) {} |
| 248 | |
| 249 | V4L2Frame::~V4L2Frame() { |
| 250 | unmap(); |
| 251 | } |
| 252 | |
| 253 | int V4L2Frame::getData(uint8_t** outData, size_t* dataSize) { |
| 254 | return map(outData, dataSize); |
| 255 | } |
| 256 | |
| 257 | int V4L2Frame::map(uint8_t** data, size_t* dataSize) { |
| 258 | if (data == nullptr || dataSize == nullptr) { |
| 259 | ALOGI("%s: V4L2 buffer map bad argument: data %p, dataSize %p", __FUNCTION__, data, |
| 260 | dataSize); |
| 261 | return -EINVAL; |
| 262 | } |
| 263 | |
| 264 | std::lock_guard<std::mutex> lk(mLock); |
| 265 | if (!mMapped) { |
| 266 | void* addr = mmap(nullptr, mDataSize, PROT_READ, MAP_SHARED, mFd, mOffset); |
| 267 | if (addr == MAP_FAILED) { |
| 268 | ALOGE("%s: V4L2 buffer map failed: %s", __FUNCTION__, strerror(errno)); |
| 269 | return -EINVAL; |
| 270 | } |
| 271 | mData = static_cast<uint8_t*>(addr); |
| 272 | mMapped = true; |
| 273 | } |
| 274 | *data = mData; |
| 275 | *dataSize = mDataSize; |
| 276 | ALOGV("%s: V4L map FD %d, data %p size %zu", __FUNCTION__, mFd, mData, mDataSize); |
| 277 | return 0; |
| 278 | } |
| 279 | |
| 280 | int V4L2Frame::unmap() { |
| 281 | std::lock_guard<std::mutex> lk(mLock); |
| 282 | if (mMapped) { |
| 283 | ALOGV("%s: V4L unmap data %p size %zu", __FUNCTION__, mData, mDataSize); |
| 284 | if (munmap(mData, mDataSize) != 0) { |
| 285 | ALOGE("%s: V4L2 buffer unmap failed: %s", __FUNCTION__, strerror(errno)); |
| 286 | return -EINVAL; |
| 287 | } |
| 288 | mMapped = false; |
| 289 | } |
| 290 | return 0; |
| 291 | } |
| 292 | |
| 293 | AllocatedFrame::AllocatedFrame(uint32_t w, uint32_t h) : Frame(w, h, V4L2_PIX_FMT_YUV420) {} |
| 294 | AllocatedFrame::~AllocatedFrame() {} |
| 295 | |
| 296 | int AllocatedFrame::getData(uint8_t** outData, size_t* dataSize) { |
| 297 | YCbCrLayout layout; |
| 298 | int ret = allocate(&layout); |
| 299 | if (ret != 0) { |
| 300 | return ret; |
| 301 | } |
| 302 | *outData = mData.data(); |
| 303 | *dataSize = mBufferSize; |
| 304 | return 0; |
| 305 | } |
| 306 | |
| 307 | int AllocatedFrame::allocate(YCbCrLayout* out) { |
| 308 | std::lock_guard<std::mutex> lk(mLock); |
| 309 | if ((mWidth % 2) || (mHeight % 2)) { |
| 310 | ALOGE("%s: bad dimension %dx%d (not multiple of 2)", __FUNCTION__, mWidth, mHeight); |
| 311 | return -EINVAL; |
| 312 | } |
| 313 | |
| 314 | // This frame might be sent to jpeglib to be encoded. Since AllocatedFrame only contains YUV420, |
| 315 | // jpeglib expects height and width of Y component to be an integral multiple of 2*DCTSIZE, |
| 316 | // and heights and widths of Cb and Cr components to be an integral multiple of DCTSIZE. If the |
| 317 | // image size does not meet this requirement, libjpeg expects its input to be padded to meet the |
| 318 | // constraints. This padding is removed from the final encoded image so the content in the |
| 319 | // padding doesn't matter. What matters is that the memory is accessible to jpeglib at the time |
| 320 | // of encoding. |
| 321 | // For example, if the image size is 1500x844 and DCTSIZE is 8, jpeglib expects a YUV 420 |
| 322 | // frame with components of following sizes: |
| 323 | // Y: 1504x848 because 1504 and 848 are the next smallest multiples of 2*8 |
| 324 | // Cb/Cr: 752x424 which are the next smallest multiples of 8 |
| 325 | |
| 326 | // jpeglib takes an array of row pointers which makes vertical padding trivial when setting up |
