Slava Shklyaev | 73ee79d | 2019-05-14 14:15:14 +0100 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 2019 The Android Open Source Project |
| 3 | * |
| 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | * you may not use this file except in compliance with the License. |
| 6 | * You may obtain a copy of the License at |
| 7 | * |
| 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | * |
| 10 | * Unless required by applicable law or agreed to in writing, software |
| 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | * See the License for the specific language governing permissions and |
| 14 | * limitations under the License. |
| 15 | */ |
| 16 | |
| 17 | #include "GeneratedTestHarness.h" |
| 18 | |
| 19 | #include <android-base/logging.h> |
| 20 | #include <android/hardware/neuralnetworks/1.0/IDevice.h> |
| 21 | #include <android/hardware/neuralnetworks/1.0/IExecutionCallback.h> |
| 22 | #include <android/hardware/neuralnetworks/1.0/IPreparedModel.h> |
| 23 | #include <android/hardware/neuralnetworks/1.0/IPreparedModelCallback.h> |
| 24 | #include <android/hardware/neuralnetworks/1.0/types.h> |
| 25 | #include <android/hardware/neuralnetworks/1.1/IDevice.h> |
| 26 | #include <android/hardware/neuralnetworks/1.2/IDevice.h> |
| 27 | #include <android/hardware/neuralnetworks/1.2/IExecutionCallback.h> |
| 28 | #include <android/hardware/neuralnetworks/1.2/IPreparedModel.h> |
| 29 | #include <android/hardware/neuralnetworks/1.2/IPreparedModelCallback.h> |
| 30 | #include <android/hidl/allocator/1.0/IAllocator.h> |
| 31 | #include <android/hidl/memory/1.0/IMemory.h> |
| 32 | #include <hidlmemory/mapping.h> |
| 33 | |
| 34 | #include <iostream> |
| 35 | |
| 36 | #include "1.0/Utils.h" |
| 37 | #include "1.2/Callbacks.h" |
| 38 | #include "ExecutionBurstController.h" |
| 39 | #include "MemoryUtils.h" |
| 40 | #include "TestHarness.h" |
| 41 | #include "Utils.h" |
| 42 | |
| 43 | namespace android { |
| 44 | namespace hardware { |
| 45 | namespace neuralnetworks { |
| 46 | namespace generated_tests { |
| 47 | |
| 48 | using ::android::hardware::neuralnetworks::V1_0::ErrorStatus; |
| 49 | using ::android::hardware::neuralnetworks::V1_0::Request; |
| 50 | using ::android::hardware::neuralnetworks::V1_0::RequestArgument; |
| 51 | using ::android::hardware::neuralnetworks::V1_1::ExecutionPreference; |
Michael Butler | 3835f61 | 2019-07-11 15:43:22 -0700 | [diff] [blame] | 52 | using ::android::hardware::neuralnetworks::V1_2::Constant; |
Slava Shklyaev | 73ee79d | 2019-05-14 14:15:14 +0100 | [diff] [blame] | 53 | using ::android::hardware::neuralnetworks::V1_2::IDevice; |
| 54 | using ::android::hardware::neuralnetworks::V1_2::IPreparedModel; |
Michael Butler | 3835f61 | 2019-07-11 15:43:22 -0700 | [diff] [blame] | 55 | using ::android::hardware::neuralnetworks::V1_2::MeasureTiming; |
Slava Shklyaev | 73ee79d | 2019-05-14 14:15:14 +0100 | [diff] [blame] | 56 | using ::android::hardware::neuralnetworks::V1_2::Model; |
Michael Butler | 3835f61 | 2019-07-11 15:43:22 -0700 | [diff] [blame] | 57 | using ::android::hardware::neuralnetworks::V1_2::OutputShape; |
| 58 | using ::android::hardware::neuralnetworks::V1_2::Timing; |
