blob: 4c54e3b12ed4bd14abe2166b7f30adaa5778fc33 [file] [log] [blame]
Michael Butlerb98aa6d2020-02-22 22:37:59 -08001/*
2 * Copyright (C) 2020 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "Conversions.h"
18
19#include <android-base/logging.h>
20#include <android/hardware/neuralnetworks/1.3/types.h>
21#include <nnapi/OperandTypes.h>
22#include <nnapi/OperationTypes.h>
23#include <nnapi/Result.h>
24#include <nnapi/SharedMemory.h>
25#include <nnapi/TypeUtils.h>
26#include <nnapi/Types.h>
27#include <nnapi/hal/1.0/Conversions.h>
28#include <nnapi/hal/1.2/Conversions.h>
29#include <nnapi/hal/CommonUtils.h>
30
31#include <algorithm>
32#include <chrono>
33#include <functional>
34#include <iterator>
35#include <limits>
36#include <type_traits>
37#include <utility>
38
39namespace {
40
41template <typename Type>
42constexpr std::underlying_type_t<Type> underlyingType(Type value) {
43 return static_cast<std::underlying_type_t<Type>>(value);
44}
45
46} // namespace
47
48namespace android::nn {
49namespace {
50
51constexpr auto validOperandType(nn::OperandType operandType) {
52 switch (operandType) {
53 case nn::OperandType::FLOAT32:
54 case nn::OperandType::INT32:
55 case nn::OperandType::UINT32:
56 case nn::OperandType::TENSOR_FLOAT32:
57 case nn::OperandType::TENSOR_INT32:
58 case nn::OperandType::TENSOR_QUANT8_ASYMM:
59 case nn::OperandType::BOOL:
60 case nn::OperandType::TENSOR_QUANT16_SYMM:
61 case nn::OperandType::TENSOR_FLOAT16:
62 case nn::OperandType::TENSOR_BOOL8:
63 case nn::OperandType::FLOAT16:
64 case nn::OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL:
65 case nn::OperandType::TENSOR_QUANT16_ASYMM:
66 case nn::OperandType::TENSOR_QUANT8_SYMM:
67 case nn::OperandType::TENSOR_QUANT8_ASYMM_SIGNED:
68 case nn::OperandType::SUBGRAPH:
69 case nn::OperandType::OEM:
70 case nn::OperandType::TENSOR_OEM_BYTE:
71 return true;
72 }
73 return nn::isExtension(operandType);
74}
75
76using hardware::hidl_vec;
77
78template <typename Input>
79using ConvertOutput = std::decay_t<decltype(convert(std::declval<Input>()).value())>;
80
81template <typename Type>
82Result<std::vector<ConvertOutput<Type>>> convertVec(const hidl_vec<Type>& arguments) {
83 std::vector<ConvertOutput<Type>> canonical;
84 canonical.reserve(arguments.size());
85 for (const auto& argument : arguments) {
86 canonical.push_back(NN_TRY(nn::convert(argument)));
87 }
88 return canonical;
89}
90
91template <typename Type>
92Result<std::vector<ConvertOutput<Type>>> convert(const hidl_vec<Type>& arguments) {
93 return convertVec(arguments);
94}
95
96} // anonymous namespace
97
98Result<OperandType> convert(const hal::V1_3::OperandType& operandType) {
99 return static_cast<OperandType>(operandType);
100}
101
102Result<OperationType> convert(const hal::V1_3::OperationType& operationType) {
103 return static_cast<OperationType>(operationType);
104}
105
106Result<Priority> convert(const hal::V1_3::Priority& priority) {
107 return static_cast<Priority>(priority);