| 327 | // the pointers. Padding horizontally is a bit more complicated. AllocatedFrame holds the data |
| 328 | // in a flattened buffer, which means memory accesses past a row will flow into the next logical |
| 329 | // row. For any row of a component, we can consider the first few bytes of the next row as |
| 330 | // padding for the current one. This is true for Y and Cb components and all but last row of the |
| 331 | // Cr component. Reading past the last row of Cr component will lead to undefined behavior as |
| 332 | // libjpeg attempts to read memory past the allocated buffer. To prevent undefined behavior, |
| 333 | // the buffer allocated here is padded such that libjpeg never accesses unallocated memory when |
| 334 | // reading the last row. Effectively, we only need to ensure that the last row of Cr component |
| 335 | // has width that is an integral multiple of DCTSIZE. |
| 336 | |
| 337 | size_t dataSize = mWidth * mHeight * 3 / 2; // YUV420 |
| 338 | |
| 339 | size_t cbWidth = mWidth / 2; |
| 340 | size_t requiredCbWidth = DCTSIZE * ((cbWidth + DCTSIZE - 1) / DCTSIZE); |
| 341 | size_t padding = requiredCbWidth - cbWidth; |
| 342 | size_t finalSize = dataSize + padding; |
| 343 | |
| 344 | if (mData.size() != finalSize) { |
| 345 | mData.resize(finalSize); |
| 346 | mBufferSize = dataSize; |
| 347 | } |
| 348 | |
| 349 | if (out != nullptr) { |
| 350 | out->y = mData.data(); |
| 351 | out->yStride = mWidth; |
| 352 | uint8_t* cbStart = mData.data() + mWidth * mHeight; |
| 353 | uint8_t* crStart = cbStart + mWidth * mHeight / 4; |
| 354 | out->cb = cbStart; |
| 355 | out->cr = crStart; |
| 356 | out->cStride = mWidth / 2; |
| 357 | out->chromaStep = 1; |
| 358 | } |
| 359 | return 0; |
| 360 | } |
| 361 | |
| 362 | int AllocatedFrame::getLayout(YCbCrLayout* out) { |
| 363 | IMapper::Rect noCrop = {0, 0, static_cast<int32_t>(mWidth), static_cast<int32_t>(mHeight)}; |
| 364 | return getCroppedLayout(noCrop, out); |
| 365 | } |
| 366 | |
| 367 | int AllocatedFrame::getCroppedLayout(const IMapper::Rect& rect, YCbCrLayout* out) { |
| 368 | if (out == nullptr) { |
| 369 | ALOGE("%s: null out", __FUNCTION__); |
| 370 | return -1; |
| 371 | } |
| 372 | |
| 373 | std::lock_guard<std::mutex> lk(mLock); |
| 374 | if ((rect.left + rect.width) > static_cast<int>(mWidth) || |
| 375 | (rect.top + rect.height) > static_cast<int>(mHeight) || (rect.left % 2) || (rect.top % 2) || |
| 376 | (rect.width % 2) || (rect.height % 2)) { |
| 377 | ALOGE("%s: bad rect left %d top %d w %d h %d", __FUNCTION__, rect.left, rect.top, |
| 378 | rect.width, rect.height); |
| 379 | return -1; |
| 380 | } |
| 381 | |
| 382 | out->y = mData.data() + mWidth * rect.top + rect.left; |
| 383 | out->yStride = mWidth; |
| 384 | uint8_t* cbStart = mData.data() + mWidth * mHeight; |
| 385 | uint8_t* crStart = cbStart + mWidth * mHeight / 4; |
| 386 | out->cb = cbStart + mWidth * rect.top / 4 + rect.left / 2; |
| 387 | out->cr = crStart + mWidth * rect.top / 4 + rect.left / 2; |
| 388 | out->cStride = mWidth / 2; |
| 389 | out->chromaStep = 1; |
| 390 | return 0; |
| 391 | } |
| 392 | |
| 393 | bool isAspectRatioClose(float ar1, float ar2) { |
| 394 | constexpr float kAspectRatioMatchThres = 0.025f; // This threshold is good enough to |
| 395 | // distinguish 4:3/16:9/20:9 1.33/1.78/2 |
| 396 | return std::abs(ar1 - ar2) < kAspectRatioMatchThres; |
| 397 | } |
| 398 | |
| 399 | aidl::android::hardware::camera::common::Status importBufferImpl( |