Slava Shklyaev | 73ee79d | 2019-05-14 14:15:14 +0100 | [diff] [blame] | 59 | using ::android::hardware::neuralnetworks::V1_2::implementation::ExecutionCallback; |
| 60 | using ::android::hardware::neuralnetworks::V1_2::implementation::PreparedModelCallback; |
| 61 | using ::android::hidl::memory::V1_0::IMemory; |
| 62 | using ::test_helper::compare; |
| 63 | using ::test_helper::expectMultinomialDistributionWithinTolerance; |
| 64 | using ::test_helper::filter; |
| 65 | using ::test_helper::for_all; |
| 66 | using ::test_helper::for_each; |
| 67 | using ::test_helper::MixedTyped; |
| 68 | using ::test_helper::MixedTypedExample; |
| 69 | using ::test_helper::resize_accordingly; |
| 70 | using HidlToken = hidl_array<uint8_t, static_cast<uint32_t>(Constant::BYTE_SIZE_OF_CACHE_TOKEN)>; |
| 71 | |
| 72 | static bool isZeroSized(const MixedTyped& example, uint32_t index) { |
| 73 | for (auto i : example.operandDimensions.at(index)) { |
| 74 | if (i == 0) return true; |
| 75 | } |
| 76 | return false; |
| 77 | } |
| 78 | |
| 79 | static Return<ErrorStatus> ExecutePreparedModel(sp<IPreparedModel>& preparedModel, |
| 80 | const Request& request, MeasureTiming measure, |
| 81 | sp<ExecutionCallback>& callback) { |
| 82 | return preparedModel->execute_1_2(request, measure, callback); |
| 83 | } |
| 84 | static Return<ErrorStatus> ExecutePreparedModel(sp<IPreparedModel>& preparedModel, |
| 85 | const Request& request, MeasureTiming measure, |
| 86 | hidl_vec<OutputShape>* outputShapes, |
| 87 | Timing* timing) { |
| 88 | ErrorStatus result; |
| 89 | Return<void> ret = preparedModel->executeSynchronously( |
| 90 | request, measure, |
| 91 | [&result, outputShapes, timing](ErrorStatus error, const hidl_vec<OutputShape>& shapes, |
| 92 | const Timing& time) { |
| 93 | result = error; |
| 94 | *outputShapes = shapes; |
| 95 | *timing = time; |
| 96 | }); |
| 97 | if (!ret.isOk()) { |
| 98 | return ErrorStatus::GENERAL_FAILURE; |
| 99 | } |
| 100 | return result; |
| 101 | } |
| 102 | static std::shared_ptr<::android::nn::ExecutionBurstController> CreateBurst( |
| 103 | const sp<IPreparedModel>& preparedModel) { |
| 104 | return ::android::nn::ExecutionBurstController::create(preparedModel, /*blocking=*/true); |
| 105 | } |
| 106 | enum class Executor { ASYNC, SYNC, BURST }; |
| 107 | enum class OutputType { FULLY_SPECIFIED, UNSPECIFIED, INSUFFICIENT }; |
| 108 | const float kDefaultAtol = 1e-5f; |
| 109 | const float kDefaultRtol = 1e-5f; |
| 110 | void EvaluatePreparedModel(sp<IPreparedModel>& preparedModel, std::function<bool(int)> is_ignored, |
| 111 | const std::vector<MixedTypedExample>& examples, |
| 112 | bool hasRelaxedFloat32Model, float fpAtol, float fpRtol, |
| 113 | Executor executor, MeasureTiming measure, OutputType outputType) { |
| 114 | const uint32_t INPUT = 0; |
| 115 | const uint32_t OUTPUT = 1; |
| 116 | |
| 117 | int example_no = 1; |
| 118 | for (auto& example : examples) { |
| 119 | SCOPED_TRACE(example_no++); |
| 120 | const MixedTyped& inputs = example.operands.first; |
| 121 | const MixedTyped& golden = example.operands.second; |
| 122 | |
| 123 | const bool hasFloat16Inputs = !inputs.float16Operands.empty(); |
| 124 | if (hasRelaxedFloat32Model || hasFloat16Inputs) { |