108}
109
110Result<Capabilities> convert(const hal::V1_3::Capabilities& capabilities) {
111 const bool validOperandTypes = std::all_of(
112 capabilities.operandPerformance.begin(), capabilities.operandPerformance.end(),
113 [](const hal::V1_3::Capabilities::OperandPerformance& operandPerformance) {
114 const auto maybeType = convert(operandPerformance.type);
115 return !maybeType.has_value() ? false : validOperandType(maybeType.value());
116 });
117 if (!validOperandTypes) {
118 return NN_ERROR()
119 << "Invalid OperandType when converting OperandPerformance in Capabilities";
120 }
121
122 auto operandPerformance = NN_TRY(convert(capabilities.operandPerformance));
123 auto table =
124 NN_TRY(Capabilities::OperandPerformanceTable::create(std::move(operandPerformance)));
125
126 return Capabilities{
127 .relaxedFloat32toFloat16PerformanceScalar =
128 NN_TRY(convert(capabilities.relaxedFloat32toFloat16PerformanceScalar)),
129 .relaxedFloat32toFloat16PerformanceTensor =
130 NN_TRY(convert(capabilities.relaxedFloat32toFloat16PerformanceTensor)),
131 .operandPerformance = std::move(table),
132 .ifPerformance = NN_TRY(convert(capabilities.ifPerformance)),
133 .whilePerformance = NN_TRY(convert(capabilities.whilePerformance)),
134 };
135}
136
137Result<Capabilities::OperandPerformance> convert(
138 const hal::V1_3::Capabilities::OperandPerformance& operandPerformance) {
139 return Capabilities::OperandPerformance{
140 .type = NN_TRY(convert(operandPerformance.type)),
141 .info = NN_TRY(convert(operandPerformance.info)),
142 };
143}
144
145Result<Operation> convert(const hal::V1_3::Operation& operation) {
146 return Operation{
147 .type = NN_TRY(convert(operation.type)),
148 .inputs = operation.inputs,
149 .outputs = operation.outputs,
150 };
151}
152
153Result<Operand::LifeTime> convert(const hal::V1_3::OperandLifeTime& operandLifeTime) {
154 return static_cast<Operand::LifeTime>(operandLifeTime);
155}
156
157Result<Operand> convert(const hal::V1_3::Operand& operand) {
158 return Operand{
159 .type = NN_TRY(convert(operand.type)),
160 .dimensions = operand.dimensions,
161 .scale = operand.scale,
162 .zeroPoint = operand.zeroPoint,
163 .lifetime = NN_TRY(convert(operand.lifetime)),
164 .location = NN_TRY(convert(operand.location)),
165 .extraParams = NN_TRY(convert(operand.extraParams)),
166 };
167}
168
169Result<Model> convert(const hal::V1_3::Model& model) {
170 return Model{
171 .main = NN_TRY(convert(model.main)),
172 .referenced = NN_TRY(convert(model.referenced)),
173 .operandValues = NN_TRY(convert(model.operandValues)),
174 .pools = NN_TRY(convert(model.pools)),
175 .relaxComputationFloat32toFloat16 = model.relaxComputationFloat32toFloat16,
176 .extensionNameToPrefix = NN_TRY(convert(model.extensionNameToPrefix)),
177 };
178}
179
180Result<Model::Subgraph> convert(const hal::V1_3::Subgraph& subgraph) {
181 auto operations = NN_TRY(convert(subgraph.operations));
182
183 // Verify number of consumers.