| 400 | /*inout*/ std::map<int, CirculatingBuffers>& circulatingBuffers, |
| 401 | /*inout*/ HandleImporter& handleImporter, int32_t streamId, uint64_t bufId, |
| 402 | buffer_handle_t buf, |
| 403 | /*out*/ buffer_handle_t** outBufPtr) { |
| 404 | using ::aidl::android::hardware::camera::common::Status; |
Avichal Rakesh | e6a88a8 | 2023-10-12 12:46:39 -0700 | [diff] [blame] | 405 | // AIDL does not have null NativeHandles. It sends empty handles instead. |
| 406 | // We check for when the buf is empty instead of when buf is null. |
| 407 | bool isBufEmpty = buf == nullptr || (buf->numFds == 0 && buf->numInts == 0); |
| 408 | if (isBufEmpty && bufId == BUFFER_ID_NO_BUFFER) { |
Avichal Rakesh | e1857f8 | 2022-06-08 17:47:23 -0700 | [diff] [blame] | 409 | ALOGE("%s: bufferId %" PRIu64 " has null buffer handle!", __FUNCTION__, bufId); |
| 410 | return Status::ILLEGAL_ARGUMENT; |
| 411 | } |
| 412 | |
| 413 | CirculatingBuffers& cbs = circulatingBuffers[streamId]; |
| 414 | if (cbs.count(bufId) == 0) { |
| 415 | if (buf == nullptr) { |
| 416 | ALOGE("%s: bufferId %" PRIu64 " has null buffer handle!", __FUNCTION__, bufId); |
| 417 | return Status::ILLEGAL_ARGUMENT; |
| 418 | } |
| 419 | // Register a newly seen buffer |
| 420 | buffer_handle_t importedBuf = buf; |
| 421 | handleImporter.importBuffer(importedBuf); |
| 422 | if (importedBuf == nullptr) { |
| 423 | ALOGE("%s: output buffer for stream %d is invalid!", __FUNCTION__, streamId); |
| 424 | return Status::INTERNAL_ERROR; |
| 425 | } else { |
| 426 | cbs[bufId] = importedBuf; |
| 427 | } |
| 428 | } |
| 429 | *outBufPtr = &cbs[bufId]; |
| 430 | return Status::OK; |
| 431 | } |
| 432 | |
| 433 | uint32_t getFourCcFromLayout(const YCbCrLayout& layout) { |
| 434 | intptr_t cb = reinterpret_cast<intptr_t>(layout.cb); |
| 435 | intptr_t cr = reinterpret_cast<intptr_t>(layout.cr); |
| 436 | if (std::abs(cb - cr) == 1 && layout.chromaStep == 2) { |
| 437 | // Interleaved format |
| 438 | if (layout.cb > layout.cr) { |
| 439 | return V4L2_PIX_FMT_NV21; |
| 440 | } else { |
| 441 | return V4L2_PIX_FMT_NV12; |
| 442 | } |
| 443 | } else if (layout.chromaStep == 1) { |
| 444 | // Planar format |
| 445 | if (layout.cb > layout.cr) { |
| 446 | return V4L2_PIX_FMT_YVU420; // YV12 |
| 447 | } else { |
| 448 | return V4L2_PIX_FMT_YUV420; // YU12 |
| 449 | } |
| 450 | } else { |
| 451 | return FLEX_YUV_GENERIC; |
| 452 | } |
| 453 | } |
| 454 | |
| 455 | int getCropRect(CroppingType ct, const Size& inSize, const Size& outSize, IMapper::Rect* out) { |
| 456 | if (out == nullptr) { |
| 457 | ALOGE("%s: out is null", __FUNCTION__); |
| 458 | return -1; |
| 459 | } |
| 460 | |
| 461 | uint32_t inW = inSize.width; |
| 462 | uint32_t inH = inSize.height; |
| 463 | uint32_t outW = outSize.width; |
| 464 | uint32_t outH = outSize.height; |
| 465 | |
| 466 | // Handle special case where aspect ratio is close to input but scaled |
| 467 | // dimension is slightly larger than input |
| 468 | float arIn = ASPECT_RATIO(inSize); |
| 469 | float arOut = ASPECT_RATIO(outSize); |
| 470 | if (isAspectRatioClose(arIn, arOut)) { |
| 471 | out->left = 0; |
| 472 | out->top = 0; |
| 473 | out->width = static_cast<int32_t>(inW); |
| 474 | out->height = static_cast<int32_t>(inH); |
| 475 | return 0; |
| 476 | } |
| 477 | |
| 478 | if (ct == VERTICAL) { |
| 479 | uint64_t scaledOutH = static_cast<uint64_t>(outH) * inW / outW; |
| 480 | if (scaledOutH > inH) { |