| 125 | // TODO: Adjust the error limit based on testing. |
| 126 | // If in relaxed mode, set the absolute tolerance to be 5ULP of FP16. |
| 127 | fpAtol = 5.0f * 0.0009765625f; |
| 128 | // Set the relative tolerance to be 5ULP of the corresponding FP precision. |
| 129 | fpRtol = 5.0f * 0.0009765625f; |
| 130 | } |
| 131 | |
| 132 | std::vector<RequestArgument> inputs_info, outputs_info; |
| 133 | uint32_t inputSize = 0, outputSize = 0; |
| 134 | // This function only partially specifies the metadata (vector of RequestArguments). |
| 135 | // The contents are copied over below. |
| 136 | for_all(inputs, [&inputs_info, &inputSize](int index, auto, auto s) { |
| 137 | if (inputs_info.size() <= static_cast<size_t>(index)) inputs_info.resize(index + 1); |
| 138 | RequestArgument arg = { |
| 139 | .location = {.poolIndex = INPUT, |
| 140 | .offset = 0, |
| 141 | .length = static_cast<uint32_t>(s)}, |
| 142 | .dimensions = {}, |
| 143 | }; |
| 144 | RequestArgument arg_empty = { |
| 145 | .hasNoValue = true, |
| 146 | }; |
| 147 | inputs_info[index] = s ? arg : arg_empty; |
| 148 | inputSize += s; |
| 149 | }); |
| 150 | // Compute offset for inputs 1 and so on |
| 151 | { |
| 152 | size_t offset = 0; |
| 153 | for (auto& i : inputs_info) { |
| 154 | if (!i.hasNoValue) i.location.offset = offset; |
| 155 | offset += i.location.length; |
| 156 | } |
| 157 | } |
| 158 | |
| 159 | MixedTyped test; // holding test results |
| 160 | |
| 161 | // Go through all outputs, initialize RequestArgument descriptors |
| 162 | resize_accordingly(golden, test); |
| 163 | bool sizeLargerThanOne = true; |
| 164 | for_all(golden, [&golden, &outputs_info, &outputSize, &outputType, &sizeLargerThanOne]( |
| 165 | int index, auto, auto s) { |
| 166 | if (outputs_info.size() <= static_cast<size_t>(index)) outputs_info.resize(index + 1); |
| 167 | if (index == 0) { |
| 168 | // On OutputType::INSUFFICIENT, set the output operand with index 0 with |
| 169 | // buffer size one byte less than needed. |
| 170 | if (outputType == OutputType::INSUFFICIENT) { |
| 171 | if (s > 1 && !isZeroSized(golden, index)) { |
| 172 | s -= 1; |
| 173 | } else { |
| 174 | sizeLargerThanOne = false; |
| 175 | } |
| 176 | } |
| 177 | } |
| 178 | RequestArgument arg = { |
| 179 | .location = {.poolIndex = OUTPUT, |
| 180 | .offset = 0, |
| 181 | .length = static_cast<uint32_t>(s)}, |
| 182 | .dimensions = {}, |
| 183 | }; |
| 184 | outputs_info[index] = arg; |
| 185 | outputSize += s; |
| 186 | }); |
| 187 | // If output0 does not have size larger than one byte, |
| 188 | // we can not provide an insufficient buffer |
| 189 | if (!sizeLargerThanOne && outputType == OutputType::INSUFFICIENT) return; |
| 190 | // Compute offset for outputs 1 and so on |
| 191 | { |
| 192 | size_t offset = 0; |
| 193 | for (auto& i : outputs_info) { |
| 194 | i.location.offset = offset; |
| 195 | offset += i.location.length; |
| 196 | } |
| 197 | } |
| 198 | std::vector<hidl_memory> pools = {nn::allocateSharedMemory(inputSize), |
| 199 | nn::allocateSharedMemory(outputSize)}; |
| 200 | ASSERT_NE(0ull, pools[INPUT].size()); |
| 201 | ASSERT_NE(0ull, pools[OUTPUT].size()); |
| 202 | |
| 203 | // load data |