184 const auto numberOfConsumers =
185 hal::utils::countNumberOfConsumers(subgraph.operands.size(), operations);
186 CHECK(subgraph.operands.size() == numberOfConsumers.size());
187 for (size_t i = 0; i < subgraph.operands.size(); ++i) {
188 if (subgraph.operands[i].numberOfConsumers != numberOfConsumers[i]) {
189 return NN_ERROR() << "Invalid numberOfConsumers for operand " << i << ", expected "
190 << numberOfConsumers[i] << " but found "
191 << subgraph.operands[i].numberOfConsumers;
192 }
193 }
194
195 return Model::Subgraph{
196 .operands = NN_TRY(convert(subgraph.operands)),
197 .operations = std::move(operations),
198 .inputIndexes = subgraph.inputIndexes,
199 .outputIndexes = subgraph.outputIndexes,
200 };
201}
202
203Result<BufferDesc> convert(const hal::V1_3::BufferDesc& bufferDesc) {
204 return BufferDesc{.dimensions = bufferDesc.dimensions};
205}
206
207Result<BufferRole> convert(const hal::V1_3::BufferRole& bufferRole) {
208 return BufferRole{
209 .modelIndex = bufferRole.modelIndex,
210 .ioIndex = bufferRole.ioIndex,
211 .frequency = bufferRole.frequency,
212 };
213}
214
215Result<Request> convert(const hal::V1_3::Request& request) {
216 return Request{
217 .inputs = NN_TRY(convert(request.inputs)),
218 .outputs = NN_TRY(convert(request.outputs)),
219 .pools = NN_TRY(convert(request.pools)),
220 };
221}
222
223Result<Request::MemoryPool> convert(const hal::V1_3::Request::MemoryPool& memoryPool) {
224 using Discriminator = hal::V1_3::Request::MemoryPool::hidl_discriminator;
225 switch (memoryPool.getDiscriminator()) {
226 case Discriminator::hidlMemory:
227 return createSharedMemoryFromHidlMemory(memoryPool.hidlMemory());
228 case Discriminator::token:
229 return static_cast<Request::MemoryDomainToken>(memoryPool.token());
230 }
231 return NN_ERROR() << "Invalid Request::MemoryPool discriminator "
232 << underlyingType(memoryPool.getDiscriminator());
233}
234
235Result<OptionalTimePoint> convert(const hal::V1_3::OptionalTimePoint& optionalTimePoint) {
236 constexpr auto kTimePointMaxCount = TimePoint::max().time_since_epoch().count();
237 const auto makeTimePoint = [](uint64_t count) -> Result<OptionalTimePoint> {
238 if (count > kTimePointMaxCount) {
239 return NN_ERROR()
240 << "Unable to convert OptionalTimePoint because the count exceeds the max";
241 }
242 const auto nanoseconds = std::chrono::nanoseconds{count};
243 return TimePoint{nanoseconds};
244 };
245
246 using Discriminator = hal::V1_3::OptionalTimePoint::hidl_discriminator;
247 switch (optionalTimePoint.getDiscriminator()) {
248 case Discriminator::none:
249 return std::nullopt;
250 case Discriminator::nanosecondsSinceEpoch:
251 return makeTimePoint(optionalTimePoint.nanosecondsSinceEpoch());
252 }
253 return NN_ERROR() << "Invalid OptionalTimePoint discriminator "
254 << underlyingType(optionalTimePoint.getDiscriminator());
255}
256
257Result<OptionalTimeoutDuration> convert(
258 const hal::V1_3::OptionalTimeoutDuration& optionalTimeoutDuration) {
259 constexpr auto kTimeoutDurationMaxCount = TimeoutDuration::max().count();
260 const auto makeTimeoutDuration = [](uint64_t count) -> Result<OptionalTimeoutDuration> {
261 if (count > kTimeoutDurationMaxCount) {
262 return NN_ERROR()
263 << "Unable to convert OptionalTimeoutDuration because the count exceeds the max";
264 }
265 return TimeoutDuration{count};
266 };
267
268 using Discriminator = hal::V1_3::OptionalTimeoutDuration::hidl_discriminator;
269 switch (optionalTimeoutDuration.getDiscriminator()) {
270 case Discriminator::none:
271 return std::nullopt;
272 case Discriminator::nanoseconds:
273 return makeTimeoutDuration(optionalTimeoutDuration.nanoseconds());
274 }
275 return NN_ERROR() << "Invalid OptionalTimeoutDuration discriminator "
276 << underlyingType(optionalTimeoutDuration.getDiscriminator());
277}
278
279Result<ErrorStatus> convert(const hal::V1_3::ErrorStatus& status) {
280 switch (status) {
281 case hal::V1_3::ErrorStatus::NONE:
282 case hal::V1_3::ErrorStatus::DEVICE_UNAVAILABLE:
283 case hal::V1_3::ErrorStatus::GENERAL_FAILURE:
284 case hal::V1_3::ErrorStatus::OUTPUT_INSUFFICIENT_SIZE:
285 case hal::V1_3::ErrorStatus::INVALID_ARGUMENT:
286 case hal::V1_3::ErrorStatus::MISSED_DEADLINE_TRANSIENT:
287 case hal::V1_3::ErrorStatus::MISSED_DEADLINE_PERSISTENT:
288 case hal::V1_3::ErrorStatus::RESOURCE_EXHAUSTED_TRANSIENT:
289 case hal::V1_3::ErrorStatus::RESOURCE_EXHAUSTED_PERSISTENT:
290 return static_cast<ErrorStatus>(status);
291 }
292 return NN_ERROR() << "Invalid ErrorStatus " << underlyingType(status);
293}
294
295Result<std::vector<BufferRole>> convert(
296 const hardware::hidl_vec<hal::V1_3::BufferRole>& bufferRoles) {
297 return convertVec(bufferRoles);
298}
299
300} // namespace android::nn
301
302namespace android::hardware::neuralnetworks::V1_3::utils {
303namespace {
304
305using utils::convert;
306
307nn::Result<V1_0::PerformanceInfo> convert(
308 const nn::Capabilities::PerformanceInfo& performanceInfo) {
309 return V1_0::utils::convert(performanceInfo);
310}
311
312nn::Result<V1_0::DataLocation> convert(const nn::DataLocation& dataLocation) {
313 return V1_0::utils::convert(dataLocation);
314}
315
316nn::Result<hidl_vec<uint8_t>> convert(const nn::Model::OperandValues& operandValues) {
317 return V1_0::utils::convert(operandValues);
318}
319
320nn::Result<hidl_memory> convert(const nn::Memory& memory) {
321 return V1_0::utils::convert(memory);
322}
323
324nn::Result<V1_0::RequestArgument> convert(const nn::Request::Argument& argument) {
325 return V1_0::utils::convert(argument);
326}
327
328nn::Result<V1_2::Operand::ExtraParams> convert(const nn::Operand::ExtraParams& extraParams) {
329 return V1_2::utils::convert(extraParams);
330}
331
332nn::Result<V1_2::Model::ExtensionNameAndPrefix> convert(
333 const nn::Model::ExtensionNameAndPrefix& extensionNameAndPrefix) {
334 return V1_2::utils::convert(extensionNameAndPrefix);
335}
336
337template <typename Input>
338using ConvertOutput = std::decay_t<decltype(convert(std::declval<Input>()).value())>;
339
340template <typename Type>
341nn::Result<hidl_vec<ConvertOutput<Type>>> convertVec(const std::vector<Type>& arguments) {
342 hidl_vec<ConvertOutput<Type>> halObject(arguments.size());
343 for (size_t i = 0; i < arguments.size(); ++i) {
344 halObject[i] = NN_TRY(convert(arguments[i]));
345 }
346 return halObject;
347}
348
349template <typename Type>
350nn::Result<hidl_vec<ConvertOutput<Type>>> convert(const std::vector<Type>& arguments) {
351 return convertVec(arguments);
352}
353
354nn::Result<Request::MemoryPool> makeMemoryPool(const nn::Memory& memory) {
355 Request::MemoryPool ret;
356 ret.hidlMemory(NN_TRY(convert(memory)));
357 return ret;
358}
359
360nn::Result<Request::MemoryPool> makeMemoryPool(const nn::Request::MemoryDomainToken& token) {
361 Request::MemoryPool ret;
362 ret.token(underlyingType(token));
363 return ret;
364}
365
366nn::Result<Request::MemoryPool> makeMemoryPool(
367 const std::shared_ptr<const nn::IBuffer>& /*buffer*/) {
368 return NN_ERROR() << "Unable to make memory pool from IBuffer";