| 481 | ALOGE("%s: Output size %dx%d cannot be vertically cropped from input size %dx%d", |
| 482 | __FUNCTION__, outW, outH, inW, inH); |
| 483 | return -1; |
| 484 | } |
| 485 | scaledOutH = scaledOutH & ~0x1; // make it multiple of 2 |
| 486 | |
| 487 | out->left = 0; |
| 488 | out->top = static_cast<int32_t>((inH - scaledOutH) / 2) & ~0x1; |
| 489 | out->width = static_cast<int32_t>(inW); |
| 490 | out->height = static_cast<int32_t>(scaledOutH); |
| 491 | ALOGV("%s: crop %dx%d to %dx%d: top %d, scaledH %d", __FUNCTION__, inW, inH, outW, outH, |
| 492 | out->top, static_cast<int32_t>(scaledOutH)); |
| 493 | } else { |
| 494 | uint64_t scaledOutW = static_cast<uint64_t>(outW) * inH / outH; |
| 495 | if (scaledOutW > inW) { |
| 496 | ALOGE("%s: Output size %dx%d cannot be horizontally cropped from input size %dx%d", |
| 497 | __FUNCTION__, outW, outH, inW, inH); |
| 498 | return -1; |
| 499 | } |
| 500 | scaledOutW = scaledOutW & ~0x1; // make it multiple of 2 |
| 501 | |
| 502 | out->left = static_cast<int32_t>((inW - scaledOutW) / 2) & ~0x1; |
| 503 | out->top = 0; |
| 504 | out->width = static_cast<int32_t>(scaledOutW); |
| 505 | out->height = static_cast<int32_t>(inH); |
| 506 | ALOGV("%s: crop %dx%d to %dx%d: top %d, scaledW %d", __FUNCTION__, inW, inH, outW, outH, |
| 507 | out->top, static_cast<int32_t>(scaledOutW)); |
| 508 | } |
| 509 | |
| 510 | return 0; |
| 511 | } |
| 512 | |
| 513 | int formatConvert(const YCbCrLayout& in, const YCbCrLayout& out, Size sz, uint32_t format) { |
| 514 | int ret = 0; |
| 515 | switch (format) { |
| 516 | case V4L2_PIX_FMT_NV21: |
| 517 | ret = libyuv::I420ToNV21( |
| 518 | static_cast<uint8_t*>(in.y), static_cast<int32_t>(in.yStride), |
| 519 | static_cast<uint8_t*>(in.cb), static_cast<int32_t>(in.cStride), |
| 520 | static_cast<uint8_t*>(in.cr), static_cast<int32_t>(in.cStride), |
| 521 | static_cast<uint8_t*>(out.y), static_cast<int32_t>(out.yStride), |
| 522 | static_cast<uint8_t*>(out.cr), static_cast<int32_t>(out.cStride), |
| 523 | static_cast<int32_t>(sz.width), static_cast<int32_t>(sz.height)); |
| 524 | if (ret != 0) { |
| 525 | ALOGE("%s: convert to NV21 buffer failed! ret %d", __FUNCTION__, ret); |
| 526 | return ret; |
| 527 | } |
| 528 | break; |
| 529 | case V4L2_PIX_FMT_NV12: |
| 530 | ret = libyuv::I420ToNV12( |
| 531 | static_cast<uint8_t*>(in.y), static_cast<int32_t>(in.yStride), |
| 532 | static_cast<uint8_t*>(in.cb), static_cast<int32_t>(in.cStride), |
| 533 | static_cast<uint8_t*>(in.cr), static_cast<int32_t>(in.cStride), |
| 534 | static_cast<uint8_t*>(out.y), static_cast<int32_t>(out.yStride), |
| 535 | static_cast<uint8_t*>(out.cb), static_cast<int32_t>(out.cStride), |
| 536 | static_cast<int32_t>(sz.width), static_cast<int32_t>(sz.height)); |
| 537 | if (ret != 0) { |
| 538 | ALOGE("%s: convert to NV12 buffer failed! ret %d", __FUNCTION__, ret); |
| 539 | return ret; |
| 540 | } |
| 541 | break; |
| 542 | case V4L2_PIX_FMT_YVU420: // YV12 |
| 543 | case V4L2_PIX_FMT_YUV420: // YU12 |
| 544 | // TODO: maybe we can speed up here by somehow save this copy? |
| 545 | ret = libyuv::I420Copy(static_cast<uint8_t*>(in.y), static_cast<int32_t>(in.yStride), |
| 546 | static_cast<uint8_t*>(in.cb), static_cast<int32_t>(in.cStride), |
| 547 | static_cast<uint8_t*>(in.cr), static_cast<int32_t>(in.cStride), |
| 548 | static_cast<uint8_t*>(out.y), static_cast<int32_t>(out.yStride), |
| 549 | static_cast<uint8_t*>(out.cb), static_cast<int32_t>(out.cStride), |