| 204 | sp<IMemory> inputMemory = mapMemory(pools[INPUT]); |
| 205 | sp<IMemory> outputMemory = mapMemory(pools[OUTPUT]); |
| 206 | ASSERT_NE(nullptr, inputMemory.get()); |
| 207 | ASSERT_NE(nullptr, outputMemory.get()); |
| 208 | char* inputPtr = reinterpret_cast<char*>(static_cast<void*>(inputMemory->getPointer())); |
| 209 | char* outputPtr = reinterpret_cast<char*>(static_cast<void*>(outputMemory->getPointer())); |
| 210 | ASSERT_NE(nullptr, inputPtr); |
| 211 | ASSERT_NE(nullptr, outputPtr); |
| 212 | inputMemory->update(); |
| 213 | outputMemory->update(); |
| 214 | |
| 215 | // Go through all inputs, copy the values |
| 216 | for_all(inputs, [&inputs_info, inputPtr](int index, auto p, auto s) { |
| 217 | char* begin = (char*)p; |
| 218 | char* end = begin + s; |
| 219 | // TODO: handle more than one input |
| 220 | std::copy(begin, end, inputPtr + inputs_info[index].location.offset); |
| 221 | }); |
| 222 | |
| 223 | inputMemory->commit(); |
| 224 | outputMemory->commit(); |
| 225 | |
| 226 | const Request request = {.inputs = inputs_info, .outputs = outputs_info, .pools = pools}; |
| 227 | |
| 228 | ErrorStatus executionStatus; |
| 229 | hidl_vec<OutputShape> outputShapes; |
| 230 | Timing timing; |
| 231 | switch (executor) { |
| 232 | case Executor::ASYNC: { |
| 233 | SCOPED_TRACE("asynchronous"); |
| 234 | |
| 235 | // launch execution |
| 236 | sp<ExecutionCallback> executionCallback = new ExecutionCallback(); |
| 237 | ASSERT_NE(nullptr, executionCallback.get()); |
| 238 | Return<ErrorStatus> executionLaunchStatus = |
| 239 | ExecutePreparedModel(preparedModel, request, measure, executionCallback); |
| 240 | ASSERT_TRUE(executionLaunchStatus.isOk()); |
| 241 | EXPECT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(executionLaunchStatus)); |
| 242 | |
| 243 | // retrieve execution status |
| 244 | executionCallback->wait(); |
| 245 | executionStatus = executionCallback->getStatus(); |
| 246 | outputShapes = executionCallback->getOutputShapes(); |
| 247 | timing = executionCallback->getTiming(); |
| 248 | |
| 249 | break; |
| 250 | } |
| 251 | case Executor::SYNC: { |
| 252 | SCOPED_TRACE("synchronous"); |
| 253 | |
| 254 | // execute |
| 255 | Return<ErrorStatus> executionReturnStatus = ExecutePreparedModel( |
| 256 | preparedModel, request, measure, &outputShapes, &timing); |
| 257 | ASSERT_TRUE(executionReturnStatus.isOk()); |
| 258 | executionStatus = static_cast<ErrorStatus>(executionReturnStatus); |
| 259 | |
| 260 | break; |
| 261 | } |
| 262 | case Executor::BURST: { |
| 263 | SCOPED_TRACE("burst"); |
| 264 | |
| 265 | // create burst |
| 266 | const std::shared_ptr<::android::nn::ExecutionBurstController> controller = |
| 267 | CreateBurst(preparedModel); |
| 268 | ASSERT_NE(nullptr, controller.get()); |
| 269 | |
| 270 | // create memory keys |
| 271 | std::vector<intptr_t> keys(request.pools.size()); |
| 272 | for (size_t i = 0; i < keys.size(); ++i) { |
| 273 | keys[i] = reinterpret_cast<intptr_t>(&request.pools[i]); |
| 274 | } |
| 275 | |
| 276 | // execute burst |
| 277 | std::tie(executionStatus, outputShapes, timing) = |
| 278 | controller->compute(request, measure, keys); |
| 279 | |
| 280 | break; |
| 281 | } |
| 282 | } |