369}
370
371} // anonymous namespace
372
373nn::Result<OperandType> convert(const nn::OperandType& operandType) {
374 return static_cast<OperandType>(operandType);
375}
376
377nn::Result<OperationType> convert(const nn::OperationType& operationType) {
378 return static_cast<OperationType>(operationType);
379}
380
381nn::Result<Priority> convert(const nn::Priority& priority) {
382 return static_cast<Priority>(priority);
383}
384
385nn::Result<Capabilities> convert(const nn::Capabilities& capabilities) {
386 std::vector<nn::Capabilities::OperandPerformance> operandPerformance;
387 operandPerformance.reserve(capabilities.operandPerformance.asVector().size());
388 std::copy_if(capabilities.operandPerformance.asVector().begin(),
389 capabilities.operandPerformance.asVector().end(),
390 std::back_inserter(operandPerformance),
391 [](const nn::Capabilities::OperandPerformance& operandPerformance) {
392 return nn::validOperandType(operandPerformance.type);
393 });
394
395 return Capabilities{
396 .relaxedFloat32toFloat16PerformanceScalar =
397 NN_TRY(convert(capabilities.relaxedFloat32toFloat16PerformanceScalar)),
398 .relaxedFloat32toFloat16PerformanceTensor =
399 NN_TRY(convert(capabilities.relaxedFloat32toFloat16PerformanceTensor)),
400 .operandPerformance = NN_TRY(convert(operandPerformance)),
401 .ifPerformance = NN_TRY(convert(capabilities.ifPerformance)),
402 .whilePerformance = NN_TRY(convert(capabilities.whilePerformance)),
403 };
404}
405
406nn::Result<Capabilities::OperandPerformance> convert(
407 const nn::Capabilities::OperandPerformance& operandPerformance) {
408 return Capabilities::OperandPerformance{
409 .type = NN_TRY(convert(operandPerformance.type)),
410 .info = NN_TRY(convert(operandPerformance.info)),
411 };
412}
413
414nn::Result<Operation> convert(const nn::Operation& operation) {
415 return Operation{
416 .type = NN_TRY(convert(operation.type)),
417 .inputs = operation.inputs,
418 .outputs = operation.outputs,
419 };
420}
421
422nn::Result<OperandLifeTime> convert(const nn::Operand::LifeTime& operandLifeTime) {
423 if (operandLifeTime == nn::Operand::LifeTime::POINTER) {
424 return NN_ERROR() << "Model cannot be converted because it contains pointer-based memory";
425 }
426 return static_cast<OperandLifeTime>(operandLifeTime);
427}
428
429nn::Result<Operand> convert(const nn::Operand& operand) {
430 return Operand{
431 .type = NN_TRY(convert(operand.type)),
432 .dimensions = operand.dimensions,
433 .numberOfConsumers = 0,
434 .scale = operand.scale,
435 .zeroPoint = operand.zeroPoint,
436 .lifetime = NN_TRY(convert(operand.lifetime)),
437 .location = NN_TRY(convert(operand.location)),
438 .extraParams = NN_TRY(convert(operand.extraParams)),
439 };
440}
441
442nn::Result<Model> convert(const nn::Model& model) {
443 if (!hal::utils::hasNoPointerData(model)) {
444 return NN_ERROR() << "Model cannot be converted because it contains pointer-based memory";
445 }
446
447 return Model{
448 .main = NN_TRY(convert(model.main)),
449 .referenced = NN_TRY(convert(model.referenced)),
450 .operandValues = NN_TRY(convert(model.operandValues)),
451 .pools = NN_TRY(convert(model.pools)),
452 .relaxComputationFloat32toFloat16 = model.relaxComputationFloat32toFloat16,
453 .extensionNameToPrefix = NN_TRY(convert(model.extensionNameToPrefix)),
454 };
455}
456
457nn::Result<Subgraph> convert(const nn::Model::Subgraph& subgraph) {
458 auto operands = NN_TRY(convert(subgraph.operands));
459
460 // Update number of consumers.