| 550 | static_cast<uint8_t*>(out.cr), static_cast<int32_t>(out.cStride), |
| 551 | static_cast<int32_t>(sz.width), static_cast<int32_t>(sz.height)); |
| 552 | if (ret != 0) { |
| 553 | ALOGE("%s: copy to YV12 or YU12 buffer failed! ret %d", __FUNCTION__, ret); |
| 554 | return ret; |
| 555 | } |
| 556 | break; |
| 557 | case FLEX_YUV_GENERIC: |
| 558 | // TODO: b/72261744 write to arbitrary flexible YUV layout. Slow. |
| 559 | ALOGE("%s: unsupported flexible yuv layout" |
| 560 | " y %p cb %p cr %p y_str %d c_str %d c_step %d", |
| 561 | __FUNCTION__, out.y, out.cb, out.cr, out.yStride, out.cStride, out.chromaStep); |
| 562 | return -1; |
| 563 | default: |
| 564 | ALOGE("%s: unknown YUV format 0x%x!", __FUNCTION__, format); |
| 565 | return -1; |
| 566 | } |
| 567 | return 0; |
| 568 | } |
| 569 | |
| 570 | int encodeJpegYU12(const Size& inSz, const YCbCrLayout& inLayout, int jpegQuality, |
| 571 | const void* app1Buffer, size_t app1Size, void* out, size_t maxOutSize, |
| 572 | size_t& actualCodeSize) { |
| 573 | /* libjpeg is a C library so we use C-style "inheritance" by |
| 574 | * putting libjpeg's jpeg_destination_mgr first in our custom |
| 575 | * struct. This allows us to cast jpeg_destination_mgr* to |
| 576 | * CustomJpegDestMgr* when we get it passed to us in a callback */ |
| 577 | struct CustomJpegDestMgr { |
| 578 | struct jpeg_destination_mgr mgr; |
| 579 | JOCTET* mBuffer; |
| 580 | size_t mBufferSize; |
| 581 | size_t mEncodedSize; |
| 582 | bool mSuccess; |
| 583 | } dmgr; |
| 584 | |
| 585 | jpeg_compress_struct cinfo = {}; |
| 586 | jpeg_error_mgr jerr; |
| 587 | |
| 588 | /* Initialize error handling with standard callbacks, but |
| 589 | * then override output_message (to print to ALOG) and |
| 590 | * error_exit to set a flag and print a message instead |
| 591 | * of killing the whole process */ |
| 592 | cinfo.err = jpeg_std_error(&jerr); |
| 593 | |
| 594 | cinfo.err->output_message = [](j_common_ptr cinfo) { |
| 595 | char buffer[JMSG_LENGTH_MAX]; |
| 596 | |
| 597 | /* Create the message */ |
| 598 | (*cinfo->err->format_message)(cinfo, buffer); |
| 599 | ALOGE("libjpeg error: %s", buffer); |
| 600 | }; |
| 601 | cinfo.err->error_exit = [](j_common_ptr cinfo) { |
| 602 | (*cinfo->err->output_message)(cinfo); |
| 603 | if (cinfo->client_data) { |
| 604 | auto& dmgr = *reinterpret_cast<CustomJpegDestMgr*>(cinfo->client_data); |
| 605 | dmgr.mSuccess = false; |
| 606 | } |
| 607 | }; |
| 608 | |
| 609 | /* Now that we initialized some callbacks, let's create our compressor */ |
| 610 | jpeg_create_compress(&cinfo); |
| 611 | |
| 612 | /* Initialize our destination manager */ |
| 613 | dmgr.mBuffer = static_cast<JOCTET*>(out); |
| 614 | dmgr.mBufferSize = maxOutSize; |
| 615 | dmgr.mEncodedSize = 0; |
| 616 | dmgr.mSuccess = true; |
| 617 | cinfo.client_data = static_cast<void*>(&dmgr); |
| 618 | |
| 619 | /* These lambdas become C-style function pointers and as per C++11 spec |
| 620 | * may not capture anything */ |
| 621 | dmgr.mgr.init_destination = [](j_compress_ptr cinfo) { |
| 622 | auto& dmgr = reinterpret_cast<CustomJpegDestMgr&>(*cinfo->dest); |
| 623 | dmgr.mgr.next_output_byte = dmgr.mBuffer; |
| 624 | dmgr.mgr.free_in_buffer = dmgr.mBufferSize; |
| 625 | ALOGV("%s:%d jpeg start: %p [%zu]", __FUNCTION__, __LINE__, dmgr.mBuffer, dmgr.mBufferSize); |
| 626 | }; |
| 627 | |
| 628 | dmgr.mgr.empty_output_buffer = [](j_compress_ptr cinfo __unused) { |