| 283 | |
| 284 | if (outputType != OutputType::FULLY_SPECIFIED && |
| 285 | executionStatus == ErrorStatus::GENERAL_FAILURE) { |
| 286 | LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot " |
| 287 | "execute model that it does not support."; |
| 288 | std::cout << "[ ] Early termination of test because vendor service cannot " |
| 289 | "execute model that it does not support." |
| 290 | << std::endl; |
| 291 | GTEST_SKIP(); |
| 292 | } |
| 293 | if (measure == MeasureTiming::NO) { |
| 294 | EXPECT_EQ(UINT64_MAX, timing.timeOnDevice); |
| 295 | EXPECT_EQ(UINT64_MAX, timing.timeInDriver); |
| 296 | } else { |
| 297 | if (timing.timeOnDevice != UINT64_MAX && timing.timeInDriver != UINT64_MAX) { |
| 298 | EXPECT_LE(timing.timeOnDevice, timing.timeInDriver); |
| 299 | } |
| 300 | } |
| 301 | |
| 302 | switch (outputType) { |
| 303 | case OutputType::FULLY_SPECIFIED: |
| 304 | // If the model output operands are fully specified, outputShapes must be either |
| 305 | // either empty, or have the same number of elements as the number of outputs. |
| 306 | ASSERT_EQ(ErrorStatus::NONE, executionStatus); |
| 307 | ASSERT_TRUE(outputShapes.size() == 0 || |
| 308 | outputShapes.size() == test.operandDimensions.size()); |
| 309 | break; |
| 310 | case OutputType::UNSPECIFIED: |
| 311 | // If the model output operands are not fully specified, outputShapes must have |
| 312 | // the same number of elements as the number of outputs. |
| 313 | ASSERT_EQ(ErrorStatus::NONE, executionStatus); |
| 314 | ASSERT_EQ(outputShapes.size(), test.operandDimensions.size()); |
| 315 | break; |
| 316 | case OutputType::INSUFFICIENT: |
| 317 | ASSERT_EQ(ErrorStatus::OUTPUT_INSUFFICIENT_SIZE, executionStatus); |
| 318 | ASSERT_EQ(outputShapes.size(), test.operandDimensions.size()); |
| 319 | ASSERT_FALSE(outputShapes[0].isSufficient); |
| 320 | return; |
| 321 | } |
| 322 | // Go through all outputs, overwrite output dimensions with returned output shapes |
| 323 | if (outputShapes.size() > 0) { |
| 324 | for_each<uint32_t>(test.operandDimensions, |
| 325 | [&outputShapes](int idx, std::vector<uint32_t>& dim) { |
| 326 | dim = outputShapes[idx].dimensions; |
| 327 | }); |
| 328 | } |
| 329 | |
| 330 | // validate results |
| 331 | outputMemory->read(); |
| 332 | copy_back(&test, outputs_info, outputPtr); |
| 333 | outputMemory->commit(); |
| 334 | // Filter out don't cares |
| 335 | MixedTyped filtered_golden = filter(golden, is_ignored); |
| 336 | MixedTyped filtered_test = filter(test, is_ignored); |
| 337 | |
| 338 | // We want "close-enough" results for float |
| 339 | compare(filtered_golden, filtered_test, fpAtol, fpRtol); |
| 340 | |
| 341 | if (example.expectedMultinomialDistributionTolerance > 0) { |
| 342 | expectMultinomialDistributionWithinTolerance(test, example); |
| 343 | } |
| 344 | } |
| 345 | } |
| 346 | void EvaluatePreparedModel(sp<IPreparedModel>& preparedModel, std::function<bool(int)> is_ignored, |
| 347 | const std::vector<MixedTypedExample>& examples, |
| 348 | bool hasRelaxedFloat32Model, Executor executor, MeasureTiming measure, |
| 349 | OutputType outputType) { |
| 350 | EvaluatePreparedModel(preparedModel, is_ignored, examples, hasRelaxedFloat32Model, kDefaultAtol, |