461 const auto numberOfConsumers =
462 hal::utils::countNumberOfConsumers(operands.size(), subgraph.operations);
463 CHECK(operands.size() == numberOfConsumers.size());
464 for (size_t i = 0; i < operands.size(); ++i) {
465 operands[i].numberOfConsumers = numberOfConsumers[i];
466 }
467
468 return Subgraph{
469 .operands = std::move(operands),
470 .operations = NN_TRY(convert(subgraph.operations)),
471 .inputIndexes = subgraph.inputIndexes,
472 .outputIndexes = subgraph.outputIndexes,
473 };
474}
475
476nn::Result<BufferDesc> convert(const nn::BufferDesc& bufferDesc) {
477 return BufferDesc{.dimensions = bufferDesc.dimensions};
478}
479
480nn::Result<BufferRole> convert(const nn::BufferRole& bufferRole) {
481 return BufferRole{
482 .modelIndex = bufferRole.modelIndex,
483 .ioIndex = bufferRole.ioIndex,
484 .frequency = bufferRole.frequency,
485 };
486}
487
488nn::Result<Request> convert(const nn::Request& request) {
489 if (!hal::utils::hasNoPointerData(request)) {
490 return NN_ERROR() << "Request cannot be converted because it contains pointer-based memory";
491 }
492
493 return Request{
494 .inputs = NN_TRY(convert(request.inputs)),
495 .outputs = NN_TRY(convert(request.outputs)),
496 .pools = NN_TRY(convert(request.pools)),
497 };
498}
499
500nn::Result<Request::MemoryPool> convert(const nn::Request::MemoryPool& memoryPool) {
501 return std::visit([](const auto& o) { return makeMemoryPool(o); }, memoryPool);
502}
503
504nn::Result<OptionalTimePoint> convert(const nn::OptionalTimePoint& optionalTimePoint) {
505 OptionalTimePoint ret;
506 if (optionalTimePoint.has_value()) {
507 const auto count = optionalTimePoint.value().time_since_epoch().count();
508 if (count < 0) {
509 return NN_ERROR() << "Unable to convert OptionalTimePoint because time since epoch "
510 "count is negative";
511 }
512 ret.nanosecondsSinceEpoch(count);
513 }
514 return ret;
515}
516
517nn::Result<OptionalTimeoutDuration> convert(
518 const nn::OptionalTimeoutDuration& optionalTimeoutDuration) {
519 OptionalTimeoutDuration ret;
520 if (optionalTimeoutDuration.has_value()) {
521 const auto count = optionalTimeoutDuration.value().count();
522 if (count < 0) {
523 return NN_ERROR()
524 << "Unable to convert OptionalTimeoutDuration because count is negative";
525 }
526 ret.nanoseconds(count);
527 }
528 return ret;
529}
530
531nn::Result<ErrorStatus> convert(const nn::ErrorStatus& errorStatus) {
532 switch (errorStatus) {
533 case nn::ErrorStatus::NONE:
534 case nn::ErrorStatus::DEVICE_UNAVAILABLE:
535 case nn::ErrorStatus::GENERAL_FAILURE:
536 case nn::ErrorStatus::OUTPUT_INSUFFICIENT_SIZE:
537 case nn::ErrorStatus::INVALID_ARGUMENT:
538 case nn::ErrorStatus::MISSED_DEADLINE_TRANSIENT:
539 case nn::ErrorStatus::MISSED_DEADLINE_PERSISTENT:
540 case nn::ErrorStatus::RESOURCE_EXHAUSTED_TRANSIENT:
541 case nn::ErrorStatus::RESOURCE_EXHAUSTED_PERSISTENT:
542 return static_cast<ErrorStatus>(errorStatus);
543 default:
544 return ErrorStatus::GENERAL_FAILURE;
545 }
546}
547
548nn::Result<hidl_vec<BufferRole>> convert(const std::vector<nn::BufferRole>& bufferRoles) {
549 return convertVec(bufferRoles);
550}
551
552} // namespace android::hardware::neuralnetworks::V1_3::utils