| 629 | ALOGV("%s:%d Out of buffer", __FUNCTION__, __LINE__); |
| 630 | return 0; |
| 631 | }; |
| 632 | |
| 633 | dmgr.mgr.term_destination = [](j_compress_ptr cinfo) { |
| 634 | auto& dmgr = reinterpret_cast<CustomJpegDestMgr&>(*cinfo->dest); |
| 635 | dmgr.mEncodedSize = dmgr.mBufferSize - dmgr.mgr.free_in_buffer; |
| 636 | ALOGV("%s:%d Done with jpeg: %zu", __FUNCTION__, __LINE__, dmgr.mEncodedSize); |
| 637 | }; |
| 638 | cinfo.dest = reinterpret_cast<struct jpeg_destination_mgr*>(&dmgr); |
| 639 | |
| 640 | /* We are going to be using JPEG in raw data mode, so we are passing |
| 641 | * straight subsampled planar YCbCr and it will not touch our pixel |
| 642 | * data or do any scaling or anything */ |
| 643 | cinfo.image_width = inSz.width; |
| 644 | cinfo.image_height = inSz.height; |
| 645 | cinfo.input_components = 3; |
| 646 | cinfo.in_color_space = JCS_YCbCr; |
| 647 | |
| 648 | /* Initialize defaults and then override what we want */ |
| 649 | jpeg_set_defaults(&cinfo); |
| 650 | |
| 651 | jpeg_set_quality(&cinfo, jpegQuality, 1); |
| 652 | jpeg_set_colorspace(&cinfo, JCS_YCbCr); |
| 653 | cinfo.raw_data_in = 1; |
| 654 | cinfo.dct_method = JDCT_IFAST; |
| 655 | |
| 656 | /* Configure sampling factors. The sampling factor is JPEG subsampling 420 |
| 657 | * because the source format is YUV420. Note that libjpeg sampling factors |
| 658 | * are... a little weird. Sampling of Y=2,U=1,V=1 means there is 1 U and |
| 659 | * 1 V value for each 2 Y values */ |
| 660 | cinfo.comp_info[0].h_samp_factor = 2; |
| 661 | cinfo.comp_info[0].v_samp_factor = 2; |
| 662 | cinfo.comp_info[1].h_samp_factor = 1; |
| 663 | cinfo.comp_info[1].v_samp_factor = 1; |
| 664 | cinfo.comp_info[2].h_samp_factor = 1; |
| 665 | cinfo.comp_info[2].v_samp_factor = 1; |
| 666 | |
| 667 | /* Start the compressor */ |
| 668 | jpeg_start_compress(&cinfo, TRUE); |
| 669 | |
| 670 | /* Let's not hardcode YUV420 in 6 places... 5 was enough */ |
| 671 | int maxVSampFactor = cinfo.max_v_samp_factor; |
| 672 | int cVSubSampling = cinfo.comp_info[0].v_samp_factor / cinfo.comp_info[1].v_samp_factor; |
| 673 | |
| 674 | /* Compute our macroblock height, so we can pad our input to be vertically |
| 675 | * macroblock aligned. No need to for horizontal alignment since AllocatedFrame already |
| 676 | * pads horizontally */ |
| 677 | |
| 678 | size_t mcuV = DCTSIZE * maxVSampFactor; |
| 679 | size_t paddedHeight = mcuV * ((inSz.height + mcuV - 1) / mcuV); |
| 680 | |
| 681 | /* libjpeg uses arrays of row pointers, which makes it really easy to pad |
| 682 | * data vertically (unfortunately doesn't help horizontally) */ |
| 683 | std::vector<JSAMPROW> yLines(paddedHeight); |
| 684 | std::vector<JSAMPROW> cbLines(paddedHeight / cVSubSampling); |
| 685 | std::vector<JSAMPROW> crLines(paddedHeight / cVSubSampling); |
| 686 | |
| 687 | uint8_t* py = static_cast<uint8_t*>(inLayout.y); |
| 688 | uint8_t* pcb = static_cast<uint8_t*>(inLayout.cb); |
| 689 | uint8_t* pcr = static_cast<uint8_t*>(inLayout.cr); |
| 690 | |
| 691 | for (int32_t i = 0; i < paddedHeight; i++) { |
| 692 | /* Once we are in the padding territory we still point to the last line |
| 693 | * effectively replicating it several times ~ CLAMP_TO_EDGE */ |
| 694 | int li = std::min(i, inSz.height - 1); |
| 695 | yLines[i] = static_cast<JSAMPROW>(py + li * inLayout.yStride); |
| 696 | if (i < paddedHeight / cVSubSampling) { |