| 351 | kDefaultRtol, executor, measure, outputType); |
| 352 | } |
| 353 | |
| 354 | void EvaluatePreparedModel(sp<IPreparedModel>& preparedModel, std::function<bool(int)> is_ignored, |
| 355 | const std::vector<MixedTypedExample>& examples, |
| 356 | bool hasRelaxedFloat32Model, bool testDynamicOutputShape) { |
| 357 | if (testDynamicOutputShape) { |
| 358 | EvaluatePreparedModel(preparedModel, is_ignored, examples, hasRelaxedFloat32Model, |
| 359 | Executor::ASYNC, MeasureTiming::NO, OutputType::UNSPECIFIED); |
| 360 | EvaluatePreparedModel(preparedModel, is_ignored, examples, hasRelaxedFloat32Model, |
| 361 | Executor::SYNC, MeasureTiming::NO, OutputType::UNSPECIFIED); |
| 362 | EvaluatePreparedModel(preparedModel, is_ignored, examples, hasRelaxedFloat32Model, |
| 363 | Executor::BURST, MeasureTiming::NO, OutputType::UNSPECIFIED); |
| 364 | EvaluatePreparedModel(preparedModel, is_ignored, examples, hasRelaxedFloat32Model, |
| 365 | Executor::ASYNC, MeasureTiming::YES, OutputType::UNSPECIFIED); |
| 366 | EvaluatePreparedModel(preparedModel, is_ignored, examples, hasRelaxedFloat32Model, |
| 367 | Executor::SYNC, MeasureTiming::YES, OutputType::UNSPECIFIED); |
| 368 | EvaluatePreparedModel(preparedModel, is_ignored, examples, hasRelaxedFloat32Model, |
| 369 | Executor::BURST, MeasureTiming::YES, OutputType::UNSPECIFIED); |
| 370 | EvaluatePreparedModel(preparedModel, is_ignored, examples, hasRelaxedFloat32Model, |
| 371 | Executor::ASYNC, MeasureTiming::NO, OutputType::INSUFFICIENT); |
| 372 | EvaluatePreparedModel(preparedModel, is_ignored, examples, hasRelaxedFloat32Model, |
| 373 | Executor::SYNC, MeasureTiming::NO, OutputType::INSUFFICIENT); |
| 374 | EvaluatePreparedModel(preparedModel, is_ignored, examples, hasRelaxedFloat32Model, |
| 375 | Executor::BURST, MeasureTiming::NO, OutputType::INSUFFICIENT); |
| 376 | EvaluatePreparedModel(preparedModel, is_ignored, examples, hasRelaxedFloat32Model, |
| 377 | Executor::ASYNC, MeasureTiming::YES, OutputType::INSUFFICIENT); |
| 378 | EvaluatePreparedModel(preparedModel, is_ignored, examples, hasRelaxedFloat32Model, |
| 379 | Executor::SYNC, MeasureTiming::YES, OutputType::INSUFFICIENT); |
| 380 | EvaluatePreparedModel(preparedModel, is_ignored, examples, hasRelaxedFloat32Model, |
| 381 | Executor::BURST, MeasureTiming::YES, OutputType::INSUFFICIENT); |
| 382 | } else { |
| 383 | EvaluatePreparedModel(preparedModel, is_ignored, examples, hasRelaxedFloat32Model, |
| 384 | Executor::ASYNC, MeasureTiming::NO, OutputType::FULLY_SPECIFIED); |
| 385 | EvaluatePreparedModel(preparedModel, is_ignored, examples, hasRelaxedFloat32Model, |
| 386 | Executor::SYNC, MeasureTiming::NO, OutputType::FULLY_SPECIFIED); |
| 387 | EvaluatePreparedModel(preparedModel, is_ignored, examples, hasRelaxedFloat32Model, |
| 388 | Executor::BURST, MeasureTiming::NO, OutputType::FULLY_SPECIFIED); |
| 389 | EvaluatePreparedModel(preparedModel, is_ignored, examples, hasRelaxedFloat32Model, |
| 390 | Executor::ASYNC, MeasureTiming::YES, OutputType::FULLY_SPECIFIED); |
| 391 | EvaluatePreparedModel(preparedModel, is_ignored, examples, hasRelaxedFloat32Model, |
| 392 | Executor::SYNC, MeasureTiming::YES, OutputType::FULLY_SPECIFIED); |