| 697 | li = std::min(i, (inSz.height - 1) / cVSubSampling); |
| 698 | cbLines[i] = static_cast<JSAMPROW>(pcb + li * inLayout.cStride); |
| 699 | crLines[i] = static_cast<JSAMPROW>(pcr + li * inLayout.cStride); |
| 700 | } |
| 701 | } |
| 702 | |
| 703 | /* If APP1 data was passed in, use it */ |
| 704 | if (app1Buffer && app1Size) { |
| 705 | jpeg_write_marker(&cinfo, JPEG_APP0 + 1, static_cast<const JOCTET*>(app1Buffer), app1Size); |
| 706 | } |
| 707 | |
| 708 | /* While we still have padded height left to go, keep giving it one |
| 709 | * macroblock at a time. */ |
| 710 | while (cinfo.next_scanline < cinfo.image_height) { |
| 711 | const uint32_t batchSize = DCTSIZE * maxVSampFactor; |
| 712 | const uint32_t nl = cinfo.next_scanline; |
| 713 | JSAMPARRAY planes[3]{&yLines[nl], &cbLines[nl / cVSubSampling], |
| 714 | &crLines[nl / cVSubSampling]}; |
| 715 | |
| 716 | uint32_t done = jpeg_write_raw_data(&cinfo, planes, batchSize); |
| 717 | |
| 718 | if (done != batchSize) { |
| 719 | ALOGE("%s: compressed %u lines, expected %u (total %u/%u)", __FUNCTION__, done, |
| 720 | batchSize, cinfo.next_scanline, cinfo.image_height); |
| 721 | return -1; |
| 722 | } |
| 723 | } |
| 724 | |
| 725 | /* This will flush everything */ |
| 726 | jpeg_finish_compress(&cinfo); |
| 727 | |
| 728 | /* Grab the actual code size and set it */ |
| 729 | actualCodeSize = dmgr.mEncodedSize; |
| 730 | |
| 731 | return 0; |
| 732 | } |
| 733 | |
| 734 | Size getMaxThumbnailResolution(const common::V1_0::helper::CameraMetadata& chars) { |
| 735 | Size thumbSize{0, 0}; |
| 736 | camera_metadata_ro_entry entry = chars.find(ANDROID_JPEG_AVAILABLE_THUMBNAIL_SIZES); |
| 737 | for (uint32_t i = 0; i < entry.count; i += 2) { |
| 738 | Size sz{.width = entry.data.i32[i], .height = entry.data.i32[i + 1]}; |
| 739 | if (sz.width * sz.height > thumbSize.width * thumbSize.height) { |
| 740 | thumbSize = sz; |
| 741 | } |
| 742 | } |
| 743 | |
| 744 | if (thumbSize.width * thumbSize.height == 0) { |
| 745 | ALOGW("%s: non-zero thumbnail size not available", __FUNCTION__); |
| 746 | } |
| 747 | |
| 748 | return thumbSize; |
| 749 | } |
| 750 | |
| 751 | void freeReleaseFences(std::vector<CaptureResult>& results) { |
| 752 | for (auto& result : results) { |
Avichal Rakesh | 31437d0 | 2024-01-12 17:17:27 -0800 | [diff] [blame] | 753 | // NativeHandles free fd's on desctruction. Simply delete the objects! |
| 754 | result.inputBuffer.releaseFence.fds.clear(); // Implicitly closes fds |
| 755 | result.inputBuffer.releaseFence.ints.clear(); |
Avichal Rakesh | e1857f8 | 2022-06-08 17:47:23 -0700 | [diff] [blame] | 756 | for (auto& buf : result.outputBuffers) { |
Avichal Rakesh | 31437d0 | 2024-01-12 17:17:27 -0800 | [diff] [blame] | 757 | buf.releaseFence.fds.clear(); // Implicitly closes fds |
| 758 | buf.releaseFence.ints.clear(); |
Avichal Rakesh | e1857f8 | 2022-06-08 17:47:23 -0700 | [diff] [blame] | 759 | } |
| 760 | } |
| 761 | } |
| 762 | |
| 763 | #define ARRAY_SIZE(a) (sizeof(a) / sizeof((a)[0])) |
| 764 | #define UPDATE(md, tag, data, size) \ |
| 765 | do { \ |
| 766 | if ((md).update((tag), (data), (size))) { \ |
| 767 | ALOGE("Update " #tag " failed!"); \ |
| 768 | return BAD_VALUE; \ |
| 769 | } \ |
| 770 | } while (0) |
| 771 | |
| 772 | status_t fillCaptureResultCommon(CameraMetadata& md, nsecs_t timestamp, |
| 773 | camera_metadata_ro_entry& activeArraySize) { |
| 774 | if (activeArraySize.count < 4) { |
| 775 | ALOGE("%s: cannot find active array size!", __FUNCTION__); |
| 776 | return -EINVAL; |
| 777 | } |
| 778 | // android.control |
| 779 | // For USB camera, we don't know the AE state. Set the state to converged to |
| 780 | // indicate the frame should be good to use. Then apps don't have to wait the |
| 781 | // AE state. |
| 782 | const uint8_t aeState = ANDROID_CONTROL_AE_STATE_CONVERGED; |
| 783 | UPDATE(md, ANDROID_CONTROL_AE_STATE, &aeState, 1); |
| 784 | |
| 785 | const uint8_t ae_lock = ANDROID_CONTROL_AE_LOCK_OFF; |
| 786 | UPDATE(md, ANDROID_CONTROL_AE_LOCK, &ae_lock, 1); |
| 787 | |
| 788 | // Set AWB state to converged to indicate the frame should be good to use. |
| 789 | const uint8_t awbState = ANDROID_CONTROL_AWB_STATE_CONVERGED; |
| 790 | UPDATE(md, ANDROID_CONTROL_AWB_STATE, &awbState, 1); |
| 791 | |
| 792 | const uint8_t awbLock = ANDROID_CONTROL_AWB_LOCK_OFF; |
| 793 | UPDATE(md, ANDROID_CONTROL_AWB_LOCK, &awbLock, 1); |
| 794 | |
| 795 | const uint8_t flashState = ANDROID_FLASH_STATE_UNAVAILABLE; |
| 796 | UPDATE(md, ANDROID_FLASH_STATE, &flashState, 1); |
| 797 | |
| 798 | // This means pipeline latency of X frame intervals. The maximum number is 4. |
| 799 | const uint8_t requestPipelineMaxDepth = 4; |
| 800 | UPDATE(md, ANDROID_REQUEST_PIPELINE_DEPTH, &requestPipelineMaxDepth, 1); |
| 801 | |
| 802 | // android.scaler |
| 803 | const int32_t crop_region[] = { |
| 804 | activeArraySize.data.i32[0], |
| 805 | activeArraySize.data.i32[1], |
| 806 | activeArraySize.data.i32[2], |
| 807 | activeArraySize.data.i32[3], |
| 808 | }; |
| 809 | UPDATE(md, ANDROID_SCALER_CROP_REGION, crop_region, ARRAY_SIZE(crop_region)); |
| 810 | |
| 811 | // android.sensor |
| 812 | UPDATE(md, ANDROID_SENSOR_TIMESTAMP, ×tamp, 1); |
| 813 | |
| 814 | // android.statistics |
| 815 | const uint8_t lensShadingMapMode = ANDROID_STATISTICS_LENS_SHADING_MAP_MODE_OFF; |
| 816 | UPDATE(md, ANDROID_STATISTICS_LENS_SHADING_MAP_MODE, &lensShadingMapMode, 1); |
| 817 | |
| 818 | const uint8_t sceneFlicker = ANDROID_STATISTICS_SCENE_FLICKER_NONE; |
| 819 | UPDATE(md, ANDROID_STATISTICS_SCENE_FLICKER, &sceneFlicker, 1); |
| 820 | |
| 821 | return OK; |
| 822 | } |
| 823 | |
| 824 | #undef ARRAY_SIZE |
| 825 | #undef UPDATE |
| 826 | |
| 827 | AllocatedV4L2Frame::AllocatedV4L2Frame(std::shared_ptr<V4L2Frame> frameIn) |
| 828 | : Frame(frameIn->mWidth, frameIn->mHeight, frameIn->mFourcc) { |
| 829 | uint8_t* dataIn; |
| 830 | size_t dataSize; |
| 831 | if (frameIn->getData(&dataIn, &dataSize) != 0) { |
| 832 | ALOGE("%s: map input V4L2 frame failed!", __FUNCTION__); |
| 833 | return; |
| 834 | } |
| 835 | |
| 836 | mData.resize(dataSize); |
| 837 | std::memcpy(mData.data(), dataIn, dataSize); |
| 838 | } |
| 839 | |
| 840 | AllocatedV4L2Frame::~AllocatedV4L2Frame() {} |
| 841 | |
| 842 | int AllocatedV4L2Frame::getData(uint8_t** outData, size_t* dataSize) { |
| 843 | if (outData == nullptr || dataSize == nullptr) { |
| 844 | ALOGE("%s: outData(%p)/dataSize(%p) must not be null", __FUNCTION__, outData, dataSize); |
| 845 | return -1; |
| 846 | } |
| 847 | |
| 848 | *outData = mData.data(); |
| 849 | *dataSize = mData.size(); |
| 850 | return 0; |
| 851 | } |
| 852 | |
| 853 | } // namespace implementation |
| 854 | } // namespace device |
| 855 | } // namespace camera |
| 856 | } // namespace hardware |
Avichal Rakesh | e6a88a8 | 2023-10-12 12:46:39 -0700 | [diff] [blame] | 857 | } // namespace android |