| 393 | EvaluatePreparedModel(preparedModel, is_ignored, examples, hasRelaxedFloat32Model, |
| 394 | Executor::BURST, MeasureTiming::YES, OutputType::FULLY_SPECIFIED); |
| 395 | } |
| 396 | } |
| 397 | |
| 398 | void PrepareModel(const sp<IDevice>& device, const Model& model, |
| 399 | sp<IPreparedModel>* preparedModel) { |
| 400 | // see if service can handle model |
| 401 | bool fullySupportsModel = false; |
| 402 | Return<void> supportedCall = device->getSupportedOperations_1_2( |
| 403 | model, [&fullySupportsModel](ErrorStatus status, const hidl_vec<bool>& supported) { |
| 404 | ASSERT_EQ(ErrorStatus::NONE, status); |
| 405 | ASSERT_NE(0ul, supported.size()); |
| 406 | fullySupportsModel = std::all_of(supported.begin(), supported.end(), |
| 407 | [](bool valid) { return valid; }); |
| 408 | }); |
| 409 | ASSERT_TRUE(supportedCall.isOk()); |
| 410 | |
| 411 | // launch prepare model |
| 412 | sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback(); |
| 413 | ASSERT_NE(nullptr, preparedModelCallback.get()); |
| 414 | Return<ErrorStatus> prepareLaunchStatus = device->prepareModel_1_2( |
| 415 | model, ExecutionPreference::FAST_SINGLE_ANSWER, hidl_vec<hidl_handle>(), |
| 416 | hidl_vec<hidl_handle>(), HidlToken(), preparedModelCallback); |
| 417 | ASSERT_TRUE(prepareLaunchStatus.isOk()); |
| 418 | ASSERT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(prepareLaunchStatus)); |
| 419 | |
| 420 | // retrieve prepared model |
| 421 | preparedModelCallback->wait(); |
| 422 | ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus(); |
| 423 | sp<V1_0::IPreparedModel> preparedModelV1_0 = preparedModelCallback->getPreparedModel(); |
| 424 | *preparedModel = IPreparedModel::castFrom(preparedModelV1_0).withDefault(nullptr); |
| 425 | |
| 426 | // early termination if vendor service cannot fully prepare model |
| 427 | if (!fullySupportsModel && prepareReturnStatus != ErrorStatus::NONE) { |
| 428 | ASSERT_EQ(nullptr, preparedModel->get()); |
| 429 | LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot " |
| 430 | "prepare model that it does not support."; |
| 431 | std::cout << "[ ] Early termination of test because vendor service cannot " |
| 432 | "prepare model that it does not support." |
| 433 | << std::endl; |
| 434 | return; |
| 435 | } |
| 436 | EXPECT_EQ(ErrorStatus::NONE, prepareReturnStatus); |
| 437 | ASSERT_NE(nullptr, preparedModel->get()); |
| 438 | } |
| 439 | |
| 440 | void Execute(const sp<IDevice>& device, std::function<Model(void)> create_model, |
| 441 | std::function<bool(int)> is_ignored, const std::vector<MixedTypedExample>& examples, |
| 442 | bool testDynamicOutputShape) { |
| 443 | Model model = create_model(); |
| 444 | sp<IPreparedModel> preparedModel = nullptr; |
| 445 | PrepareModel(device, model, &preparedModel); |
| 446 | if (preparedModel == nullptr) { |
| 447 | GTEST_SKIP(); |
| 448 | } |
| 449 | EvaluatePreparedModel(preparedModel, is_ignored, examples, |
| 450 | model.relaxComputationFloat32toFloat16, testDynamicOutputShape); |
| 451 | } |
| 452 | |
| 453 | } // namespace generated_tests |
| 454 | } // namespace neuralnetworks |
| 455 | } // namespace hardware |
| 456 | } // namespace android |